MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucex Structured version   Visualization version   GIF version

Theorem sucex 7734
Description: The successor of a set is a set. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
sucex.1 𝐴 ∈ V
Assertion
Ref Expression
sucex suc 𝐴 ∈ V

Proof of Theorem sucex
StepHypRef Expression
1 sucex.1 . 2 𝐴 ∈ V
2 sucexg 7733 . 2 (𝐴 ∈ V → suc 𝐴 ∈ V)
31, 2ax-mp 5 1 suc 𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3436  suc csuc 6303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-sn 4572  df-pr 4574  df-uni 4855  df-suc 6307
This theorem is referenced by:  orduninsuc  7768  tfindsg  7786  tfinds2  7789  finds  7821  findsg  7822  finds2  7823  seqomlem1  8364  oasuc  8434  onasuc  8438  naddcllem  8586  infensuc  9063  inf0  9506  inf3lem1  9513  dfom3  9532  cantnflt  9557  cantnflem1  9574  cnfcom  9585  brttrcl2  9599  ssttrcl  9600  ttrcltr  9601  ttrclss  9605  ttrclselem2  9611  infxpenlem  9899  pwsdompw  10089  cfslb2n  10154  cfsmolem  10156  fin1a2lem12  10297  axdc4lem  10341  alephreg  10468  bnj986  34959  bnj1018g  34967  bnj1018  34968  rankfilimbi  35104  fineqvnttrclse  35136  satf  35389  dfon2lem7  35823  rdgssun  37412  dford3lem2  43060
  Copyright terms: Public domain W3C validator