Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1oex | Structured version Visualization version GIF version |
Description: Ordinal 1 is a set. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) Remove dependency on ax-10 2137, ax-11 2154, ax-12 2171, ax-un 7588. (Revised by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
1oex | ⊢ 1o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8304 | . 2 ⊢ 1o = {∅} | |
2 | snex 5354 | . 2 ⊢ {∅} ∈ V | |
3 | 1, 2 | eqeltri 2835 | 1 ⊢ 1o ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 ∅c0 4256 {csn 4561 1oc1o 8290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-sn 4562 df-pr 4564 df-suc 6272 df-1o 8297 |
This theorem is referenced by: 1on 8309 2oexOLD 8317 nlim2 8320 oev 8344 oe0 8352 oev2 8353 oneo 8412 nnneo 8485 endisj 8845 map2xp 8934 sdom1 9022 1sdom 9025 snnen2o 9026 ssttrcl 9473 ttrclselem2 9484 djuexb 9667 djurcl 9669 djurf1o 9671 djuss 9678 djuun 9684 1stinr 9687 2ndinr 9688 pm54.43 9759 dju1dif 9928 djucomen 9933 djuassen 9934 infdju1 9945 pwdju1 9946 nnadju 9953 infmap2 9974 cfsuc 10013 isfin4p1 10071 dcomex 10203 pwcfsdom 10339 cfpwsdom 10340 canthp1lem2 10409 pwxpndom2 10421 indpi 10663 pinq 10683 archnq 10736 sadcf 16160 sadcp1 16162 fnpr2ob 17269 xpsfrnel 17273 xpsle 17290 setcepi 17803 setc2obas 17809 setc2ohom 17810 efgi1 19327 frgpuptinv 19377 dmdprdpr 19652 dprdpr 19653 coe1fval3 21379 00ply1bas 21411 ply1plusgfvi 21413 coe1z 21434 coe1tm 21444 xpstopnlem1 22960 xpstopnlem2 22962 xpsdsval 23534 fply1 31667 gonanegoal 33314 fmlaomn0 33352 gonan0 33354 gonarlem 33356 gonar 33357 fmlasucdisj 33361 satffunlem 33363 satffunlem2lem1 33366 ex-sategoelel12 33389 nofv 33860 noxp1o 33866 noextendlt 33872 bdayfo 33880 nosep1o 33884 nosepdmlem 33886 nolt02o 33898 nogt01o 33899 nosupbnd1lem5 33915 nosupbnd2lem1 33918 noinfno 33921 noinfbday 33923 noinfbnd1 33932 noinfbnd2lem1 33933 noinfbnd2 33934 noetasuplem1 33936 noetasuplem2 33937 noetasuplem4 33939 rankeq1o 34473 bj-pr2val 35208 bj-2upln1upl 35214 pw2f1ocnv 40859 clsk3nimkb 41650 clsk1indlem4 41654 clsk1indlem1 41655 f1omo 46188 f1omoALT 46189 indthinc 46333 indthincALT 46334 prsthinc 46335 prstchom 46358 prstchom2ALT 46360 |
Copyright terms: Public domain | W3C validator |