MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2oex Structured version   Visualization version   GIF version

Theorem 2oex 8533
Description: 2o is a set. (Contributed by BJ, 6-Apr-2019.) Remove dependency on ax-10 2141, ax-11 2158, ax-12 2178, ax-un 7770. (Proof shortened by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
2oex 2o ∈ V

Proof of Theorem 2oex
StepHypRef Expression
1 df2o3 8530 . 2 2o = {∅, 1o}
2 prex 5452 . 2 {∅, 1o} ∈ V
31, 2eqeltri 2840 1 2o ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3488  c0 4352  {cpr 4650  1oc1o 8515  2oc2o 8516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-dif 3979  df-un 3981  df-nul 4353  df-sn 4649  df-pr 4651  df-suc 6401  df-1o 8522  df-2o 8523
This theorem is referenced by:  2on  8536  snnen2o  9300  1sdom2  9303  setc2obas  18161  setc2ohom  18162  nogt01o  27759  nosupbday  27768  noetainflem1  27800  noetainflem2  27801  noetainflem4  27803  fmlaomn0  35358  goaln0  35361  goalrlem  35364  goalr  35365  fmlasucdisj  35367  satffunlem1lem1  35370  satffunlem2lem1  35372  ex-sategoelel12  35395  oenord1ex  43277  onno  43395  clsk1indlem1  44007  clsk1independent  44008  setc2othin  48723
  Copyright terms: Public domain W3C validator