![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2oex | Structured version Visualization version GIF version |
Description: 2o is a set. (Contributed by BJ, 6-Apr-2019.) Remove dependency on ax-10 2141, ax-11 2158, ax-12 2178, ax-un 7770. (Proof shortened by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
2oex | ⊢ 2o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 8530 | . 2 ⊢ 2o = {∅, 1o} | |
2 | prex 5452 | . 2 ⊢ {∅, 1o} ∈ V | |
3 | 1, 2 | eqeltri 2840 | 1 ⊢ 2o ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {cpr 4650 1oc1o 8515 2oc2o 8516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-sn 4649 df-pr 4651 df-suc 6401 df-1o 8522 df-2o 8523 |
This theorem is referenced by: 2on 8536 snnen2o 9300 1sdom2 9303 setc2obas 18161 setc2ohom 18162 nogt01o 27759 nosupbday 27768 noetainflem1 27800 noetainflem2 27801 noetainflem4 27803 fmlaomn0 35358 goaln0 35361 goalrlem 35364 goalr 35365 fmlasucdisj 35367 satffunlem1lem1 35370 satffunlem2lem1 35372 ex-sategoelel12 35395 oenord1ex 43277 onno 43395 clsk1indlem1 44007 clsk1independent 44008 setc2othin 48723 |
Copyright terms: Public domain | W3C validator |