| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucex | Structured version Visualization version GIF version | ||
| Description: The successor of a set is a set. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| sucex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sucex | ⊢ suc 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sucex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sucexg 7761 | . 2 ⊢ (𝐴 ∈ V → suc 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ suc 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 suc csuc 6322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-sn 4586 df-pr 4588 df-uni 4868 df-suc 6326 |
| This theorem is referenced by: orduninsuc 7799 tfindsg 7817 tfinds2 7820 finds 7852 findsg 7853 finds2 7854 seqomlem1 8395 oasuc 8465 onasuc 8469 naddcllem 8617 infensuc 9096 inf0 9550 inf3lem1 9557 dfom3 9576 cantnflt 9601 cantnflem1 9618 cnfcom 9629 brttrcl2 9643 ssttrcl 9644 ttrcltr 9645 ttrclss 9649 ttrclselem2 9655 infxpenlem 9942 pwsdompw 10132 cfslb2n 10197 cfsmolem 10199 fin1a2lem12 10340 axdc4lem 10384 alephreg 10511 bnj986 34918 bnj1018g 34926 bnj1018 34927 satf 35313 dfon2lem7 35750 rdgssun 37339 dford3lem2 42989 |
| Copyright terms: Public domain | W3C validator |