Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sucex | Structured version Visualization version GIF version |
Description: The successor of a set is a set. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
sucex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucex | ⊢ suc 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sucexg 7655 | . 2 ⊢ (𝐴 ∈ V → suc 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-uni 4840 df-suc 6272 |
This theorem is referenced by: orduninsuc 7690 tfindsg 7707 tfinds2 7710 finds 7745 findsg 7746 finds2 7747 seqomlem1 8281 2oexOLD 8317 oasuc 8354 onasuc 8358 infensuc 8942 phplem4OLD 9003 phpOLD 9005 inf0 9379 inf3lem1 9386 dfom3 9405 cantnflt 9430 cantnflem1 9447 cnfcom 9458 brttrcl2 9472 ssttrcl 9473 ttrcltr 9474 ttrclss 9478 ttrclselem2 9484 infxpenlem 9769 pwsdompw 9960 cfslb2n 10024 cfsmolem 10026 fin1a2lem12 10167 axdc4lem 10211 alephreg 10338 bnj986 32935 bnj1018g 32943 bnj1018 32944 satf 33315 dfon2lem7 33765 naddcllem 33831 rdgssun 35549 dford3lem2 40849 |
Copyright terms: Public domain | W3C validator |