![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1oex | Structured version Visualization version GIF version |
Description: Ordinal 1 is a set. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) Remove dependency on ax-10 2141, ax-11 2158, ax-12 2178, ax-un 7770. (Revised by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
1oex | ⊢ 1o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8529 | . 2 ⊢ 1o = {∅} | |
2 | snex 5451 | . 2 ⊢ {∅} ∈ V | |
3 | 1, 2 | eqeltri 2840 | 1 ⊢ 1o ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {csn 4648 1oc1o 8515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-sn 4649 df-pr 4651 df-suc 6401 df-1o 8522 |
This theorem is referenced by: 1on 8534 2oexOLD 8543 nlim2 8546 oev 8570 oe0 8578 oev2 8579 oneo 8637 nnneo 8711 enpr2d 9115 endisj 9124 map2xp 9213 snnen2o 9300 sdom1 9305 sdom1OLD 9306 rex2dom 9309 1sdom2dom 9310 1sdomOLD 9312 ssttrcl 9784 ttrclselem2 9795 djuexb 9978 djurcl 9980 djurf1o 9982 djuss 9989 djuun 9995 1stinr 9998 2ndinr 9999 pm54.43 10070 dju1dif 10242 djucomen 10247 djuassen 10248 infdju1 10259 pwdju1 10260 nnadju 10267 infmap2 10286 cfsuc 10326 isfin4p1 10384 dcomex 10516 pwcfsdom 10652 cfpwsdom 10653 canthp1lem2 10722 pwxpndom2 10734 indpi 10976 pinq 10996 archnq 11049 sadcf 16499 sadcp1 16501 fnpr2ob 17618 xpsfrnel 17622 xpsle 17639 setcepi 18155 setc2obas 18161 setc2ohom 18162 efgi1 19763 frgpuptinv 19813 dmdprdpr 20093 dprdpr 20094 coe1fval3 22231 00ply1bas 22262 ply1plusgfvi 22264 coe1z 22287 coe1tm 22297 ply1vscl 22409 rhmply1 22411 rhmply1vr1 22412 xpstopnlem1 23838 xpstopnlem2 23840 xpsdsval 24412 nofv 27720 noxp1o 27726 noextendlt 27732 bdayfo 27740 nosep1o 27744 nosepdmlem 27746 nolt02o 27758 nogt01o 27759 nosupbnd1lem5 27775 nosupbnd2lem1 27778 noinfno 27781 noinfbday 27783 noinfbnd1 27792 noinfbnd2lem1 27793 noinfbnd2 27794 noetasuplem1 27796 noetasuplem2 27797 noetasuplem4 27799 fply1 33549 gonanegoal 35320 fmlaomn0 35358 gonan0 35360 gonarlem 35362 gonar 35363 fmlasucdisj 35367 satffunlem 35369 satffunlem2lem1 35372 ex-sategoelel12 35395 rankeq1o 36135 bj-pr2val 36984 bj-2upln1upl 36990 rhmpsr1 42508 pw2f1ocnv 42994 omnord1ex 43266 oege2 43269 oenord1ex 43277 oenord1 43278 oaomoencom 43279 oenassex 43280 cantnfresb 43286 omcl3g 43296 clsk3nimkb 44002 clsk1indlem4 44006 clsk1indlem1 44007 f1omo 48574 f1omoALT 48575 indthinc 48719 indthincALT 48720 prsthinc 48721 prstchom 48744 prstchom2ALT 48746 |
Copyright terms: Public domain | W3C validator |