MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucex Structured version   Visualization version   GIF version

Theorem sucex 7800
Description: The successor of a set is a set. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
sucex.1 𝐴 ∈ V
Assertion
Ref Expression
sucex suc 𝐴 ∈ V

Proof of Theorem sucex
StepHypRef Expression
1 sucex.1 . 2 𝐴 ∈ V
2 sucexg 7799 . 2 (𝐴 ∈ V → suc 𝐴 ∈ V)
31, 2ax-mp 5 1 suc 𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3459  suc csuc 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-sn 4602  df-pr 4604  df-uni 4884  df-suc 6358
This theorem is referenced by:  orduninsuc  7838  tfindsg  7856  tfinds2  7859  finds  7892  findsg  7893  finds2  7894  seqomlem1  8464  oasuc  8536  onasuc  8540  naddcllem  8688  infensuc  9169  phpOLD  9231  inf0  9635  inf3lem1  9642  dfom3  9661  cantnflt  9686  cantnflem1  9703  cnfcom  9714  brttrcl2  9728  ssttrcl  9729  ttrcltr  9730  ttrclss  9734  ttrclselem2  9740  infxpenlem  10027  pwsdompw  10217  cfslb2n  10282  cfsmolem  10284  fin1a2lem12  10425  axdc4lem  10469  alephreg  10596  bnj986  34986  bnj1018g  34994  bnj1018  34995  satf  35375  dfon2lem7  35807  rdgssun  37396  dford3lem2  43051
  Copyright terms: Public domain W3C validator