| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2oex | Structured version Visualization version GIF version | ||
| Description: 2o is a set. (Contributed by BJ, 6-Apr-2019.) Remove dependency on ax-10 2142, ax-11 2158, ax-12 2178, ax-un 7691. (Proof shortened by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| 2oex | ⊢ 2o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 8419 | . 2 ⊢ 2o = {∅, 1o} | |
| 2 | prex 5387 | . 2 ⊢ {∅, 1o} ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ 2o ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ∅c0 4292 {cpr 4587 1oc1o 8404 2oc2o 8405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-un 3916 df-nul 4293 df-sn 4586 df-pr 4588 df-suc 6326 df-1o 8411 df-2o 8412 |
| This theorem is referenced by: 2on 8424 snnen2o 9161 1sdom2 9164 setc2obas 18032 setc2ohom 18033 nogt01o 27584 nosupbday 27593 noetainflem1 27625 noetainflem2 27626 noetainflem4 27628 fmlaomn0 35350 goaln0 35353 goalrlem 35356 goalr 35357 fmlasucdisj 35359 satffunlem1lem1 35362 satffunlem2lem1 35364 ex-sategoelel12 35387 oenord1ex 43277 onno 43395 clsk1indlem1 44007 clsk1independent 44008 nelsubc3 49033 setc2othin 49428 setc1onsubc 49564 |
| Copyright terms: Public domain | W3C validator |