Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adant1l | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant1l | ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝜏 ∧ 𝜑) → 𝜑) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an1 1162 | 1 ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: ad5ant245 1360 cfsmolem 10026 axdc3lem4 10209 issubmnd 18412 maducoeval2 21789 cramerlem3 21838 restnlly 22633 efgh 25697 hasheuni 32053 matunitlindflem1 35773 pellex 40657 mendlmod 41018 disjf1o 42729 ssfiunibd 42848 mullimc 43157 mullimcf 43164 limclner 43192 limsupresxr 43307 liminfresxr 43308 sge0lefi 43936 isomenndlem 44068 hoicvr 44086 ovncvrrp 44102 |
Copyright terms: Public domain | W3C validator |