Step | Hyp | Ref
| Expression |
1 | | disjf1o.xph |
. . . 4
⊢
Ⅎ𝑥𝜑 |
2 | | eqid 2758 |
. . . 4
⊢ (𝑥 ∈ 𝐶 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐵) |
3 | | simpl 486 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝜑) |
4 | | disjf1o.d |
. . . . . . . 8
⊢ 𝐶 = {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅} |
5 | | ssrab2 3984 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅} ⊆ 𝐴 |
6 | 4, 5 | eqsstri 3926 |
. . . . . . 7
⊢ 𝐶 ⊆ 𝐴 |
7 | | id 22 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐶) |
8 | 6, 7 | sseldi 3890 |
. . . . . 6
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴) |
9 | 8 | adantl 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ 𝐴) |
10 | | disjf1o.b |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
11 | 3, 9, 10 | syl2anc 587 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ∈ 𝑉) |
12 | 7, 4 | eleqtrdi 2862 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅}) |
13 | | rabid 3296 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅} ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ≠ ∅)) |
14 | 13 | a1i 11 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐶 → (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅} ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 ≠ ∅))) |
15 | 12, 14 | mpbid 235 |
. . . . . 6
⊢ (𝑥 ∈ 𝐶 → (𝑥 ∈ 𝐴 ∧ 𝐵 ≠ ∅)) |
16 | 15 | simprd 499 |
. . . . 5
⊢ (𝑥 ∈ 𝐶 → 𝐵 ≠ ∅) |
17 | 16 | adantl 485 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐵 ≠ ∅) |
18 | 6 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
19 | | disjf1o.dj |
. . . . 5
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) |
20 | | disjss1 5003 |
. . . . 5
⊢ (𝐶 ⊆ 𝐴 → (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑥 ∈ 𝐶 𝐵)) |
21 | 18, 19, 20 | sylc 65 |
. . . 4
⊢ (𝜑 → Disj 𝑥 ∈ 𝐶 𝐵) |
22 | 1, 2, 11, 17, 21 | disjf1 42179 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐵):𝐶–1-1→𝑉) |
23 | | f1f1orn 6613 |
. . 3
⊢ ((𝑥 ∈ 𝐶 ↦ 𝐵):𝐶–1-1→𝑉 → (𝑥 ∈ 𝐶 ↦ 𝐵):𝐶–1-1-onto→ran
(𝑥 ∈ 𝐶 ↦ 𝐵)) |
24 | 22, 23 | syl 17 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐵):𝐶–1-1-onto→ran
(𝑥 ∈ 𝐶 ↦ 𝐵)) |
25 | | disjf1o.f |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
26 | 25 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
27 | 26 | reseq1d 5822 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ 𝐶) = ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶)) |
28 | 18 | resmptd 5880 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ 𝐵)) |
29 | 27, 28 | eqtrd 2793 |
. . 3
⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ 𝐵)) |
30 | | eqidd 2759 |
. . 3
⊢ (𝜑 → 𝐶 = 𝐶) |
31 | | simpl 486 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝜑) |
32 | | id 22 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐷 → 𝑦 ∈ 𝐷) |
33 | | disjf1o.e |
. . . . . . . . . 10
⊢ 𝐷 = (ran 𝐹 ∖ {∅}) |
34 | 32, 33 | eleqtrdi 2862 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐷 → 𝑦 ∈ (ran 𝐹 ∖ {∅})) |
35 | | eldifsni 4680 |
. . . . . . . . 9
⊢ (𝑦 ∈ (ran 𝐹 ∖ {∅}) → 𝑦 ≠ ∅) |
36 | 34, 35 | syl 17 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐷 → 𝑦 ≠ ∅) |
37 | 36 | adantl 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦 ≠ ∅) |
38 | | eldifi 4032 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (ran 𝐹 ∖ {∅}) → 𝑦 ∈ ran 𝐹) |
39 | 34, 38 | syl 17 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐷 → 𝑦 ∈ ran 𝐹) |
40 | 25 | elrnmpt 5797 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ran 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵)) |
41 | 39, 40 | syl 17 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐷 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵)) |
42 | 39, 41 | mpbid 235 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐷 → ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
43 | 42 | adantl 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
44 | | nfv 1915 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑦 ≠ ∅ |
45 | 1, 44 | nfan 1900 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝜑 ∧ 𝑦 ≠ ∅) |
46 | | nfcv 2919 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑦 |
47 | | nfmpt1 5130 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝑥 ∈ 𝐶 ↦ 𝐵) |
48 | 47 | nfrn 5793 |
. . . . . . . . . 10
⊢
Ⅎ𝑥ran
(𝑥 ∈ 𝐶 ↦ 𝐵) |
49 | 46, 48 | nfel 2933 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵) |
50 | | simp3 1135 |
. . . . . . . . . . . 12
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) |
51 | | simp2 1134 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 ∈ 𝐴) |
52 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) |
53 | 52 | eqcomd 2764 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝐵 → 𝐵 = 𝑦) |
54 | 53 | adantl 485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ≠ ∅ ∧ 𝑦 = 𝐵) → 𝐵 = 𝑦) |
55 | | simpl 486 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ≠ ∅ ∧ 𝑦 = 𝐵) → 𝑦 ≠ ∅) |
