MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant1l Structured version   Visualization version   GIF version

Theorem 3adant1l 1175
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant1l (((𝜏𝜑) ∧ 𝜓𝜒) → 𝜃)

Proof of Theorem 3adant1l
StepHypRef Expression
1 simpr 485 . 2 ((𝜏𝜑) → 𝜑)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an1 1162 1 (((𝜏𝜑) ∧ 𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  ad5ant245  1360  cfsmolem  10026  axdc3lem4  10209  issubmnd  18412  maducoeval2  21789  cramerlem3  21838  restnlly  22633  efgh  25697  hasheuni  32053  matunitlindflem1  35773  pellex  40657  mendlmod  41018  disjf1o  42729  ssfiunibd  42848  mullimc  43157  mullimcf  43164  limclner  43192  limsupresxr  43307  liminfresxr  43308  sge0lefi  43936  isomenndlem  44068  hoicvr  44086  ovncvrrp  44102
  Copyright terms: Public domain W3C validator