MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2oexOLD Structured version   Visualization version   GIF version

Theorem 2oexOLD 8285
Description: Obsolete version of 2oex 8284 as of 19-Sep-2024. (Contributed by BJ, 6-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
2oexOLD 2o ∈ V

Proof of Theorem 2oexOLD
StepHypRef Expression
1 df-2o 8268 . 2 2o = suc 1o
2 1oex 8280 . . 3 1o ∈ V
32sucex 7633 . 2 suc 1o ∈ V
41, 3eqeltri 2835 1 2o ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3422  suc csuc 6253  1oc1o 8260  2oc2o 8261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-pr 4561  df-uni 4837  df-suc 6257  df-1o 8267  df-2o 8268
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator