MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant1l Structured version   Visualization version   GIF version

Theorem 3adant1l 1177
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant1l (((𝜏𝜑) ∧ 𝜓𝜒) → 𝜃)

Proof of Theorem 3adant1l
StepHypRef Expression
1 simpr 484 . 2 ((𝜏𝜑) → 𝜑)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an1 1163 1 (((𝜏𝜑) ∧ 𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ad5ant245  1363  cfsmolem  10284  axdc3lem4  10467  issubmnd  18739  mhmima  18803  rhmimasubrng  20526  maducoeval2  22578  cramerlem3  22627  restnlly  23420  efgh  26502  hasheuni  34116  matunitlindflem1  37640  pellex  42858  mendlmod  43213  disjf1o  45215  ssfiunibd  45338  mullimc  45645  mullimcf  45652  limclner  45680  limsupresxr  45795  liminfresxr  45796  sge0lefi  46427  isomenndlem  46559  hoicvr  46577  ovncvrrp  46593
  Copyright terms: Public domain W3C validator