Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2oex | Structured version Visualization version GIF version |
Description: 2o is a set. (Contributed by BJ, 6-Apr-2019.) Remove dependency on ax-10 2135, ax-11 2152, ax-12 2169, ax-un 7620. (Proof shortened by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
2oex | ⊢ 2o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 8336 | . 2 ⊢ 2o = {∅, 1o} | |
2 | prex 5364 | . 2 ⊢ {∅, 1o} ∈ V | |
3 | 1, 2 | eqeltri 2833 | 1 ⊢ 2o ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 Vcvv 3437 ∅c0 4262 {cpr 4567 1oc1o 8321 2oc2o 8322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-dif 3895 df-un 3897 df-nul 4263 df-sn 4566 df-pr 4568 df-suc 6287 df-1o 8328 df-2o 8329 |
This theorem is referenced by: 2on 8342 snnen2o 9058 1sdom2 9061 setc2obas 17854 setc2ohom 17855 fmlaomn0 33397 goaln0 33400 goalrlem 33403 goalr 33404 fmlasucdisj 33406 satffunlem1lem1 33409 satffunlem2lem1 33411 ex-sategoelel12 33434 nogt01o 33944 nosupbday 33953 noetainflem1 33985 noetainflem2 33986 noetainflem4 33988 clsk1indlem1 41693 clsk1independent 41694 setc2othin 46395 |
Copyright terms: Public domain | W3C validator |