| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucex | Structured version Visualization version GIF version | ||
| Description: The successor of a set is a set. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| sucex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucex | ⊢ suc 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sucexg 7733 | . 2 ⊢ (𝐴 ∈ V → suc 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 suc csuc 6303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-sn 4572 df-pr 4574 df-uni 4855 df-suc 6307 |
| This theorem is referenced by: orduninsuc 7768 tfindsg 7786 tfinds2 7789 finds 7821 findsg 7822 finds2 7823 seqomlem1 8364 oasuc 8434 onasuc 8438 naddcllem 8586 infensuc 9063 inf0 9506 inf3lem1 9513 dfom3 9532 cantnflt 9557 cantnflem1 9574 cnfcom 9585 brttrcl2 9599 ssttrcl 9600 ttrcltr 9601 ttrclss 9605 ttrclselem2 9611 infxpenlem 9899 pwsdompw 10089 cfslb2n 10154 cfsmolem 10156 fin1a2lem12 10297 axdc4lem 10341 alephreg 10468 bnj986 34959 bnj1018g 34967 bnj1018 34968 rankfilimbi 35104 fineqvnttrclse 35136 satf 35389 dfon2lem7 35823 rdgssun 37412 dford3lem2 43060 |
| Copyright terms: Public domain | W3C validator |