![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1oex | Structured version Visualization version GIF version |
Description: Ordinal 1 is a set. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) Remove dependency on ax-10 2137, ax-11 2154, ax-12 2171, ax-un 7727. (Revised by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
1oex | ⊢ 1o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8475 | . 2 ⊢ 1o = {∅} | |
2 | snex 5431 | . 2 ⊢ {∅} ∈ V | |
3 | 1, 2 | eqeltri 2829 | 1 ⊢ 1o ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3474 ∅c0 4322 {csn 4628 1oc1o 8461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3951 df-un 3953 df-nul 4323 df-sn 4629 df-pr 4631 df-suc 6370 df-1o 8468 |
This theorem is referenced by: 1on 8480 2oexOLD 8489 nlim2 8492 oev 8516 oe0 8524 oev2 8525 oneo 8583 nnneo 8656 enpr2d 9051 endisj 9060 map2xp 9149 snnen2o 9239 sdom1 9244 sdom1OLD 9245 rex2dom 9248 1sdom2dom 9249 1sdomOLD 9251 ssttrcl 9712 ttrclselem2 9723 djuexb 9906 djurcl 9908 djurf1o 9910 djuss 9917 djuun 9923 1stinr 9926 2ndinr 9927 pm54.43 9998 dju1dif 10169 djucomen 10174 djuassen 10175 infdju1 10186 pwdju1 10187 nnadju 10194 infmap2 10215 cfsuc 10254 isfin4p1 10312 dcomex 10444 pwcfsdom 10580 cfpwsdom 10581 canthp1lem2 10650 pwxpndom2 10662 indpi 10904 pinq 10924 archnq 10977 sadcf 16396 sadcp1 16398 fnpr2ob 17506 xpsfrnel 17510 xpsle 17527 setcepi 18040 setc2obas 18046 setc2ohom 18047 efgi1 19591 frgpuptinv 19641 dmdprdpr 19921 dprdpr 19922 coe1fval3 21738 00ply1bas 21769 ply1plusgfvi 21771 coe1z 21792 coe1tm 21802 xpstopnlem1 23320 xpstopnlem2 23322 xpsdsval 23894 nofv 27167 noxp1o 27173 noextendlt 27179 bdayfo 27187 nosep1o 27191 nosepdmlem 27193 nolt02o 27205 nogt01o 27206 nosupbnd1lem5 27222 nosupbnd2lem1 27225 noinfno 27228 noinfbday 27230 noinfbnd1 27239 noinfbnd2lem1 27240 noinfbnd2 27241 noetasuplem1 27243 noetasuplem2 27244 noetasuplem4 27246 fply1 32682 gonanegoal 34412 fmlaomn0 34450 gonan0 34452 gonarlem 34454 gonar 34455 fmlasucdisj 34459 satffunlem 34461 satffunlem2lem1 34464 ex-sategoelel12 34487 rankeq1o 35218 bj-pr2val 35991 bj-2upln1upl 35997 pw2f1ocnv 41864 omnord1ex 42142 oege2 42145 oenord1ex 42153 oenord1 42154 oaomoencom 42155 oenassex 42156 cantnfresb 42162 omcl3g 42172 clsk3nimkb 42879 clsk1indlem4 42883 clsk1indlem1 42884 f1omo 47611 f1omoALT 47612 indthinc 47756 indthincALT 47757 prsthinc 47758 prstchom 47781 prstchom2ALT 47783 |
Copyright terms: Public domain | W3C validator |