![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1oex | Structured version Visualization version GIF version |
Description: Ordinal 1 is a set. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) Remove dependency on ax-10 2138, ax-11 2155, ax-12 2172, ax-un 7725. (Revised by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
1oex | ⊢ 1o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8473 | . 2 ⊢ 1o = {∅} | |
2 | snex 5432 | . 2 ⊢ {∅} ∈ V | |
3 | 1, 2 | eqeltri 2830 | 1 ⊢ 1o ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3475 ∅c0 4323 {csn 4629 1oc1o 8459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-dif 3952 df-un 3954 df-nul 4324 df-sn 4630 df-pr 4632 df-suc 6371 df-1o 8466 |
This theorem is referenced by: 1on 8478 2oexOLD 8487 nlim2 8490 oev 8514 oe0 8522 oev2 8523 oneo 8581 nnneo 8654 enpr2d 9049 endisj 9058 map2xp 9147 snnen2o 9237 sdom1 9242 sdom1OLD 9243 rex2dom 9246 1sdom2dom 9247 1sdomOLD 9249 ssttrcl 9710 ttrclselem2 9721 djuexb 9904 djurcl 9906 djurf1o 9908 djuss 9915 djuun 9921 1stinr 9924 2ndinr 9925 pm54.43 9996 dju1dif 10167 djucomen 10172 djuassen 10173 infdju1 10184 pwdju1 10185 nnadju 10192 infmap2 10213 cfsuc 10252 isfin4p1 10310 dcomex 10442 pwcfsdom 10578 cfpwsdom 10579 canthp1lem2 10648 pwxpndom2 10660 indpi 10902 pinq 10922 archnq 10975 sadcf 16394 sadcp1 16396 fnpr2ob 17504 xpsfrnel 17508 xpsle 17525 setcepi 18038 setc2obas 18044 setc2ohom 18045 efgi1 19589 frgpuptinv 19639 dmdprdpr 19919 dprdpr 19920 coe1fval3 21732 00ply1bas 21762 ply1plusgfvi 21764 coe1z 21785 coe1tm 21795 xpstopnlem1 23313 xpstopnlem2 23315 xpsdsval 23887 nofv 27160 noxp1o 27166 noextendlt 27172 bdayfo 27180 nosep1o 27184 nosepdmlem 27186 nolt02o 27198 nogt01o 27199 nosupbnd1lem5 27215 nosupbnd2lem1 27218 noinfno 27221 noinfbday 27223 noinfbnd1 27232 noinfbnd2lem1 27233 noinfbnd2 27234 noetasuplem1 27236 noetasuplem2 27237 noetasuplem4 27239 fply1 32637 gonanegoal 34343 fmlaomn0 34381 gonan0 34383 gonarlem 34385 gonar 34386 fmlasucdisj 34390 satffunlem 34392 satffunlem2lem1 34395 ex-sategoelel12 34418 rankeq1o 35143 bj-pr2val 35899 bj-2upln1upl 35905 pw2f1ocnv 41776 omnord1ex 42054 oege2 42057 oenord1ex 42065 oenord1 42066 oaomoencom 42067 oenassex 42068 cantnfresb 42074 omcl3g 42084 clsk3nimkb 42791 clsk1indlem4 42795 clsk1indlem1 42796 f1omo 47527 f1omoALT 47528 indthinc 47672 indthincALT 47673 prsthinc 47674 prstchom 47697 prstchom2ALT 47699 |
Copyright terms: Public domain | W3C validator |