![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfoprab3s | Structured version Visualization version GIF version |
Description: A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfoprab3s | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfoprab2 7483 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
2 | nfsbc1v 3796 | . . . . 5 ⊢ Ⅎ𝑥[(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑 | |
3 | 2 | 19.41 2224 | . . . 4 ⊢ (∃𝑥(∃𝑦 𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
4 | sbcopeq1a 8063 | . . . . . . . 8 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → ([(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑 ↔ 𝜑)) | |
5 | 4 | pm5.32i 573 | . . . . . . 7 ⊢ ((𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
6 | 5 | exbii 1843 | . . . . . 6 ⊢ (∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
7 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑦(1st ‘𝑤) | |
8 | nfsbc1v 3796 | . . . . . . . 8 ⊢ Ⅎ𝑦[(2nd ‘𝑤) / 𝑦]𝜑 | |
9 | 7, 8 | nfsbcw 3798 | . . . . . . 7 ⊢ Ⅎ𝑦[(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑 |
10 | 9 | 19.41 2224 | . . . . . 6 ⊢ (∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (∃𝑦 𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
11 | 6, 10 | bitr3i 276 | . . . . 5 ⊢ (∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (∃𝑦 𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
12 | 11 | exbii 1843 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥(∃𝑦 𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
13 | elvv 5756 | . . . . 5 ⊢ (𝑤 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉) | |
14 | 13 | anbi1i 622 | . . . 4 ⊢ ((𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
15 | 3, 12, 14 | 3bitr4i 302 | . . 3 ⊢ (∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
16 | 15 | opabbii 5220 | . 2 ⊢ {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} |
17 | 1, 16 | eqtri 2754 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1534 ∃wex 1774 ∈ wcel 2099 Vcvv 3462 [wsbc 3776 〈cop 4639 {copab 5215 × cxp 5680 ‘cfv 6554 {coprab 7425 1st c1st 8001 2nd c2nd 8002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-iota 6506 df-fun 6556 df-fv 6562 df-oprab 7428 df-1st 8003 df-2nd 8004 |
This theorem is referenced by: dfoprab3 8068 |
Copyright terms: Public domain | W3C validator |