MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2oexOLD Structured version   Visualization version   GIF version

Theorem 2oexOLD 8317
Description: Obsolete version of 2oex 8308 as of 19-Sep-2024. (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2oexOLD 2o ∈ V

Proof of Theorem 2oexOLD
StepHypRef Expression
1 df-2o 8298 . 2 2o = suc 1o
2 1oex 8307 . . 3 1o ∈ V
32sucex 7656 . 2 suc 1o ∈ V
41, 3eqeltri 2835 1 2o ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3432  suc csuc 6268  1oc1o 8290  2oc2o 8291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-pr 4564  df-uni 4840  df-suc 6272  df-1o 8297  df-2o 8298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator