MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucex Structured version   Visualization version   GIF version

Theorem sucex 7656
Description: The successor of a set is a set. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
sucex.1 𝐴 ∈ V
Assertion
Ref Expression
sucex suc 𝐴 ∈ V

Proof of Theorem sucex
StepHypRef Expression
1 sucex.1 . 2 𝐴 ∈ V
2 sucexg 7655 . 2 (𝐴 ∈ V → suc 𝐴 ∈ V)
31, 2ax-mp 5 1 suc 𝐴 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3432  suc csuc 6268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-pr 4564  df-uni 4840  df-suc 6272
This theorem is referenced by:  orduninsuc  7690  tfindsg  7707  tfinds2  7710  finds  7745  findsg  7746  finds2  7747  seqomlem1  8281  2oexOLD  8317  oasuc  8354  onasuc  8358  infensuc  8942  phplem4OLD  9003  phpOLD  9005  inf0  9379  inf3lem1  9386  dfom3  9405  cantnflt  9430  cantnflem1  9447  cnfcom  9458  brttrcl2  9472  ssttrcl  9473  ttrcltr  9474  ttrclss  9478  ttrclselem2  9484  infxpenlem  9769  pwsdompw  9960  cfslb2n  10024  cfsmolem  10026  fin1a2lem12  10167  axdc4lem  10211  alephreg  10338  bnj986  32935  bnj1018g  32943  bnj1018  32944  satf  33315  dfon2lem7  33765  naddcllem  33831  rdgssun  35549  dford3lem2  40849
  Copyright terms: Public domain W3C validator