MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1oexOLD Structured version   Visualization version   GIF version

Theorem 1oexOLD 8295
Description: Obsolete version of 1oex 8294 as of 19-Sep-2024. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
1oexOLD 1o ∈ V

Proof of Theorem 1oexOLD
StepHypRef Expression
1 1on 8288 . 2 1o ∈ On
21elexi 3449 1 1o ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3430  Oncon0 6263  1oc1o 8274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-11 2157  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-tr 5196  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-ord 6266  df-on 6267  df-suc 6269  df-1o 8281
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator