![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucex | Structured version Visualization version GIF version |
Description: The successor of a set is a set. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
sucex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucex | ⊢ suc 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sucexg 7244 | . 2 ⊢ (𝐴 ∈ V → suc 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2157 Vcvv 3385 suc csuc 5943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rex 3095 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-sn 4369 df-pr 4371 df-uni 4629 df-suc 5947 |
This theorem is referenced by: orduninsuc 7277 tfindsg 7294 tfinds2 7297 finds 7326 findsg 7327 finds2 7328 seqomlem1 7784 oasuc 7844 onasuc 7848 infensuc 8380 phplem4 8384 php 8386 inf0 8768 inf3lem1 8775 dfom3 8794 cantnflt 8819 cantnflem1 8836 cnfcom 8847 infxpenlem 9122 pwsdompw 9314 cfslb2n 9378 cfsmolem 9380 fin1a2lem12 9521 axdc4lem 9565 alephreg 9692 bnj986 31541 bnj1018 31549 dfon2lem7 32206 bj-2ex 33431 cnfinltrel 33739 dford3lem2 38375 |
Copyright terms: Public domain | W3C validator |