![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sucex | Structured version Visualization version GIF version |
Description: The successor of a set is a set. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
sucex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
sucex | ⊢ suc 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sucex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sucexg 7841 | . 2 ⊢ (𝐴 ∈ V → suc 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 df-suc 6401 |
This theorem is referenced by: orduninsuc 7880 tfindsg 7898 tfinds2 7901 finds 7936 findsg 7937 finds2 7938 seqomlem1 8506 2oexOLD 8543 oasuc 8580 onasuc 8584 naddcllem 8732 infensuc 9221 phplem4OLD 9283 phpOLD 9285 inf0 9690 inf3lem1 9697 dfom3 9716 cantnflt 9741 cantnflem1 9758 cnfcom 9769 brttrcl2 9783 ssttrcl 9784 ttrcltr 9785 ttrclss 9789 ttrclselem2 9795 infxpenlem 10082 pwsdompw 10272 cfslb2n 10337 cfsmolem 10339 fin1a2lem12 10480 axdc4lem 10524 alephreg 10651 bnj986 34931 bnj1018g 34939 bnj1018 34940 satf 35321 dfon2lem7 35753 rdgssun 37344 dford3lem2 42984 |
Copyright terms: Public domain | W3C validator |