| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1oex | Structured version Visualization version GIF version | ||
| Description: Ordinal 1 is a set. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) Remove dependency on ax-10 2142, ax-11 2158, ax-12 2178, ax-un 7691. (Revised by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| 1oex | ⊢ 1o ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8418 | . 2 ⊢ 1o = {∅} | |
| 2 | snex 5386 | . 2 ⊢ {∅} ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ 1o ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ∅c0 4292 {csn 4585 1oc1o 8404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-un 3916 df-nul 4293 df-sn 4586 df-pr 4588 df-suc 6326 df-1o 8411 |
| This theorem is referenced by: 1on 8423 nlim2 8431 oev 8455 oe0 8463 oev2 8464 oneo 8522 nnneo 8596 enpr2d 8997 endisj 9005 map2xp 9088 snnen2o 9161 sdom1 9166 rex2dom 9169 1sdom2dom 9170 1sdomOLD 9172 ssttrcl 9644 ttrclselem2 9655 djuexb 9838 djurcl 9840 djurf1o 9842 djuss 9849 djuun 9855 1stinr 9858 2ndinr 9859 pm54.43 9930 dju1dif 10102 djucomen 10107 djuassen 10108 infdju1 10119 pwdju1 10120 nnadju 10127 infmap2 10146 cfsuc 10186 isfin4p1 10244 dcomex 10376 pwcfsdom 10512 cfpwsdom 10513 canthp1lem2 10582 pwxpndom2 10594 indpi 10836 pinq 10856 archnq 10909 sadcf 16399 sadcp1 16401 fnpr2ob 17497 xpsfrnel 17501 xpsle 17518 setcepi 18026 setc2obas 18032 setc2ohom 18033 efgi1 19627 frgpuptinv 19677 dmdprdpr 19957 dprdpr 19958 coe1fval3 22069 00ply1bas 22100 ply1plusgfvi 22102 coe1z 22125 coe1tm 22135 ply1vscl 22247 rhmply1 22249 rhmply1vr1 22250 xpstopnlem1 23672 xpstopnlem2 23674 xpsdsval 24245 nofv 27545 noxp1o 27551 noextendlt 27557 bdayfo 27565 nosep1o 27569 nosepdmlem 27571 nolt02o 27583 nogt01o 27584 nosupbnd1lem5 27600 nosupbnd2lem1 27603 noinfno 27606 noinfbday 27608 noinfbnd1 27617 noinfbnd2lem1 27618 noinfbnd2 27619 noetasuplem1 27621 noetasuplem2 27622 noetasuplem4 27624 fply1 33500 gonanegoal 35312 fmlaomn0 35350 gonan0 35352 gonarlem 35354 gonar 35355 fmlasucdisj 35359 satffunlem 35361 satffunlem2lem1 35364 ex-sategoelel12 35387 rankeq1o 36132 bj-pr2val 36979 bj-2upln1upl 36985 rhmpsr1 42514 pw2f1ocnv 42999 omnord1ex 43266 oege2 43269 oenord1ex 43277 oenord1 43278 oaomoencom 43279 oenassex 43280 cantnfresb 43286 omcl3g 43296 clsk3nimkb 44002 clsk1indlem4 44006 clsk1indlem1 44007 f1omo 48854 f1omoOLD 48855 f1omoALT 48856 nelsubc3 49033 indthinc 49424 indthincALT 49425 prsthinc 49426 setc1obas 49454 setc1ohomfval 49455 setc1oid 49457 isinito2lem 49460 isinito3 49462 prstchom 49524 prstchom2ALT 49526 setc1onsubc 49564 cnelsubc 49566 |
| Copyright terms: Public domain | W3C validator |