![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1oexOLD | Structured version Visualization version GIF version |
Description: Obsolete version of 1oex 8503 as of 19-Sep-2024. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1oexOLD | ⊢ 1o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 8505 | . 2 ⊢ 1o ∈ On | |
2 | 1 | elexi 3493 | 1 ⊢ 1o ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 Vcvv 3473 Oncon0 6374 1oc1o 8486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-tr 5270 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-ord 6377 df-on 6378 df-suc 6380 df-1o 8493 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |