Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3adant1l | Structured version Visualization version GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
ad4ant3.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant1l | ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜏 ∧ 𝜑) → 𝜑) | |
2 | ad4ant3.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl3an1 1161 | 1 ⊢ (((𝜏 ∧ 𝜑) ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: ad5ant245 1359 cfsmolem 9957 axdc3lem4 10140 issubmnd 18327 maducoeval2 21697 cramerlem3 21746 restnlly 22541 efgh 25602 hasheuni 31953 matunitlindflem1 35700 pellex 40573 mendlmod 40934 disjf1o 42618 ssfiunibd 42738 mullimc 43047 mullimcf 43054 limclner 43082 limsupresxr 43197 liminfresxr 43198 sge0lefi 43826 isomenndlem 43958 hoicvr 43976 ovncvrrp 43992 |
Copyright terms: Public domain | W3C validator |