MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2oex Structured version   Visualization version   GIF version

Theorem 2oex 8422
Description: 2o is a set. (Contributed by BJ, 6-Apr-2019.) Remove dependency on ax-10 2142, ax-11 2158, ax-12 2178, ax-un 7691. (Proof shortened by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
2oex 2o ∈ V

Proof of Theorem 2oex
StepHypRef Expression
1 df2o3 8419 . 2 2o = {∅, 1o}
2 prex 5387 . 2 {∅, 1o} ∈ V
31, 2eqeltri 2824 1 2o ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3444  c0 4292  {cpr 4587  1oc1o 8404  2oc2o 8405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-dif 3914  df-un 3916  df-nul 4293  df-sn 4586  df-pr 4588  df-suc 6326  df-1o 8411  df-2o 8412
This theorem is referenced by:  2on  8424  snnen2o  9161  1sdom2  9164  setc2obas  18032  setc2ohom  18033  nogt01o  27584  nosupbday  27593  noetainflem1  27625  noetainflem2  27626  noetainflem4  27628  fmlaomn0  35350  goaln0  35353  goalrlem  35356  goalr  35357  fmlasucdisj  35359  satffunlem1lem1  35362  satffunlem2lem1  35364  ex-sategoelel12  35387  oenord1ex  43277  onno  43395  clsk1indlem1  44007  clsk1independent  44008  nelsubc3  49033  setc2othin  49428  setc1onsubc  49564
  Copyright terms: Public domain W3C validator