![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant1l | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant1l | ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝜏 ∧ 𝜑) → 𝜑) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an1 1163 | 1 ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: ad5ant245 1361 cfsmolem 10267 axdc3lem4 10450 issubmnd 18686 mhmima 18742 rhmimasubrng 20454 maducoeval2 22362 cramerlem3 22411 restnlly 23206 efgh 26274 hasheuni 33369 matunitlindflem1 36787 pellex 41875 mendlmod 42237 disjf1o 44189 ssfiunibd 44318 mullimc 44631 mullimcf 44638 limclner 44666 limsupresxr 44781 liminfresxr 44782 sge0lefi 45413 isomenndlem 45545 hoicvr 45563 ovncvrrp 45579 |
Copyright terms: Public domain | W3C validator |