MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2oex Structured version   Visualization version   GIF version

Theorem 2oex 8483
Description: 2o is a set. (Contributed by BJ, 6-Apr-2019.) Remove dependency on ax-10 2136, ax-11 2153, ax-12 2170, ax-un 7729. (Proof shortened by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
2oex 2o ∈ V

Proof of Theorem 2oex
StepHypRef Expression
1 df2o3 8480 . 2 2o = {∅, 1o}
2 prex 5432 . 2 {∅, 1o} ∈ V
31, 2eqeltri 2828 1 2o ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  Vcvv 3473  c0 4322  {cpr 4630  1oc1o 8465  2oc2o 8466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-dif 3951  df-un 3953  df-nul 4323  df-sn 4629  df-pr 4631  df-suc 6370  df-1o 8472  df-2o 8473
This theorem is referenced by:  2on  8486  snnen2o  9243  1sdom2  9246  setc2obas  18051  setc2ohom  18052  nogt01o  27450  nosupbday  27459  noetainflem1  27491  noetainflem2  27492  noetainflem4  27494  fmlaomn0  34694  goaln0  34697  goalrlem  34700  goalr  34701  fmlasucdisj  34703  satffunlem1lem1  34706  satffunlem2lem1  34708  ex-sategoelel12  34731  oenord1ex  42380  onno  42499  clsk1indlem1  43111  clsk1independent  43112  setc2othin  47776
  Copyright terms: Public domain W3C validator