| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2oex | Structured version Visualization version GIF version | ||
| Description: 2o is a set. (Contributed by BJ, 6-Apr-2019.) Remove dependency on ax-10 2144, ax-11 2160, ax-12 2180, ax-un 7663. (Proof shortened by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| 2oex | ⊢ 2o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o3 8388 | . 2 ⊢ 2o = {∅, 1o} | |
| 2 | prex 5370 | . 2 ⊢ {∅, 1o} ∈ V | |
| 3 | 1, 2 | eqeltri 2827 | 1 ⊢ 2o ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ∅c0 4278 {cpr 4573 1oc1o 8373 2oc2o 8374 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-nul 4279 df-sn 4572 df-pr 4574 df-suc 6307 df-1o 8380 df-2o 8381 |
| This theorem is referenced by: 2on 8393 snnen2o 9124 1sdom2 9127 setc2obas 17996 setc2ohom 17997 nogt01o 27630 nosupbday 27639 noetainflem1 27671 noetainflem2 27672 noetainflem4 27674 fmlaomn0 35426 goaln0 35429 goalrlem 35432 goalr 35433 fmlasucdisj 35435 satffunlem1lem1 35438 satffunlem2lem1 35440 ex-sategoelel12 35463 oenord1ex 43348 onno 43466 clsk1indlem1 44078 clsk1independent 44079 nelsubc3 49103 setc2othin 49498 setc1onsubc 49634 |
| Copyright terms: Public domain | W3C validator |