Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1oex | Structured version Visualization version GIF version |
Description: Ordinal 1 is a set. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) Remove dependency on ax-10 2136, ax-11 2153, ax-12 2170, ax-un 7650. (Revised by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
1oex | ⊢ 1o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8374 | . 2 ⊢ 1o = {∅} | |
2 | snex 5376 | . 2 ⊢ {∅} ∈ V | |
3 | 1, 2 | eqeltri 2833 | 1 ⊢ 1o ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3441 ∅c0 4269 {csn 4573 1oc1o 8360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-dif 3901 df-un 3903 df-nul 4270 df-sn 4574 df-pr 4576 df-suc 6308 df-1o 8367 |
This theorem is referenced by: 1on 8379 2oexOLD 8388 nlim2 8391 oev 8415 oe0 8423 oev2 8424 oneo 8483 nnneo 8556 enpr2d 8914 endisj 8923 map2xp 9012 snnen2o 9102 sdom1 9107 sdom1OLD 9108 rex2dom 9111 1sdom2dom 9112 1sdomOLD 9114 ssttrcl 9572 ttrclselem2 9583 djuexb 9766 djurcl 9768 djurf1o 9770 djuss 9777 djuun 9783 1stinr 9786 2ndinr 9787 pm54.43 9858 dju1dif 10029 djucomen 10034 djuassen 10035 infdju1 10046 pwdju1 10047 nnadju 10054 infmap2 10075 cfsuc 10114 isfin4p1 10172 dcomex 10304 pwcfsdom 10440 cfpwsdom 10441 canthp1lem2 10510 pwxpndom2 10522 indpi 10764 pinq 10784 archnq 10837 sadcf 16259 sadcp1 16261 fnpr2ob 17366 xpsfrnel 17370 xpsle 17387 setcepi 17900 setc2obas 17906 setc2ohom 17907 efgi1 19422 frgpuptinv 19472 dmdprdpr 19747 dprdpr 19748 coe1fval3 21485 00ply1bas 21517 ply1plusgfvi 21519 coe1z 21540 coe1tm 21550 xpstopnlem1 23066 xpstopnlem2 23068 xpsdsval 23640 nofv 26911 noxp1o 26917 noextendlt 26923 bdayfo 26931 nosep1o 26935 nosepdmlem 26937 nolt02o 26949 nogt01o 26950 nosupbnd1lem5 26966 nosupbnd2lem1 26969 noinfno 26972 noinfbday 26974 noinfbnd1 26983 noinfbnd2lem1 26984 noinfbnd2 26985 noetasuplem1 26987 noetasuplem2 26988 noetasuplem4 26990 fply1 31964 gonanegoal 33613 fmlaomn0 33651 gonan0 33653 gonarlem 33655 gonar 33656 fmlasucdisj 33660 satffunlem 33662 satffunlem2lem1 33665 ex-sategoelel12 33688 rankeq1o 34569 bj-pr2val 35302 bj-2upln1upl 35308 pw2f1ocnv 41122 omcl3g 41319 clsk3nimkb 41971 clsk1indlem4 41975 clsk1indlem1 41976 f1omo 46539 f1omoALT 46540 indthinc 46684 indthincALT 46685 prsthinc 46686 prstchom 46709 prstchom2ALT 46711 |
Copyright terms: Public domain | W3C validator |