| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucex | Structured version Visualization version GIF version | ||
| Description: The successor of a set is a set. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| sucex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucex | ⊢ suc 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sucexg 7799 | . 2 ⊢ (𝐴 ∈ V → suc 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 suc csuc 6354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-sn 4602 df-pr 4604 df-uni 4884 df-suc 6358 |
| This theorem is referenced by: orduninsuc 7838 tfindsg 7856 tfinds2 7859 finds 7892 findsg 7893 finds2 7894 seqomlem1 8464 oasuc 8536 onasuc 8540 naddcllem 8688 infensuc 9169 phpOLD 9231 inf0 9635 inf3lem1 9642 dfom3 9661 cantnflt 9686 cantnflem1 9703 cnfcom 9714 brttrcl2 9728 ssttrcl 9729 ttrcltr 9730 ttrclss 9734 ttrclselem2 9740 infxpenlem 10027 pwsdompw 10217 cfslb2n 10282 cfsmolem 10284 fin1a2lem12 10425 axdc4lem 10469 alephreg 10596 bnj986 34986 bnj1018g 34994 bnj1018 34995 satf 35375 dfon2lem7 35807 rdgssun 37396 dford3lem2 43051 |
| Copyright terms: Public domain | W3C validator |