![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3adant1l | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant1l | ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜑) → 𝜑) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an1 1163 | 1 ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: ad5ant245 1361 cfsmolem 10339 axdc3lem4 10522 issubmnd 18799 mhmima 18860 rhmimasubrng 20592 maducoeval2 22667 cramerlem3 22716 restnlly 23511 efgh 26601 hasheuni 34049 matunitlindflem1 37576 pellex 42791 mendlmod 43150 disjf1o 45098 ssfiunibd 45224 mullimc 45537 mullimcf 45544 limclner 45572 limsupresxr 45687 liminfresxr 45688 sge0lefi 46319 isomenndlem 46451 hoicvr 46469 ovncvrrp 46485 |
Copyright terms: Public domain | W3C validator |