| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1oex | Structured version Visualization version GIF version | ||
| Description: Ordinal 1 is a set. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) Remove dependency on ax-10 2142, ax-11 2158, ax-12 2178, ax-un 7711. (Revised by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| 1oex | ⊢ 1o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8441 | . 2 ⊢ 1o = {∅} | |
| 2 | snex 5391 | . 2 ⊢ {∅} ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ 1o ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ∅c0 4296 {csn 4589 1oc1o 8427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-un 3919 df-nul 4297 df-sn 4590 df-pr 4592 df-suc 6338 df-1o 8434 |
| This theorem is referenced by: 1on 8446 nlim2 8454 oev 8478 oe0 8486 oev2 8487 oneo 8545 nnneo 8619 enpr2d 9020 endisj 9028 map2xp 9111 snnen2o 9184 sdom1 9189 sdom1OLD 9190 rex2dom 9193 1sdom2dom 9194 1sdomOLD 9196 ssttrcl 9668 ttrclselem2 9679 djuexb 9862 djurcl 9864 djurf1o 9866 djuss 9873 djuun 9879 1stinr 9882 2ndinr 9883 pm54.43 9954 dju1dif 10126 djucomen 10131 djuassen 10132 infdju1 10143 pwdju1 10144 nnadju 10151 infmap2 10170 cfsuc 10210 isfin4p1 10268 dcomex 10400 pwcfsdom 10536 cfpwsdom 10537 canthp1lem2 10606 pwxpndom2 10618 indpi 10860 pinq 10880 archnq 10933 sadcf 16423 sadcp1 16425 fnpr2ob 17521 xpsfrnel 17525 xpsle 17542 setcepi 18050 setc2obas 18056 setc2ohom 18057 efgi1 19651 frgpuptinv 19701 dmdprdpr 19981 dprdpr 19982 coe1fval3 22093 00ply1bas 22124 ply1plusgfvi 22126 coe1z 22149 coe1tm 22159 ply1vscl 22271 rhmply1 22273 rhmply1vr1 22274 xpstopnlem1 23696 xpstopnlem2 23698 xpsdsval 24269 nofv 27569 noxp1o 27575 noextendlt 27581 bdayfo 27589 nosep1o 27593 nosepdmlem 27595 nolt02o 27607 nogt01o 27608 nosupbnd1lem5 27624 nosupbnd2lem1 27627 noinfno 27630 noinfbday 27632 noinfbnd1 27641 noinfbnd2lem1 27642 noinfbnd2 27643 noetasuplem1 27645 noetasuplem2 27646 noetasuplem4 27648 fply1 33527 gonanegoal 35339 fmlaomn0 35377 gonan0 35379 gonarlem 35381 gonar 35382 fmlasucdisj 35386 satffunlem 35388 satffunlem2lem1 35391 ex-sategoelel12 35414 rankeq1o 36159 bj-pr2val 37006 bj-2upln1upl 37012 rhmpsr1 42541 pw2f1ocnv 43026 omnord1ex 43293 oege2 43296 oenord1ex 43304 oenord1 43305 oaomoencom 43306 oenassex 43307 cantnfresb 43313 omcl3g 43323 clsk3nimkb 44029 clsk1indlem4 44033 clsk1indlem1 44034 f1omo 48881 f1omoOLD 48882 f1omoALT 48883 nelsubc3 49060 indthinc 49451 indthincALT 49452 prsthinc 49453 setc1obas 49481 setc1ohomfval 49482 setc1oid 49484 isinito2lem 49487 isinito3 49489 prstchom 49551 prstchom2ALT 49553 setc1onsubc 49591 cnelsubc 49593 |
| Copyright terms: Public domain | W3C validator |