MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant1l Structured version   Visualization version   GIF version

Theorem 3adant1l 1174
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant1l (((𝜏𝜑) ∧ 𝜓𝜒) → 𝜃)

Proof of Theorem 3adant1l
StepHypRef Expression
1 simpr 484 . 2 ((𝜏𝜑) → 𝜑)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an1 1161 1 (((𝜏𝜑) ∧ 𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  ad5ant245  1359  cfsmolem  9957  axdc3lem4  10140  issubmnd  18327  maducoeval2  21697  cramerlem3  21746  restnlly  22541  efgh  25602  hasheuni  31953  matunitlindflem1  35700  pellex  40573  mendlmod  40934  disjf1o  42618  ssfiunibd  42738  mullimc  43047  mullimcf  43054  limclner  43082  limsupresxr  43197  liminfresxr  43198  sge0lefi  43826  isomenndlem  43958  hoicvr  43976  ovncvrrp  43992
  Copyright terms: Public domain W3C validator