![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2oexOLD | Structured version Visualization version GIF version |
Description: Obsolete version of 2oex 8491 as of 19-Sep-2024. (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2oexOLD | ⊢ 2o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 8481 | . 2 ⊢ 2o = suc 1o | |
2 | 1oex 8490 | . . 3 ⊢ 1o ∈ V | |
3 | 2 | sucex 7803 | . 2 ⊢ suc 1o ∈ V |
4 | 1, 3 | eqeltri 2824 | 1 ⊢ 2o ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 Vcvv 3469 suc csuc 6365 1oc1o 8473 2oc2o 8474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-sn 4625 df-pr 4627 df-uni 4904 df-suc 6369 df-1o 8480 df-2o 8481 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |