| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1oex | Structured version Visualization version GIF version | ||
| Description: Ordinal 1 is a set. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) Remove dependency on ax-10 2144, ax-11 2160, ax-12 2180, ax-un 7668. (Revised by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| 1oex | ⊢ 1o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8392 | . 2 ⊢ 1o = {∅} | |
| 2 | snex 5372 | . 2 ⊢ {∅} ∈ V | |
| 3 | 1, 2 | eqeltri 2827 | 1 ⊢ 1o ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ∅c0 4280 {csn 4573 1oc1o 8378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-nul 4281 df-sn 4574 df-pr 4576 df-suc 6312 df-1o 8385 |
| This theorem is referenced by: 1on 8397 nlim2 8405 oev 8429 oe0 8437 oev2 8438 oneo 8496 nnneo 8570 enpr2d 8970 endisj 8977 map2xp 9060 snnen2o 9129 sdom1 9134 rex2dom 9137 1sdom2dom 9138 ssttrcl 9605 ttrclselem2 9616 djuexb 9802 djurcl 9804 djurf1o 9806 djuss 9813 djuun 9819 1stinr 9822 2ndinr 9823 pm54.43 9894 dju1dif 10064 djucomen 10069 djuassen 10070 infdju1 10081 pwdju1 10082 nnadju 10089 infmap2 10108 cfsuc 10148 isfin4p1 10206 dcomex 10338 pwcfsdom 10474 cfpwsdom 10475 canthp1lem2 10544 pwxpndom2 10556 indpi 10798 pinq 10818 archnq 10871 sadcf 16364 sadcp1 16366 fnpr2ob 17462 xpsfrnel 17466 xpsle 17483 setcepi 17995 setc2obas 18001 setc2ohom 18002 efgi1 19633 frgpuptinv 19683 dmdprdpr 19963 dprdpr 19964 coe1fval3 22121 00ply1bas 22152 ply1plusgfvi 22154 coe1z 22177 coe1tm 22187 ply1vscl 22299 rhmply1 22301 rhmply1vr1 22302 xpstopnlem1 23724 xpstopnlem2 23726 xpsdsval 24296 nofv 27596 noxp1o 27602 noextendlt 27608 bdayfo 27616 nosep1o 27620 nosepdmlem 27622 nolt02o 27634 nogt01o 27635 nosupbnd1lem5 27651 nosupbnd2lem1 27654 noinfno 27657 noinfbday 27659 noinfbnd1 27668 noinfbnd2lem1 27669 noinfbnd2 27670 noetasuplem1 27672 noetasuplem2 27673 noetasuplem4 27675 fply1 33521 gonanegoal 35396 fmlaomn0 35434 gonan0 35436 gonarlem 35438 gonar 35439 fmlasucdisj 35443 satffunlem 35445 satffunlem2lem1 35448 ex-sategoelel12 35471 rankeq1o 36213 bj-pr2val 37060 bj-2upln1upl 37066 rhmpsr1 42594 pw2f1ocnv 43078 omnord1ex 43345 oege2 43348 oenord1ex 43356 oenord1 43357 oaomoencom 43358 oenassex 43359 cantnfresb 43365 omcl3g 43375 clsk3nimkb 44081 clsk1indlem4 44085 clsk1indlem1 44086 f1omo 48932 f1omoOLD 48933 f1omoALT 48934 nelsubc3 49111 indthinc 49502 indthincALT 49503 prsthinc 49504 setc1obas 49532 setc1ohomfval 49533 setc1oid 49535 isinito2lem 49538 isinito3 49540 prstchom 49602 prstchom2ALT 49604 setc1onsubc 49642 cnelsubc 49644 |
| Copyright terms: Public domain | W3C validator |