Step | Hyp | Ref
| Expression |
1 | | df-mpt 5154 |
. 2
⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)} |
2 | | df-mpo 7260 |
. . 3
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐷)} |
3 | | eliunxp 5735 |
. . . . . . 7
⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
4 | 3 | anbi1i 623 |
. . . . . 6
⊢ ((𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶) ↔ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 = 𝐶)) |
5 | | mpomptxf.1 |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝐶 |
6 | 5 | nfeq2 2923 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑤 = 𝐶 |
7 | 6 | 19.41 2231 |
. . . . . . . 8
⊢
(∃𝑦((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 = 𝐶) ↔ (∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 = 𝐶)) |
8 | 7 | exbii 1851 |
. . . . . . 7
⊢
(∃𝑥∃𝑦((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 = 𝐶) ↔ ∃𝑥(∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 = 𝐶)) |
9 | | mpomptxf.0 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐶 |
10 | 9 | nfeq2 2923 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑤 = 𝐶 |
11 | 10 | 19.41 2231 |
. . . . . . 7
⊢
(∃𝑥(∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 = 𝐶) ↔ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 = 𝐶)) |
12 | 8, 11 | bitri 274 |
. . . . . 6
⊢
(∃𝑥∃𝑦((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 = 𝐶) ↔ (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 = 𝐶)) |
13 | | anass 468 |
. . . . . . . 8
⊢ (((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 = 𝐶) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶))) |
14 | | mpomptxf.2 |
. . . . . . . . . . 11
⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) |
15 | 14 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑤 = 𝐶 ↔ 𝑤 = 𝐷)) |
16 | 15 | anbi2d 628 |
. . . . . . . . 9
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐷))) |
17 | 16 | pm5.32i 574 |
. . . . . . . 8
⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐶)) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐷))) |
18 | 13, 17 | bitri 274 |
. . . . . . 7
⊢ (((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 = 𝐶) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐷))) |
19 | 18 | 2exbii 1852 |
. . . . . 6
⊢
(∃𝑥∃𝑦((𝑧 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑤 = 𝐶) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐷))) |
20 | 4, 12, 19 | 3bitr2i 298 |
. . . . 5
⊢ ((𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶) ↔ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐷))) |
21 | 20 | opabbii 5137 |
. . . 4
⊢
{〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)} = {〈𝑧, 𝑤〉 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐷))} |
22 | | dfoprab2 7311 |
. . . 4
⊢
{〈〈𝑥,
𝑦〉, 𝑤〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐷)} = {〈𝑧, 𝑤〉 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐷))} |
23 | 21, 22 | eqtr4i 2769 |
. . 3
⊢
{〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑤 = 𝐷)} |
24 | 2, 23 | eqtr4i 2769 |
. 2
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) = {〈𝑧, 𝑤〉 ∣ (𝑧 ∈ ∪
𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ∧ 𝑤 = 𝐶)} |
25 | 1, 24 | eqtr4i 2769 |
1
⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |