Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1oex | Structured version Visualization version GIF version |
Description: Ordinal 1 is a set. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) Remove dependency on ax-10 2139, ax-11 2156, ax-12 2173, ax-un 7566. (Revised by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
1oex | ⊢ 1o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8279 | . 2 ⊢ 1o = {∅} | |
2 | snex 5349 | . 2 ⊢ {∅} ∈ V | |
3 | 1, 2 | eqeltri 2835 | 1 ⊢ 1o ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ∅c0 4253 {csn 4558 1oc1o 8260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-pr 4561 df-suc 6257 df-1o 8267 |
This theorem is referenced by: 2oexOLD 8285 oev 8306 oe0 8314 oev2 8315 oneo 8374 nnneo 8445 endisj 8799 map2xp 8883 sdom1 8952 1sdom 8955 djuexb 9598 djurcl 9600 djurf1o 9602 djuss 9609 djuun 9615 1stinr 9618 2ndinr 9619 pm54.43 9690 dju1dif 9859 djucomen 9864 djuassen 9865 infdju1 9876 pwdju1 9877 nnadju 9884 infmap2 9905 cfsuc 9944 isfin4p1 10002 dcomex 10134 pwcfsdom 10270 cfpwsdom 10271 canthp1lem2 10340 pwxpndom2 10352 indpi 10594 pinq 10614 archnq 10667 sadcf 16088 sadcp1 16090 fnpr2ob 17186 xpsfrnel 17190 xpsle 17207 setcepi 17719 setc2obas 17725 setc2ohom 17726 efgi1 19242 frgpuptinv 19292 dmdprdpr 19567 dprdpr 19568 coe1fval3 21289 00ply1bas 21321 ply1plusgfvi 21323 coe1z 21344 coe1tm 21354 xpstopnlem1 22868 xpstopnlem2 22870 xpsdsval 23442 fply1 31569 gonanegoal 33214 fmlaomn0 33252 gonan0 33254 gonarlem 33256 gonar 33257 fmlasucdisj 33261 satffunlem 33263 satffunlem2lem1 33266 ex-sategoelel12 33289 ssttrcl 33701 ttrclselem2 33712 nofv 33787 noxp1o 33793 noextendlt 33799 bdayfo 33807 nosep1o 33811 nosepdmlem 33813 nolt02o 33825 nogt01o 33826 nosupbnd1lem5 33842 nosupbnd2lem1 33845 noinfno 33848 noinfbday 33850 noinfbnd1 33859 noinfbnd2lem1 33860 noinfbnd2 33861 noetasuplem1 33863 noetasuplem2 33864 noetasuplem4 33866 rankeq1o 34400 bj-pr2val 35135 bj-2upln1upl 35141 pw2f1ocnv 40775 clsk3nimkb 41539 clsk1indlem4 41543 clsk1indlem1 41544 f1omo 46076 f1omoALT 46077 indthinc 46221 indthincALT 46222 prsthinc 46223 prstchom 46244 prstchom2ALT 46246 |
Copyright terms: Public domain | W3C validator |