| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2oex | Structured version Visualization version GIF version | ||
| Description: 2o is a set. (Contributed by BJ, 6-Apr-2019.) Remove dependency on ax-10 2141, ax-11 2157, ax-12 2177, ax-un 7729. (Proof shortened by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| 2oex | ⊢ 2o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 8488 | . 2 ⊢ 2o = {∅, 1o} | |
| 2 | prex 5407 | . 2 ⊢ {∅, 1o} ∈ V | |
| 3 | 1, 2 | eqeltri 2830 | 1 ⊢ 2o ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ∅c0 4308 {cpr 4603 1oc1o 8473 2oc2o 8474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-un 3931 df-nul 4309 df-sn 4602 df-pr 4604 df-suc 6358 df-1o 8480 df-2o 8481 |
| This theorem is referenced by: 2on 8494 snnen2o 9245 1sdom2 9248 setc2obas 18107 setc2ohom 18108 nogt01o 27660 nosupbday 27669 noetainflem1 27701 noetainflem2 27702 noetainflem4 27704 fmlaomn0 35412 goaln0 35415 goalrlem 35418 goalr 35419 fmlasucdisj 35421 satffunlem1lem1 35424 satffunlem2lem1 35426 ex-sategoelel12 35449 oenord1ex 43339 onno 43457 clsk1indlem1 44069 clsk1independent 44070 nelsubc3 49038 setc2othin 49352 setc1onsubc 49479 |
| Copyright terms: Public domain | W3C validator |