| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1oex | Structured version Visualization version GIF version | ||
| Description: Ordinal 1 is a set. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) Remove dependency on ax-10 2142, ax-11 2158, ax-12 2178, ax-un 7691. (Revised by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| 1oex | ⊢ 1o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8418 | . 2 ⊢ 1o = {∅} | |
| 2 | snex 5386 | . 2 ⊢ {∅} ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ 1o ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ∅c0 4292 {csn 4585 1oc1o 8404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-un 3916 df-nul 4293 df-sn 4586 df-pr 4588 df-suc 6326 df-1o 8411 |
| This theorem is referenced by: 1on 8423 nlim2 8431 oev 8455 oe0 8463 oev2 8464 oneo 8522 nnneo 8596 enpr2d 8997 endisj 9005 map2xp 9088 snnen2o 9161 sdom1 9166 rex2dom 9169 1sdom2dom 9170 1sdomOLD 9172 ssttrcl 9644 ttrclselem2 9655 djuexb 9838 djurcl 9840 djurf1o 9842 djuss 9849 djuun 9855 1stinr 9858 2ndinr 9859 pm54.43 9930 dju1dif 10102 djucomen 10107 djuassen 10108 infdju1 10119 pwdju1 10120 nnadju 10127 infmap2 10146 cfsuc 10186 isfin4p1 10244 dcomex 10376 pwcfsdom 10512 cfpwsdom 10513 canthp1lem2 10582 pwxpndom2 10594 indpi 10836 pinq 10856 archnq 10909 sadcf 16399 sadcp1 16401 fnpr2ob 17497 xpsfrnel 17501 xpsle 17518 setcepi 18030 setc2obas 18036 setc2ohom 18037 efgi1 19635 frgpuptinv 19685 dmdprdpr 19965 dprdpr 19966 coe1fval3 22126 00ply1bas 22157 ply1plusgfvi 22159 coe1z 22182 coe1tm 22192 ply1vscl 22304 rhmply1 22306 rhmply1vr1 22307 xpstopnlem1 23729 xpstopnlem2 23731 xpsdsval 24302 nofv 27602 noxp1o 27608 noextendlt 27614 bdayfo 27622 nosep1o 27626 nosepdmlem 27628 nolt02o 27640 nogt01o 27641 nosupbnd1lem5 27657 nosupbnd2lem1 27660 noinfno 27663 noinfbday 27665 noinfbnd1 27674 noinfbnd2lem1 27675 noinfbnd2 27676 noetasuplem1 27678 noetasuplem2 27679 noetasuplem4 27681 fply1 33520 gonanegoal 35332 fmlaomn0 35370 gonan0 35372 gonarlem 35374 gonar 35375 fmlasucdisj 35379 satffunlem 35381 satffunlem2lem1 35384 ex-sategoelel12 35407 rankeq1o 36152 bj-pr2val 36999 bj-2upln1upl 37005 rhmpsr1 42534 pw2f1ocnv 43019 omnord1ex 43286 oege2 43289 oenord1ex 43297 oenord1 43298 oaomoencom 43299 oenassex 43300 cantnfresb 43306 omcl3g 43316 clsk3nimkb 44022 clsk1indlem4 44026 clsk1indlem1 44027 f1omo 48874 f1omoOLD 48875 f1omoALT 48876 nelsubc3 49053 indthinc 49444 indthincALT 49445 prsthinc 49446 setc1obas 49474 setc1ohomfval 49475 setc1oid 49477 isinito2lem 49480 isinito3 49482 prstchom 49544 prstchom2ALT 49546 setc1onsubc 49584 cnelsubc 49586 |
| Copyright terms: Public domain | W3C validator |