| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucex | Structured version Visualization version GIF version | ||
| Description: The successor of a set is a set. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| sucex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucex | ⊢ suc 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sucexg 7784 | . 2 ⊢ (𝐴 ∈ V → suc 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-sn 4593 df-pr 4595 df-uni 4875 df-suc 6341 |
| This theorem is referenced by: orduninsuc 7822 tfindsg 7840 tfinds2 7843 finds 7875 findsg 7876 finds2 7877 seqomlem1 8421 oasuc 8491 onasuc 8495 naddcllem 8643 infensuc 9125 inf0 9581 inf3lem1 9588 dfom3 9607 cantnflt 9632 cantnflem1 9649 cnfcom 9660 brttrcl2 9674 ssttrcl 9675 ttrcltr 9676 ttrclss 9680 ttrclselem2 9686 infxpenlem 9973 pwsdompw 10163 cfslb2n 10228 cfsmolem 10230 fin1a2lem12 10371 axdc4lem 10415 alephreg 10542 bnj986 34952 bnj1018g 34960 bnj1018 34961 satf 35347 dfon2lem7 35784 rdgssun 37373 dford3lem2 43023 |
| Copyright terms: Public domain | W3C validator |