Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sucex | Structured version Visualization version GIF version |
Description: The successor of a set is a set. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
sucex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucex | ⊢ suc 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sucexg 7632 | . 2 ⊢ (𝐴 ∈ V → suc 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-uni 4837 df-suc 6257 |
This theorem is referenced by: orduninsuc 7665 tfindsg 7682 tfinds2 7685 finds 7719 findsg 7720 finds2 7721 seqomlem1 8251 2oexOLD 8285 oasuc 8316 onasuc 8320 infensuc 8891 phplem4 8895 php 8897 inf0 9309 inf3lem1 9316 dfom3 9335 cantnflt 9360 cantnflem1 9377 cnfcom 9388 infxpenlem 9700 pwsdompw 9891 cfslb2n 9955 cfsmolem 9957 fin1a2lem12 10098 axdc4lem 10142 alephreg 10269 bnj986 32835 bnj1018g 32843 bnj1018 32844 satf 33215 dfon2lem7 33671 brttrcl2 33700 ssttrcl 33701 ttrcltr 33702 ttrclss 33706 ttrclselem2 33712 naddcllem 33758 rdgssun 35476 dford3lem2 40765 |
Copyright terms: Public domain | W3C validator |