MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2oex Structured version   Visualization version   GIF version

Theorem 2oex 8399
Description: 2o is a set. (Contributed by BJ, 6-Apr-2019.) Remove dependency on ax-10 2142, ax-11 2158, ax-12 2178, ax-un 7671. (Proof shortened by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
2oex 2o ∈ V

Proof of Theorem 2oex
StepHypRef Expression
1 df2o3 8396 . 2 2o = {∅, 1o}
2 prex 5376 . 2 {∅, 1o} ∈ V
31, 2eqeltri 2824 1 2o ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3436  c0 4284  {cpr 4579  1oc1o 8381  2oc2o 8382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3438  df-dif 3906  df-un 3908  df-nul 4285  df-sn 4578  df-pr 4580  df-suc 6313  df-1o 8388  df-2o 8389
This theorem is referenced by:  2on  8401  snnen2o  9134  1sdom2  9137  setc2obas  18001  setc2ohom  18002  nogt01o  27606  nosupbday  27615  noetainflem1  27647  noetainflem2  27648  noetainflem4  27650  fmlaomn0  35363  goaln0  35366  goalrlem  35369  goalr  35370  fmlasucdisj  35372  satffunlem1lem1  35375  satffunlem2lem1  35377  ex-sategoelel12  35400  oenord1ex  43288  onno  43406  clsk1indlem1  44018  clsk1independent  44019  nelsubc3  49056  setc2othin  49451  setc1onsubc  49587
  Copyright terms: Public domain W3C validator