MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3adant1l Structured version   Visualization version   GIF version

Theorem 3adant1l 1177
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Hypothesis
Ref Expression
ad4ant3.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant1l (((𝜏𝜑) ∧ 𝜓𝜒) → 𝜃)

Proof of Theorem 3adant1l
StepHypRef Expression
1 simpr 484 . 2 ((𝜏𝜑) → 𝜑)
2 ad4ant3.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl3an1 1163 1 (((𝜏𝜑) ∧ 𝜓𝜒) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ad5ant245  1363  cfsmolem  10230  axdc3lem4  10413  issubmnd  18695  mhmima  18759  rhmimasubrng  20482  maducoeval2  22534  cramerlem3  22583  restnlly  23376  efgh  26457  hasheuni  34082  matunitlindflem1  37617  pellex  42830  mendlmod  43185  disjf1o  45192  ssfiunibd  45314  mullimc  45621  mullimcf  45628  limclner  45656  limsupresxr  45771  liminfresxr  45772  sge0lefi  46403  isomenndlem  46535  hoicvr  46553  ovncvrrp  46569
  Copyright terms: Public domain W3C validator