![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2oex | Structured version Visualization version GIF version |
Description: 2o is a set. (Contributed by BJ, 6-Apr-2019.) Remove dependency on ax-10 2136, ax-11 2153, ax-12 2170, ax-un 7729. (Proof shortened by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
2oex | ⊢ 2o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 8480 | . 2 ⊢ 2o = {∅, 1o} | |
2 | prex 5432 | . 2 ⊢ {∅, 1o} ∈ V | |
3 | 1, 2 | eqeltri 2828 | 1 ⊢ 2o ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3473 ∅c0 4322 {cpr 4630 1oc1o 8465 2oc2o 8466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-dif 3951 df-un 3953 df-nul 4323 df-sn 4629 df-pr 4631 df-suc 6370 df-1o 8472 df-2o 8473 |
This theorem is referenced by: 2on 8486 snnen2o 9243 1sdom2 9246 setc2obas 18051 setc2ohom 18052 nogt01o 27450 nosupbday 27459 noetainflem1 27491 noetainflem2 27492 noetainflem4 27494 fmlaomn0 34694 goaln0 34697 goalrlem 34700 goalr 34701 fmlasucdisj 34703 satffunlem1lem1 34706 satffunlem2lem1 34708 ex-sategoelel12 34731 oenord1ex 42380 onno 42499 clsk1indlem1 43111 clsk1independent 43112 setc2othin 47776 |
Copyright terms: Public domain | W3C validator |