MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2oexOLD Structured version   Visualization version   GIF version

Theorem 2oexOLD 8543
Description: Obsolete version of 2oex 8533 as of 19-Sep-2024. (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2oexOLD 2o ∈ V

Proof of Theorem 2oexOLD
StepHypRef Expression
1 df-2o 8523 . 2 2o = suc 1o
2 1oex 8532 . . 3 1o ∈ V
32sucex 7842 . 2 suc 1o ∈ V
41, 3eqeltri 2840 1 2o ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3488  suc csuc 6397  1oc1o 8515  2oc2o 8516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-sn 4649  df-pr 4651  df-uni 4932  df-suc 6401  df-1o 8522  df-2o 8523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator