MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant1l Structured version   Visualization version   GIF version

Theorem 3adant1l 1176
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant1l (((𝜏𝜑) ∧ 𝜓𝜒) → 𝜃)

Proof of Theorem 3adant1l
StepHypRef Expression
1 simpr 484 . 2 ((𝜏𝜑) → 𝜑)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an1 1163 1 (((𝜏𝜑) ∧ 𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  ad5ant245  1361  cfsmolem  10339  axdc3lem4  10522  issubmnd  18799  mhmima  18860  rhmimasubrng  20592  maducoeval2  22667  cramerlem3  22716  restnlly  23511  efgh  26601  hasheuni  34049  matunitlindflem1  37576  pellex  42791  mendlmod  43150  disjf1o  45098  ssfiunibd  45224  mullimc  45537  mullimcf  45544  limclner  45572  limsupresxr  45687  liminfresxr  45688  sge0lefi  46319  isomenndlem  46451  hoicvr  46469  ovncvrrp  46485
  Copyright terms: Public domain W3C validator