| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2oex | Structured version Visualization version GIF version | ||
| Description: 2o is a set. (Contributed by BJ, 6-Apr-2019.) Remove dependency on ax-10 2142, ax-11 2158, ax-12 2178, ax-un 7711. (Proof shortened by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| 2oex | ⊢ 2o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 8442 | . 2 ⊢ 2o = {∅, 1o} | |
| 2 | prex 5392 | . 2 ⊢ {∅, 1o} ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ 2o ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ∅c0 4296 {cpr 4591 1oc1o 8427 2oc2o 8428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-un 3919 df-nul 4297 df-sn 4590 df-pr 4592 df-suc 6338 df-1o 8434 df-2o 8435 |
| This theorem is referenced by: 2on 8447 snnen2o 9184 1sdom2 9187 setc2obas 18056 setc2ohom 18057 nogt01o 27608 nosupbday 27617 noetainflem1 27649 noetainflem2 27650 noetainflem4 27652 fmlaomn0 35377 goaln0 35380 goalrlem 35383 goalr 35384 fmlasucdisj 35386 satffunlem1lem1 35389 satffunlem2lem1 35391 ex-sategoelel12 35414 oenord1ex 43304 onno 43422 clsk1indlem1 44034 clsk1independent 44035 nelsubc3 49060 setc2othin 49455 setc1onsubc 49591 |
| Copyright terms: Public domain | W3C validator |