![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1oexOLD | Structured version Visualization version GIF version |
Description: Obsolete version of 1oex 8423 as of 19-Sep-2024. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1oexOLD | ⊢ 1o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8425 | . 2 ⊢ 1o ∈ On | |
2 | 1 | elexi 3465 | 1 ⊢ 1o ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3446 Oncon0 6318 1oc1o 8406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-tr 5224 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-ord 6321 df-on 6322 df-suc 6324 df-1o 8413 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |