MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2oexOLD Structured version   Visualization version   GIF version

Theorem 2oexOLD 8501
Description: Obsolete version of 2oex 8491 as of 19-Sep-2024. (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2oexOLD 2o ∈ V

Proof of Theorem 2oexOLD
StepHypRef Expression
1 df-2o 8481 . 2 2o = suc 1o
2 1oex 8490 . . 3 1o ∈ V
32sucex 7803 . 2 suc 1o ∈ V
41, 3eqeltri 2824 1 2o ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2099  Vcvv 3469  suc csuc 6365  1oc1o 8473  2oc2o 8474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-sn 4625  df-pr 4627  df-uni 4904  df-suc 6369  df-1o 8480  df-2o 8481
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator