| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucex | Structured version Visualization version GIF version | ||
| Description: The successor of a set is a set. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| sucex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucex | ⊢ suc 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sucexg 7781 | . 2 ⊢ (𝐴 ∈ V → suc 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 suc csuc 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-uni 4872 df-suc 6338 |
| This theorem is referenced by: orduninsuc 7819 tfindsg 7837 tfinds2 7840 finds 7872 findsg 7873 finds2 7874 seqomlem1 8418 oasuc 8488 onasuc 8492 naddcllem 8640 infensuc 9119 inf0 9574 inf3lem1 9581 dfom3 9600 cantnflt 9625 cantnflem1 9642 cnfcom 9653 brttrcl2 9667 ssttrcl 9668 ttrcltr 9669 ttrclss 9673 ttrclselem2 9679 infxpenlem 9966 pwsdompw 10156 cfslb2n 10221 cfsmolem 10223 fin1a2lem12 10364 axdc4lem 10408 alephreg 10535 bnj986 34945 bnj1018g 34953 bnj1018 34954 satf 35340 dfon2lem7 35777 rdgssun 37366 dford3lem2 43016 |
| Copyright terms: Public domain | W3C validator |