| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1oex | Structured version Visualization version GIF version | ||
| Description: Ordinal 1 is a set. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) Remove dependency on ax-10 2142, ax-11 2158, ax-12 2178, ax-un 7734. (Revised by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| 1oex | ⊢ 1o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8492 | . 2 ⊢ 1o = {∅} | |
| 2 | snex 5411 | . 2 ⊢ {∅} ∈ V | |
| 3 | 1, 2 | eqeltri 2831 | 1 ⊢ 1o ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3464 ∅c0 4313 {csn 4606 1oc1o 8478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-dif 3934 df-un 3936 df-nul 4314 df-sn 4607 df-pr 4609 df-suc 6363 df-1o 8485 |
| This theorem is referenced by: 1on 8497 nlim2 8507 oev 8531 oe0 8539 oev2 8540 oneo 8598 nnneo 8672 enpr2d 9068 endisj 9077 map2xp 9166 snnen2o 9250 sdom1 9255 sdom1OLD 9256 rex2dom 9259 1sdom2dom 9260 1sdomOLD 9262 ssttrcl 9734 ttrclselem2 9745 djuexb 9928 djurcl 9930 djurf1o 9932 djuss 9939 djuun 9945 1stinr 9948 2ndinr 9949 pm54.43 10020 dju1dif 10192 djucomen 10197 djuassen 10198 infdju1 10209 pwdju1 10210 nnadju 10217 infmap2 10236 cfsuc 10276 isfin4p1 10334 dcomex 10466 pwcfsdom 10602 cfpwsdom 10603 canthp1lem2 10672 pwxpndom2 10684 indpi 10926 pinq 10946 archnq 10999 sadcf 16477 sadcp1 16479 fnpr2ob 17577 xpsfrnel 17581 xpsle 17598 setcepi 18106 setc2obas 18112 setc2ohom 18113 efgi1 19707 frgpuptinv 19757 dmdprdpr 20037 dprdpr 20038 coe1fval3 22149 00ply1bas 22180 ply1plusgfvi 22182 coe1z 22205 coe1tm 22215 ply1vscl 22327 rhmply1 22329 rhmply1vr1 22330 xpstopnlem1 23752 xpstopnlem2 23754 xpsdsval 24325 nofv 27626 noxp1o 27632 noextendlt 27638 bdayfo 27646 nosep1o 27650 nosepdmlem 27652 nolt02o 27664 nogt01o 27665 nosupbnd1lem5 27681 nosupbnd2lem1 27684 noinfno 27687 noinfbday 27689 noinfbnd1 27698 noinfbnd2lem1 27699 noinfbnd2 27700 noetasuplem1 27702 noetasuplem2 27703 noetasuplem4 27705 fply1 33576 gonanegoal 35379 fmlaomn0 35417 gonan0 35419 gonarlem 35421 gonar 35422 fmlasucdisj 35426 satffunlem 35428 satffunlem2lem1 35431 ex-sategoelel12 35454 rankeq1o 36194 bj-pr2val 37041 bj-2upln1upl 37047 rhmpsr1 42551 pw2f1ocnv 43036 omnord1ex 43303 oege2 43306 oenord1ex 43314 oenord1 43315 oaomoencom 43316 oenassex 43317 cantnfresb 43323 omcl3g 43333 clsk3nimkb 44039 clsk1indlem4 44043 clsk1indlem1 44044 f1omo 48848 f1omoALT 48849 nelsubc3 49018 indthinc 49328 indthincALT 49329 prsthinc 49330 setc1obas 49357 setc1ohomfval 49358 setc1oid 49360 isinito2lem 49363 isinito3 49365 prstchom 49419 prstchom2ALT 49421 setc1onsubc 49459 cnelsubc 49461 |
| Copyright terms: Public domain | W3C validator |