Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliunxp2 Structured version   Visualization version   GIF version

Theorem eliunxp2 44376
 Description: Membership in a union of Cartesian products over its second component, analogous to eliunxp 5702. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
eliunxp2 (𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑦,𝐶
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem eliunxp2
StepHypRef Expression
1 relxp 5567 . . . . . . . 8 Rel (𝐴 × {𝑦})
21rgenw 3150 . . . . . . 7 𝑦𝐵 Rel (𝐴 × {𝑦})
3 reliun 5683 . . . . . . 7 (Rel 𝑦𝐵 (𝐴 × {𝑦}) ↔ ∀𝑦𝐵 Rel (𝐴 × {𝑦}))
42, 3mpbir 233 . . . . . 6 Rel 𝑦𝐵 (𝐴 × {𝑦})
5 elrel 5665 . . . . . 6 ((Rel 𝑦𝐵 (𝐴 × {𝑦}) ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
64, 5mpan 688 . . . . 5 (𝐶 𝑦𝐵 (𝐴 × {𝑦}) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
7 excom 2165 . . . . 5 (∃𝑦𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
86, 7sylibr 236 . . . 4 (𝐶 𝑦𝐵 (𝐴 × {𝑦}) → ∃𝑦𝑥 𝐶 = ⟨𝑥, 𝑦⟩)
98pm4.71ri 563 . . 3 (𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ (∃𝑦𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})))
10 nfiu1 4945 . . . . 5 𝑦 𝑦𝐵 (𝐴 × {𝑦})
1110nfel2 2996 . . . 4 𝑦 𝐶 𝑦𝐵 (𝐴 × {𝑦})
121119.41 2233 . . 3 (∃𝑦(∃𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) ↔ (∃𝑦𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})))
13 19.41v 1946 . . . . 5 (∃𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) ↔ (∃𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})))
14 eleq1 2900 . . . . . . . 8 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦})))
15 opeliun2xp 44375 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ (𝑦𝐵𝑥𝐴))
1615biancomi 465 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ (𝑥𝐴𝑦𝐵))
1714, 16syl6bb 289 . . . . . . 7 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ (𝑥𝐴𝑦𝐵)))
1817pm5.32i 577 . . . . . 6 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
1918exbii 1844 . . . . 5 (∃𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) ↔ ∃𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
2013, 19bitr3i 279 . . . 4 ((∃𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) ↔ ∃𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
2120exbii 1844 . . 3 (∃𝑦(∃𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) ↔ ∃𝑦𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
229, 12, 213bitr2i 301 . 2 (𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ ∃𝑦𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
23 excom 2165 . 2 (∃𝑦𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
2422, 23bitri 277 1 (𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 208   ∧ wa 398   = wceq 1533  ∃wex 1776   ∈ wcel 2110  ∀wral 3138  {csn 4560  ⟨cop 4566  ∪ ciun 4911   × cxp 5547  Rel wrel 5554 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-iun 4913  df-opab 5121  df-xp 5555  df-rel 5556 This theorem is referenced by:  mpomptx2  44377
 Copyright terms: Public domain W3C validator