MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant1l Structured version   Visualization version   GIF version

Theorem 3adant1l 1177
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant1l (((𝜏𝜑) ∧ 𝜓𝜒) → 𝜃)

Proof of Theorem 3adant1l
StepHypRef Expression
1 simpr 484 . 2 ((𝜏𝜑) → 𝜑)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an1 1163 1 (((𝜏𝜑) ∧ 𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ad5ant245  1363  cfsmolem  10183  axdc3lem4  10366  issubmnd  18653  mhmima  18717  rhmimasubrng  20469  maducoeval2  22543  cramerlem3  22592  restnlly  23385  efgh  26466  hasheuni  34051  matunitlindflem1  37595  pellex  42808  mendlmod  43162  disjf1o  45169  ssfiunibd  45291  mullimc  45598  mullimcf  45605  limclner  45633  limsupresxr  45748  liminfresxr  45749  sge0lefi  46380  isomenndlem  46512  hoicvr  46530  ovncvrrp  46546
  Copyright terms: Public domain W3C validator