![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2oexOLD | Structured version Visualization version GIF version |
Description: Obsolete version of 2oex 8533 as of 19-Sep-2024. (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2oexOLD | ⊢ 2o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8523 | . 2 ⊢ 2o = suc 1o | |
2 | 1oex 8532 | . . 3 ⊢ 1o ∈ V | |
3 | 2 | sucex 7842 | . 2 ⊢ suc 1o ∈ V |
4 | 1, 3 | eqeltri 2840 | 1 ⊢ 2o ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 suc csuc 6397 1oc1o 8515 2oc2o 8516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 df-suc 6401 df-1o 8522 df-2o 8523 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |