| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1oex | Structured version Visualization version GIF version | ||
| Description: Ordinal 1 is a set. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) Remove dependency on ax-10 2142, ax-11 2158, ax-12 2178, ax-un 7671. (Revised by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| 1oex | ⊢ 1o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8395 | . 2 ⊢ 1o = {∅} | |
| 2 | snex 5375 | . 2 ⊢ {∅} ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ 1o ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 ∅c0 4284 {csn 4577 1oc1o 8381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-dif 3906 df-un 3908 df-nul 4285 df-sn 4578 df-pr 4580 df-suc 6313 df-1o 8388 |
| This theorem is referenced by: 1on 8400 nlim2 8408 oev 8432 oe0 8440 oev2 8441 oneo 8499 nnneo 8573 enpr2d 8974 endisj 8981 map2xp 9064 snnen2o 9134 sdom1 9139 rex2dom 9142 1sdom2dom 9143 ssttrcl 9611 ttrclselem2 9622 djuexb 9805 djurcl 9807 djurf1o 9809 djuss 9816 djuun 9822 1stinr 9825 2ndinr 9826 pm54.43 9897 dju1dif 10067 djucomen 10072 djuassen 10073 infdju1 10084 pwdju1 10085 nnadju 10092 infmap2 10111 cfsuc 10151 isfin4p1 10209 dcomex 10341 pwcfsdom 10477 cfpwsdom 10478 canthp1lem2 10547 pwxpndom2 10559 indpi 10801 pinq 10821 archnq 10874 sadcf 16364 sadcp1 16366 fnpr2ob 17462 xpsfrnel 17466 xpsle 17483 setcepi 17995 setc2obas 18001 setc2ohom 18002 efgi1 19600 frgpuptinv 19650 dmdprdpr 19930 dprdpr 19931 coe1fval3 22091 00ply1bas 22122 ply1plusgfvi 22124 coe1z 22147 coe1tm 22157 ply1vscl 22269 rhmply1 22271 rhmply1vr1 22272 xpstopnlem1 23694 xpstopnlem2 23696 xpsdsval 24267 nofv 27567 noxp1o 27573 noextendlt 27579 bdayfo 27587 nosep1o 27591 nosepdmlem 27593 nolt02o 27605 nogt01o 27606 nosupbnd1lem5 27622 nosupbnd2lem1 27625 noinfno 27628 noinfbday 27630 noinfbnd1 27639 noinfbnd2lem1 27640 noinfbnd2 27641 noetasuplem1 27643 noetasuplem2 27644 noetasuplem4 27646 fply1 33493 gonanegoal 35325 fmlaomn0 35363 gonan0 35365 gonarlem 35367 gonar 35368 fmlasucdisj 35372 satffunlem 35374 satffunlem2lem1 35377 ex-sategoelel12 35400 rankeq1o 36145 bj-pr2val 36992 bj-2upln1upl 36998 rhmpsr1 42526 pw2f1ocnv 43010 omnord1ex 43277 oege2 43280 oenord1ex 43288 oenord1 43289 oaomoencom 43290 oenassex 43291 cantnfresb 43297 omcl3g 43307 clsk3nimkb 44013 clsk1indlem4 44017 clsk1indlem1 44018 f1omo 48877 f1omoOLD 48878 f1omoALT 48879 nelsubc3 49056 indthinc 49447 indthincALT 49448 prsthinc 49449 setc1obas 49477 setc1ohomfval 49478 setc1oid 49480 isinito2lem 49483 isinito3 49485 prstchom 49547 prstchom2ALT 49549 setc1onsubc 49587 cnelsubc 49589 |
| Copyright terms: Public domain | W3C validator |