![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1oex | Structured version Visualization version GIF version |
Description: Ordinal 1 is a set. (Contributed by BJ, 6-Apr-2019.) (Proof shortened by AV, 1-Jul-2022.) Remove dependency on ax-10 2139, ax-11 2155, ax-12 2175, ax-un 7754. (Revised by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
1oex | ⊢ 1o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8512 | . 2 ⊢ 1o = {∅} | |
2 | snex 5442 | . 2 ⊢ {∅} ∈ V | |
3 | 1, 2 | eqeltri 2835 | 1 ⊢ 1o ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 ∅c0 4339 {csn 4631 1oc1o 8498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-un 3968 df-nul 4340 df-sn 4632 df-pr 4634 df-suc 6392 df-1o 8505 |
This theorem is referenced by: 1on 8517 nlim2 8527 oev 8551 oe0 8559 oev2 8560 oneo 8618 nnneo 8692 enpr2d 9088 endisj 9097 map2xp 9186 snnen2o 9271 sdom1 9276 sdom1OLD 9277 rex2dom 9280 1sdom2dom 9281 1sdomOLD 9283 ssttrcl 9753 ttrclselem2 9764 djuexb 9947 djurcl 9949 djurf1o 9951 djuss 9958 djuun 9964 1stinr 9967 2ndinr 9968 pm54.43 10039 dju1dif 10211 djucomen 10216 djuassen 10217 infdju1 10228 pwdju1 10229 nnadju 10236 infmap2 10255 cfsuc 10295 isfin4p1 10353 dcomex 10485 pwcfsdom 10621 cfpwsdom 10622 canthp1lem2 10691 pwxpndom2 10703 indpi 10945 pinq 10965 archnq 11018 sadcf 16487 sadcp1 16489 fnpr2ob 17605 xpsfrnel 17609 xpsle 17626 setcepi 18142 setc2obas 18148 setc2ohom 18149 efgi1 19754 frgpuptinv 19804 dmdprdpr 20084 dprdpr 20085 coe1fval3 22226 00ply1bas 22257 ply1plusgfvi 22259 coe1z 22282 coe1tm 22292 ply1vscl 22404 rhmply1 22406 rhmply1vr1 22407 xpstopnlem1 23833 xpstopnlem2 23835 xpsdsval 24407 nofv 27717 noxp1o 27723 noextendlt 27729 bdayfo 27737 nosep1o 27741 nosepdmlem 27743 nolt02o 27755 nogt01o 27756 nosupbnd1lem5 27772 nosupbnd2lem1 27775 noinfno 27778 noinfbday 27780 noinfbnd1 27789 noinfbnd2lem1 27790 noinfbnd2 27791 noetasuplem1 27793 noetasuplem2 27794 noetasuplem4 27796 fply1 33564 gonanegoal 35337 fmlaomn0 35375 gonan0 35377 gonarlem 35379 gonar 35380 fmlasucdisj 35384 satffunlem 35386 satffunlem2lem1 35389 ex-sategoelel12 35412 rankeq1o 36153 bj-pr2val 37001 bj-2upln1upl 37007 rhmpsr1 42540 pw2f1ocnv 43026 omnord1ex 43294 oege2 43297 oenord1ex 43305 oenord1 43306 oaomoencom 43307 oenassex 43308 cantnfresb 43314 omcl3g 43324 clsk3nimkb 44030 clsk1indlem4 44034 clsk1indlem1 44035 f1omo 48691 f1omoALT 48692 indthinc 48853 indthincALT 48854 prsthinc 48855 prstchom 48878 prstchom2ALT 48880 |
Copyright terms: Public domain | W3C validator |