MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfoprab3s Structured version   Visualization version   GIF version

Theorem dfoprab3s 7985
Description: A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfoprab3s {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑)}
Distinct variable groups:   𝜑,𝑤   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem dfoprab3s
StepHypRef Expression
1 dfoprab2 7404 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
2 nfsbc1v 3756 . . . . 5 𝑥[(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑
3219.41 2238 . . . 4 (∃𝑥(∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ (∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
4 sbcopeq1a 7981 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → ([(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑𝜑))
54pm5.32i 574 . . . . . . 7 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
65exbii 1849 . . . . . 6 (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
7 nfcv 2894 . . . . . . . 8 𝑦(1st𝑤)
8 nfsbc1v 3756 . . . . . . . 8 𝑦[(2nd𝑤) / 𝑦]𝜑
97, 8nfsbcw 3758 . . . . . . 7 𝑦[(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑
10919.41 2238 . . . . . 6 (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ (∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
116, 10bitr3i 277 . . . . 5 (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
1211exbii 1849 . . . 4 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥(∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
13 elvv 5689 . . . . 5 (𝑤 ∈ (V × V) ↔ ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
1413anbi1i 624 . . . 4 ((𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ (∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
153, 12, 143bitr4i 303 . . 3 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
1615opabbii 5156 . 2 {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑)}
171, 16eqtri 2754 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  [wsbc 3736  cop 4579  {copab 5151   × cxp 5612  cfv 6481  {coprab 7347  1st c1st 7919  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fv 6489  df-oprab 7350  df-1st 7921  df-2nd 7922
This theorem is referenced by:  dfoprab3  7986
  Copyright terms: Public domain W3C validator