MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1oexOLD Structured version   Visualization version   GIF version

Theorem 1oexOLD 8513
Description: Obsolete version of 1oex 8503 as of 19-Sep-2024. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
1oexOLD 1o ∈ V

Proof of Theorem 1oexOLD
StepHypRef Expression
1 1on 8505 . 2 1o ∈ On
21elexi 3493 1 1o ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  Vcvv 3473  Oncon0 6374  1oc1o 8486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-tr 5270  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-ord 6377  df-on 6378  df-suc 6380  df-1o 8493
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator