Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2oex | Structured version Visualization version GIF version |
Description: 2o is a set. (Contributed by BJ, 6-Apr-2019.) Remove dependency on ax-10 2140, ax-11 2157, ax-12 2174, ax-un 7579. (Proof shortened by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
2oex | ⊢ 2o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 8296 | . 2 ⊢ 2o = {∅, 1o} | |
2 | prex 5358 | . 2 ⊢ {∅, 1o} ∈ V | |
3 | 1, 2 | eqeltri 2836 | 1 ⊢ 2o ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 Vcvv 3430 ∅c0 4261 {cpr 4568 1oc1o 8274 2oc2o 8275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-sn 4567 df-pr 4569 df-suc 6269 df-1o 8281 df-2o 8282 |
This theorem is referenced by: setc2obas 17790 setc2ohom 17791 fmlaomn0 33331 goaln0 33334 goalrlem 33337 goalr 33338 fmlasucdisj 33340 satffunlem1lem1 33343 satffunlem2lem1 33345 ex-sategoelel12 33368 nogt01o 33878 nosupbday 33887 noetainflem1 33919 noetainflem2 33920 noetainflem4 33922 clsk1indlem1 41608 clsk1independent 41609 setc2othin 46289 |
Copyright terms: Public domain | W3C validator |