| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2oex | Structured version Visualization version GIF version | ||
| Description: 2o is a set. (Contributed by BJ, 6-Apr-2019.) Remove dependency on ax-10 2142, ax-11 2158, ax-12 2178, ax-un 7714. (Proof shortened by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| 2oex | ⊢ 2o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 8445 | . 2 ⊢ 2o = {∅, 1o} | |
| 2 | prex 5395 | . 2 ⊢ {∅, 1o} ∈ V | |
| 3 | 1, 2 | eqeltri 2825 | 1 ⊢ 2o ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ∅c0 4299 {cpr 4594 1oc1o 8430 2oc2o 8431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-nul 4300 df-sn 4593 df-pr 4595 df-suc 6341 df-1o 8437 df-2o 8438 |
| This theorem is referenced by: 2on 8450 snnen2o 9191 1sdom2 9194 setc2obas 18063 setc2ohom 18064 nogt01o 27615 nosupbday 27624 noetainflem1 27656 noetainflem2 27657 noetainflem4 27659 fmlaomn0 35384 goaln0 35387 goalrlem 35390 goalr 35391 fmlasucdisj 35393 satffunlem1lem1 35396 satffunlem2lem1 35398 ex-sategoelel12 35421 oenord1ex 43311 onno 43429 clsk1indlem1 44041 clsk1independent 44042 nelsubc3 49064 setc2othin 49459 setc1onsubc 49595 |
| Copyright terms: Public domain | W3C validator |