MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant1l Structured version   Visualization version   GIF version

Theorem 3adant1l 1175
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant1l (((𝜏𝜑) ∧ 𝜓𝜒) → 𝜃)

Proof of Theorem 3adant1l
StepHypRef Expression
1 simpr 484 . 2 ((𝜏𝜑) → 𝜑)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an1 1162 1 (((𝜏𝜑) ∧ 𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ad5ant245  1360  cfsmolem  10307  axdc3lem4  10490  issubmnd  18786  mhmima  18850  rhmimasubrng  20582  maducoeval2  22661  cramerlem3  22710  restnlly  23505  efgh  26597  hasheuni  34065  matunitlindflem1  37602  pellex  42822  mendlmod  43177  disjf1o  45133  ssfiunibd  45259  mullimc  45571  mullimcf  45578  limclner  45606  limsupresxr  45721  liminfresxr  45722  sge0lefi  46353  isomenndlem  46485  hoicvr  46503  ovncvrrp  46519
  Copyright terms: Public domain W3C validator