| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2oex | Structured version Visualization version GIF version | ||
| Description: 2o is a set. (Contributed by BJ, 6-Apr-2019.) Remove dependency on ax-10 2142, ax-11 2158, ax-12 2178, ax-un 7671. (Proof shortened by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| 2oex | ⊢ 2o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 8396 | . 2 ⊢ 2o = {∅, 1o} | |
| 2 | prex 5376 | . 2 ⊢ {∅, 1o} ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ 2o ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 ∅c0 4284 {cpr 4579 1oc1o 8381 2oc2o 8382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-dif 3906 df-un 3908 df-nul 4285 df-sn 4578 df-pr 4580 df-suc 6313 df-1o 8388 df-2o 8389 |
| This theorem is referenced by: 2on 8401 snnen2o 9134 1sdom2 9137 setc2obas 18001 setc2ohom 18002 nogt01o 27606 nosupbday 27615 noetainflem1 27647 noetainflem2 27648 noetainflem4 27650 fmlaomn0 35363 goaln0 35366 goalrlem 35369 goalr 35370 fmlasucdisj 35372 satffunlem1lem1 35375 satffunlem2lem1 35377 ex-sategoelel12 35400 oenord1ex 43288 onno 43406 clsk1indlem1 44018 clsk1independent 44019 nelsubc3 49056 setc2othin 49451 setc1onsubc 49587 |
| Copyright terms: Public domain | W3C validator |