MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliunxp Structured version   Visualization version   GIF version

Theorem eliunxp 5746
Description: Membership in a union of Cartesian products. Analogue of elxp 5612 for nonconstant 𝐵(𝑥). (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
eliunxp (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝑦,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem eliunxp
StepHypRef Expression
1 relxp 5607 . . . . . 6 Rel ({𝑥} × 𝐵)
21rgenw 3076 . . . . 5 𝑥𝐴 Rel ({𝑥} × 𝐵)
3 reliun 5726 . . . . 5 (Rel 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥𝐴 Rel ({𝑥} × 𝐵))
42, 3mpbir 230 . . . 4 Rel 𝑥𝐴 ({𝑥} × 𝐵)
5 elrel 5708 . . . 4 ((Rel 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
64, 5mpan 687 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
76pm4.71ri 561 . 2 (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ (∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)))
8 nfiu1 4958 . . . 4 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
98nfel2 2925 . . 3 𝑥 𝐶 𝑥𝐴 ({𝑥} × 𝐵)
10919.41 2228 . 2 (∃𝑥(∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ (∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)))
11 19.41v 1953 . . . 4 (∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ (∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)))
12 eleq1 2826 . . . . . . 7 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
13 opeliunxp 5654 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
1412, 13bitrdi 287 . . . . . 6 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝑦𝐵)))
1514pm5.32i 575 . . . . 5 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
1615exbii 1850 . . . 4 (∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ ∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
1711, 16bitr3i 276 . . 3 ((∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ ∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
1817exbii 1850 . 2 (∃𝑥(∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
197, 10, 183bitr2i 299 1 (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wral 3064  {csn 4561  cop 4567   ciun 4924   × cxp 5587  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-iun 4926  df-opab 5137  df-xp 5595  df-rel 5596
This theorem is referenced by:  raliunxp  5748  dfmpt3  6567  mpomptx  7387  fsumcom2  15486  fprodcom2  15694  isfunc  17579  gsum2d2  19575  dprd2d2  19647  fsumvma  26361  2ndresdju  30986  mpomptxf  31016  poimirlem26  35803  dvnprodlem1  43487
  Copyright terms: Public domain W3C validator