Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sucex | Structured version Visualization version GIF version |
Description: The successor of a set is a set. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
sucex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucex | ⊢ suc 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sucexg 7522 | . 2 ⊢ (𝐴 ∈ V → suc 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 Vcvv 3410 suc csuc 6169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7457 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-rab 3080 df-v 3412 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-sn 4521 df-pr 4523 df-uni 4797 df-suc 6173 |
This theorem is referenced by: orduninsuc 7555 tfindsg 7572 tfinds2 7575 finds 7606 findsg 7607 finds2 7608 seqomlem1 8094 2oex 8120 oasuc 8157 onasuc 8161 infensuc 8714 phplem4 8718 php 8720 inf0 9107 inf3lem1 9114 dfom3 9133 cantnflt 9158 cantnflem1 9175 cnfcom 9186 infxpenlem 9463 pwsdompw 9654 cfslb2n 9718 cfsmolem 9720 fin1a2lem12 9861 axdc4lem 9905 alephreg 10032 bnj986 32445 bnj1018g 32453 bnj1018 32454 satf 32821 dfon2lem7 33271 rdgssun 35065 dford3lem2 40331 |
Copyright terms: Public domain | W3C validator |