56 | 54, 55 | eqnetrd 3018 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ≠ ∅ ∧ 𝑦 = 𝐵) → 𝐵 ≠ ∅) |
57 | 56 | 3adant2 1128 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝐵 ≠ ∅) |
58 | 51, 57 | jca 515 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝐴 ∧ 𝐵 ≠ ∅)) |
59 | 58, 13 | sylibr 237 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅}) |
60 | 4 | eqcomi 2767 |
. . . . . . . . . . . . . . 15
⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅} = 𝐶 |
61 | 60 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅} = 𝐶) |
62 | 59, 61 | eleqtrd 2854 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑥 ∈ 𝐶) |
63 | | eqvisset 3427 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝐵 → 𝐵 ∈ V) |
64 | 63 | 3ad2ant3 1132 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝐵 ∈ V) |
65 | 2 | elrnmpt1 5799 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐶 ∧ 𝐵 ∈ V) → 𝐵 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
66 | 62, 64, 65 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝐵 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
67 | 50, 66 | eqeltrd 2852 |
. . . . . . . . . . 11
⊢ ((𝑦 ≠ ∅ ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
68 | 67 | 3adant1l 1173 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ≠ ∅) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
69 | 68 | 3exp 1116 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ≠ ∅) → (𝑥 ∈ 𝐴 → (𝑦 = 𝐵 → 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)))) |
70 | 45, 49, 69 | rexlimd 3241 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ≠ ∅) → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 → 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵))) |
71 | 70 | imp 410 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ≠ ∅) ∧ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) → 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
72 | 31, 37, 43, 71 | syl21anc 836 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
73 | 72 | ralrimiva 3113 |
. . . . 5
⊢ (𝜑 → ∀𝑦 ∈ 𝐷 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
74 | | dfss3 3880 |
. . . . 5
⊢ (𝐷 ⊆ ran (𝑥 ∈ 𝐶 ↦ 𝐵) ↔ ∀𝑦 ∈ 𝐷 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
75 | 73, 74 | sylibr 237 |
. . . 4
⊢ (𝜑 → 𝐷 ⊆ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
76 | | simpl 486 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) → 𝜑) |
77 | | vex 3413 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
78 | 2 | elrnmpt 5797 |
. . . . . . . 8
⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵)) |
79 | 77, 78 | ax-mp 5 |
. . . . . . 7
⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵) |
80 | 79 | biimpi 219 |
. . . . . 6
⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵) → ∃𝑥 ∈ 𝐶 𝑦 = 𝐵) |
81 | 80 | adantl 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) → ∃𝑥 ∈ 𝐶 𝑦 = 𝐵) |
82 | | nfv 1915 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑦 ∈ 𝐷 |
83 | | simpr 488 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) |
84 | 8 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝑥 ∈ 𝐴) |
85 | 83, 63 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝐵 ∈ V) |
86 | 25 | elrnmpt1 5799 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V) → 𝐵 ∈ ran 𝐹) |
87 | 84, 85, 86 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝐵 ∈ ran 𝐹) |
88 | 83, 87 | eqeltrd 2852 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝑦 ∈ ran 𝐹) |
89 | 88 | 3adant1 1127 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝑦 ∈ ran 𝐹) |
90 | 16 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝐵 ≠ ∅) |
91 | 83, 90 | eqnetrd 3018 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝑦 ≠ ∅) |
92 | | nelsn 4562 |
. . . . . . . . . . . 12
⊢ (𝑦 ≠ ∅ → ¬ 𝑦 ∈
{∅}) |
93 | 91, 92 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → ¬ 𝑦 ∈ {∅}) |
94 | 93 | 3adant1 1127 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → ¬ 𝑦 ∈ {∅}) |
95 | 89, 94 | eldifd 3869 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝑦 ∈ (ran 𝐹 ∖ {∅})) |
96 | 95, 33 | eleqtrrdi 2863 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐵) → 𝑦 ∈ 𝐷) |
97 | 96 | 3exp 1116 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐶 → (𝑦 = 𝐵 → 𝑦 ∈ 𝐷))) |
98 | 1, 82, 97 | rexlimd 3241 |
. . . . . 6
⊢ (𝜑 → (∃𝑥 ∈ 𝐶 𝑦 = 𝐵 → 𝑦 ∈ 𝐷)) |
99 | 98 | imp 410 |
. . . . 5
⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐶 𝑦 = 𝐵) → 𝑦 ∈ 𝐷) |
100 | 76, 81, 99 | syl2anc 587 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐶 ↦ 𝐵)) → 𝑦 ∈ 𝐷) |
101 | 75, 100 | eqelssd 3913 |
. . 3
⊢ (𝜑 → 𝐷 = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
102 | 29, 30, 101 | f1oeq123d 6596 |
. 2
⊢ (𝜑 → ((𝐹 ↾ 𝐶):𝐶–1-1-onto→𝐷 ↔ (𝑥 ∈ 𝐶 ↦ 𝐵):𝐶–1-1-onto→ran
(𝑥 ∈ 𝐶 ↦ 𝐵))) |
103 | 24, 102 | mpbird 260 |
1
⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶–1-1-onto→𝐷) |