Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliunxp2 Structured version   Visualization version   GIF version

Theorem eliunxp2 45557
Description: Membership in a union of Cartesian products over its second component, analogous to eliunxp 5735. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
eliunxp2 (𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑦,𝐶
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem eliunxp2
StepHypRef Expression
1 relxp 5598 . . . . . . . 8 Rel (𝐴 × {𝑦})
21rgenw 3075 . . . . . . 7 𝑦𝐵 Rel (𝐴 × {𝑦})
3 reliun 5715 . . . . . . 7 (Rel 𝑦𝐵 (𝐴 × {𝑦}) ↔ ∀𝑦𝐵 Rel (𝐴 × {𝑦}))
42, 3mpbir 230 . . . . . 6 Rel 𝑦𝐵 (𝐴 × {𝑦})
5 elrel 5697 . . . . . 6 ((Rel 𝑦𝐵 (𝐴 × {𝑦}) ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
64, 5mpan 686 . . . . 5 (𝐶 𝑦𝐵 (𝐴 × {𝑦}) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
7 excom 2164 . . . . 5 (∃𝑦𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
86, 7sylibr 233 . . . 4 (𝐶 𝑦𝐵 (𝐴 × {𝑦}) → ∃𝑦𝑥 𝐶 = ⟨𝑥, 𝑦⟩)
98pm4.71ri 560 . . 3 (𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ (∃𝑦𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})))
10 nfiu1 4955 . . . . 5 𝑦 𝑦𝐵 (𝐴 × {𝑦})
1110nfel2 2924 . . . 4 𝑦 𝐶 𝑦𝐵 (𝐴 × {𝑦})
121119.41 2231 . . 3 (∃𝑦(∃𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) ↔ (∃𝑦𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})))
13 19.41v 1954 . . . . 5 (∃𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) ↔ (∃𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})))
14 eleq1 2826 . . . . . . . 8 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦})))
15 opeliun2xp 45556 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ (𝑦𝐵𝑥𝐴))
1615biancomi 462 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ (𝑥𝐴𝑦𝐵))
1714, 16bitrdi 286 . . . . . . 7 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ (𝑥𝐴𝑦𝐵)))
1817pm5.32i 574 . . . . . 6 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
1918exbii 1851 . . . . 5 (∃𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) ↔ ∃𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
2013, 19bitr3i 276 . . . 4 ((∃𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) ↔ ∃𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
2120exbii 1851 . . 3 (∃𝑦(∃𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) ↔ ∃𝑦𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
229, 12, 213bitr2i 298 . 2 (𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ ∃𝑦𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
23 excom 2164 . 2 (∃𝑦𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
2422, 23bitri 274 1 (𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wral 3063  {csn 4558  cop 4564   ciun 4921   × cxp 5578  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-iun 4923  df-opab 5133  df-xp 5586  df-rel 5587
This theorem is referenced by:  mpomptx2  45558
  Copyright terms: Public domain W3C validator