![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfoprab3s | Structured version Visualization version GIF version |
Description: A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfoprab3s | ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfoprab2 7416 | . 2 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
2 | nfsbc1v 3760 | . . . . 5 ⊢ Ⅎ𝑥[(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑 | |
3 | 2 | 19.41 2229 | . . . 4 ⊢ (∃𝑥(∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (∃𝑥∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
4 | sbcopeq1a 7982 | . . . . . . . 8 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → ([(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑 ↔ 𝜑)) | |
5 | 4 | pm5.32i 576 | . . . . . . 7 ⊢ ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
6 | 5 | exbii 1851 | . . . . . 6 ⊢ (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) |
7 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑦(1st ‘𝑤) | |
8 | nfsbc1v 3760 | . . . . . . . 8 ⊢ Ⅎ𝑦[(2nd ‘𝑤) / 𝑦]𝜑 | |
9 | 7, 8 | nfsbcw 3762 | . . . . . . 7 ⊢ Ⅎ𝑦[(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑 |
10 | 9 | 19.41 2229 | . . . . . 6 ⊢ (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
11 | 6, 10 | bitr3i 277 | . . . . 5 ⊢ (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
12 | 11 | exbii 1851 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥(∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
13 | elvv 5707 | . . . . 5 ⊢ (𝑤 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩) | |
14 | 13 | anbi1i 625 | . . . 4 ⊢ ((𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (∃𝑥∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
15 | 3, 12, 14 | 3bitr4i 303 | . . 3 ⊢ (∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
16 | 15 | opabbii 5173 | . 2 ⊢ {⟨𝑤, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} |
17 | 1, 16 | eqtri 2765 | 1 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 Vcvv 3446 [wsbc 3740 ⟨cop 4593 {copab 5168 × cxp 5632 ‘cfv 6497 {coprab 7359 1st c1st 7920 2nd c2nd 7921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-iota 6449 df-fun 6499 df-fv 6505 df-oprab 7362 df-1st 7922 df-2nd 7923 |
This theorem is referenced by: dfoprab3 7987 |
Copyright terms: Public domain | W3C validator |