| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucex | Structured version Visualization version GIF version | ||
| Description: The successor of a set is a set. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| sucex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucex | ⊢ suc 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sucexg 7741 | . 2 ⊢ (𝐴 ∈ V → suc 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 suc csuc 6309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-sn 4578 df-pr 4580 df-uni 4859 df-suc 6313 |
| This theorem is referenced by: orduninsuc 7776 tfindsg 7794 tfinds2 7797 finds 7829 findsg 7830 finds2 7831 seqomlem1 8372 oasuc 8442 onasuc 8446 naddcllem 8594 infensuc 9072 inf0 9517 inf3lem1 9524 dfom3 9543 cantnflt 9568 cantnflem1 9585 cnfcom 9596 brttrcl2 9610 ssttrcl 9611 ttrcltr 9612 ttrclss 9616 ttrclselem2 9622 infxpenlem 9907 pwsdompw 10097 cfslb2n 10162 cfsmolem 10164 fin1a2lem12 10305 axdc4lem 10349 alephreg 10476 bnj986 34922 bnj1018g 34930 bnj1018 34931 satf 35326 dfon2lem7 35763 rdgssun 37352 dford3lem2 43000 |
| Copyright terms: Public domain | W3C validator |