MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfoprab3s Structured version   Visualization version   GIF version

Theorem dfoprab3s 7745
Description: A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfoprab3s {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑)}
Distinct variable groups:   𝜑,𝑤   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem dfoprab3s
StepHypRef Expression
1 dfoprab2 7206 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
2 nfsbc1v 3792 . . . . 5 𝑥[(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑
3219.41 2232 . . . 4 (∃𝑥(∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ (∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
4 sbcopeq1a 7742 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → ([(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑𝜑))
54pm5.32i 577 . . . . . . 7 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
65exbii 1844 . . . . . 6 (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
7 nfcv 2977 . . . . . . . 8 𝑦(1st𝑤)
8 nfsbc1v 3792 . . . . . . . 8 𝑦[(2nd𝑤) / 𝑦]𝜑
97, 8nfsbcw 3794 . . . . . . 7 𝑦[(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑
10919.41 2232 . . . . . 6 (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ (∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
116, 10bitr3i 279 . . . . 5 (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
1211exbii 1844 . . . 4 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥(∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
13 elvv 5621 . . . . 5 (𝑤 ∈ (V × V) ↔ ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
1413anbi1i 625 . . . 4 ((𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ (∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
153, 12, 143bitr4i 305 . . 3 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
1615opabbii 5126 . 2 {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑)}
171, 16eqtri 2844 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑)}
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1533  wex 1776  wcel 2110  Vcvv 3495  [wsbc 3772  cop 4567  {copab 5121   × cxp 5548  cfv 6350  {coprab 7151  1st c1st 7681  2nd c2nd 7682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-iota 6309  df-fun 6352  df-fv 6358  df-oprab 7154  df-1st 7683  df-2nd 7684
This theorem is referenced by:  dfoprab3  7746
  Copyright terms: Public domain W3C validator