Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2oex | Structured version Visualization version GIF version |
Description: 2o is a set. (Contributed by BJ, 6-Apr-2019.) Remove dependency on ax-10 2145, ax-11 2162, ax-12 2179, ax-un 7492. (Proof shortened by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
2oex | ⊢ 2o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df2o3 8159 | . 2 ⊢ 2o = {∅, 1o} | |
2 | prex 5309 | . 2 ⊢ {∅, 1o} ∈ V | |
3 | 1, 2 | eqeltri 2830 | 1 ⊢ 2o ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2114 Vcvv 3400 ∅c0 4221 {cpr 4528 1oc1o 8137 2oc2o 8138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-v 3402 df-dif 3856 df-un 3858 df-nul 4222 df-sn 4527 df-pr 4529 df-suc 6189 df-1o 8144 df-2o 8145 |
This theorem is referenced by: setc2obas 17479 setc2ohom 17480 fmlaomn0 32936 goaln0 32939 goalrlem 32942 goalr 32943 fmlasucdisj 32945 satffunlem1lem1 32948 satffunlem2lem1 32950 ex-sategoelel12 32973 nogt01o 33555 nosupbday 33564 noetainflem1 33596 noetainflem2 33597 noetainflem4 33599 clsk1indlem1 41242 clsk1independent 41243 setc2othin 45849 |
Copyright terms: Public domain | W3C validator |