MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliunxp Structured version   Visualization version   GIF version

Theorem eliunxp 5862
Description: Membership in a union of Cartesian products. Analogue of elxp 5723 for nonconstant 𝐵(𝑥). (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
eliunxp (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝑦,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem eliunxp
StepHypRef Expression
1 relxp 5718 . . . . . 6 Rel ({𝑥} × 𝐵)
21rgenw 3071 . . . . 5 𝑥𝐴 Rel ({𝑥} × 𝐵)
3 reliun 5840 . . . . 5 (Rel 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥𝐴 Rel ({𝑥} × 𝐵))
42, 3mpbir 231 . . . 4 Rel 𝑥𝐴 ({𝑥} × 𝐵)
5 elrel 5822 . . . 4 ((Rel 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
64, 5mpan 689 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
76pm4.71ri 560 . 2 (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ (∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)))
8 nfiu1 5050 . . . 4 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
98nfel2 2927 . . 3 𝑥 𝐶 𝑥𝐴 ({𝑥} × 𝐵)
10919.41 2236 . 2 (∃𝑥(∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ (∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)))
11 19.41v 1949 . . . 4 (∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ (∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)))
12 eleq1 2832 . . . . . . 7 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
13 opeliunxp 5767 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
1412, 13bitrdi 287 . . . . . 6 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝑦𝐵)))
1514pm5.32i 574 . . . . 5 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
1615exbii 1846 . . . 4 (∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ ∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
1711, 16bitr3i 277 . . 3 ((∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ ∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
1817exbii 1846 . 2 (∃𝑥(∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
197, 10, 183bitr2i 299 1 (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  {csn 4648  cop 4654   ciun 5015   × cxp 5698  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-iun 5017  df-opab 5229  df-xp 5706  df-rel 5707
This theorem is referenced by:  raliunxp  5864  dfmpt3  6714  mpomptx  7563  fsumcom2  15822  fprodcom2  16032  isfunc  17928  gsum2d2  20016  dprd2d2  20088  fsumvma  27275  2ndresdju  32667  mpomptxf  32695  poimirlem26  37606  dvnprodlem1  45867
  Copyright terms: Public domain W3C validator