![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfoprab3s | Structured version Visualization version GIF version |
Description: A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfoprab3s | ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfoprab2 7475 | . 2 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
2 | nfsbc1v 3788 | . . . . 5 ⊢ Ⅎ𝑥[(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑 | |
3 | 2 | 19.41 2223 | . . . 4 ⊢ (∃𝑥(∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (∃𝑥∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
4 | sbcopeq1a 8051 | . . . . . . . 8 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → ([(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑 ↔ 𝜑)) | |
5 | 4 | pm5.32i 573 | . . . . . . 7 ⊢ ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
6 | 5 | exbii 1842 | . . . . . 6 ⊢ (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
7 | nfcv 2892 | . . . . . . . 8 ⊢ Ⅎ𝑦(1st ‘𝑤) | |
8 | nfsbc1v 3788 | . . . . . . . 8 ⊢ Ⅎ𝑦[(2nd ‘𝑤) / 𝑦]𝜑 | |
9 | 7, 8 | nfsbcw 3790 | . . . . . . 7 ⊢ Ⅎ𝑦[(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑 |
10 | 9 | 19.41 2223 | . . . . . 6 ⊢ (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
11 | 6, 10 | bitr3i 276 | . . . . 5 ⊢ (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
12 | 11 | exbii 1842 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥(∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
13 | elvv 5746 | . . . . 5 ⊢ (𝑤 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩) | |
14 | 13 | anbi1i 622 | . . . 4 ⊢ ((𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (∃𝑥∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
15 | 3, 12, 14 | 3bitr4i 302 | . . 3 ⊢ (∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
16 | 15 | opabbii 5210 | . 2 ⊢ {⟨𝑤, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} |
17 | 1, 16 | eqtri 2753 | 1 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3463 [wsbc 3768 ⟨cop 4630 {copab 5205 × cxp 5670 ‘cfv 6543 {coprab 7417 1st c1st 7989 2nd c2nd 7990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3769 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6495 df-fun 6545 df-fv 6551 df-oprab 7420 df-1st 7991 df-2nd 7992 |
This theorem is referenced by: dfoprab3 8056 |
Copyright terms: Public domain | W3C validator |