Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjf1o Structured version   Visualization version   GIF version

Theorem disjf1o 42188
 Description: A bijection built from disjoint sets. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
disjf1o.xph 𝑥𝜑
disjf1o.f 𝐹 = (𝑥𝐴𝐵)
disjf1o.b ((𝜑𝑥𝐴) → 𝐵𝑉)
disjf1o.dj (𝜑Disj 𝑥𝐴 𝐵)
disjf1o.d 𝐶 = {𝑥𝐴𝐵 ≠ ∅}
disjf1o.e 𝐷 = (ran 𝐹 ∖ {∅})
Assertion
Ref Expression
disjf1o (𝜑 → (𝐹𝐶):𝐶1-1-onto𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem disjf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 disjf1o.xph . . . 4 𝑥𝜑
2 eqid 2758 . . . 4 (𝑥𝐶𝐵) = (𝑥𝐶𝐵)
3 simpl 486 . . . . 5 ((𝜑𝑥𝐶) → 𝜑)
4 disjf1o.d . . . . . . . 8 𝐶 = {𝑥𝐴𝐵 ≠ ∅}
5 ssrab2 3984 . . . . . . . 8 {𝑥𝐴𝐵 ≠ ∅} ⊆ 𝐴
64, 5eqsstri 3926 . . . . . . 7 𝐶𝐴
7 id 22 . . . . . . 7 (𝑥𝐶𝑥𝐶)
86, 7sseldi 3890 . . . . . 6 (𝑥𝐶𝑥𝐴)
98adantl 485 . . . . 5 ((𝜑𝑥𝐶) → 𝑥𝐴)
10 disjf1o.b . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
113, 9, 10syl2anc 587 . . . 4 ((𝜑𝑥𝐶) → 𝐵𝑉)
127, 4eleqtrdi 2862 . . . . . . 7 (𝑥𝐶𝑥 ∈ {𝑥𝐴𝐵 ≠ ∅})
13 rabid 3296 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 ≠ ∅} ↔ (𝑥𝐴𝐵 ≠ ∅))
1413a1i 11 . . . . . . 7 (𝑥𝐶 → (𝑥 ∈ {𝑥𝐴𝐵 ≠ ∅} ↔ (𝑥𝐴𝐵 ≠ ∅)))
1512, 14mpbid 235 . . . . . 6 (𝑥𝐶 → (𝑥𝐴𝐵 ≠ ∅))
1615simprd 499 . . . . 5 (𝑥𝐶𝐵 ≠ ∅)
1716adantl 485 . . . 4 ((𝜑𝑥𝐶) → 𝐵 ≠ ∅)
186a1i 11 . . . . 5 (𝜑𝐶𝐴)
19 disjf1o.dj . . . . 5 (𝜑Disj 𝑥𝐴 𝐵)
20 disjss1 5003 . . . . 5 (𝐶𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐶 𝐵))
2118, 19, 20sylc 65 . . . 4 (𝜑Disj 𝑥𝐶 𝐵)
221, 2, 11, 17, 21disjf1 42179 . . 3 (𝜑 → (𝑥𝐶𝐵):𝐶1-1𝑉)
23 f1f1orn 6613 . . 3 ((𝑥𝐶𝐵):𝐶1-1𝑉 → (𝑥𝐶𝐵):𝐶1-1-onto→ran (𝑥𝐶𝐵))
2422, 23syl 17 . 2 (𝜑 → (𝑥𝐶𝐵):𝐶1-1-onto→ran (𝑥𝐶𝐵))
25 disjf1o.f . . . . . 6 𝐹 = (𝑥𝐴𝐵)
2625a1i 11 . . . . 5 (𝜑𝐹 = (𝑥𝐴𝐵))
2726reseq1d 5822 . . . 4 (𝜑 → (𝐹𝐶) = ((𝑥𝐴𝐵) ↾ 𝐶))
2818resmptd 5880 . . . 4 (𝜑 → ((𝑥𝐴𝐵) ↾ 𝐶) = (𝑥𝐶𝐵))
2927, 28eqtrd 2793 . . 3 (𝜑 → (𝐹𝐶) = (𝑥𝐶𝐵))
30 eqidd 2759 . . 3 (𝜑𝐶 = 𝐶)
31 simpl 486 . . . . . . 7 ((𝜑𝑦𝐷) → 𝜑)
32 id 22 . . . . . . . . . 10 (𝑦𝐷𝑦𝐷)
33 disjf1o.e . . . . . . . . . 10 𝐷 = (ran 𝐹 ∖ {∅})
3432, 33eleqtrdi 2862 . . . . . . . . 9 (𝑦𝐷𝑦 ∈ (ran 𝐹 ∖ {∅}))
35 eldifsni 4680 . . . . . . . . 9 (𝑦 ∈ (ran 𝐹 ∖ {∅}) → 𝑦 ≠ ∅)
3634, 35syl 17 . . . . . . . 8 (𝑦𝐷𝑦 ≠ ∅)
3736adantl 485 . . . . . . 7 ((𝜑𝑦𝐷) → 𝑦 ≠ ∅)
38 eldifi 4032 . . . . . . . . . 10 (𝑦 ∈ (ran 𝐹 ∖ {∅}) → 𝑦 ∈ ran 𝐹)
3934, 38syl 17 . . . . . . . . 9 (𝑦𝐷𝑦 ∈ ran 𝐹)
4025elrnmpt 5797 . . . . . . . . . 10 (𝑦 ∈ ran 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝑦 = 𝐵))
4139, 40syl 17 . . . . . . . . 9 (𝑦𝐷 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝑦 = 𝐵))
4239, 41mpbid 235 . . . . . . . 8 (𝑦𝐷 → ∃𝑥𝐴 𝑦 = 𝐵)
4342adantl 485 . . . . . . 7 ((𝜑𝑦𝐷) → ∃𝑥𝐴 𝑦 = 𝐵)
44 nfv 1915 . . . . . . . . . 10 𝑥 𝑦 ≠ ∅
451, 44nfan 1900 . . . . . . . . 9 𝑥(𝜑𝑦 ≠ ∅)
46 nfcv 2919 . . . . . . . . . 10 𝑥𝑦
47 nfmpt1 5130 . . . . . . . . . . 11 𝑥(𝑥𝐶𝐵)
4847nfrn 5793 . . . . . . . . . 10 𝑥ran (𝑥𝐶𝐵)
4946, 48nfel 2933 . . . . . . . . 9 𝑥 𝑦 ∈ ran (𝑥𝐶𝐵)
50 simp3 1135 . . . . . . . . . . . 12 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
51 simp2 1134 . . . . . . . . . . . . . . . 16 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → 𝑥𝐴)
52 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝐵𝑦 = 𝐵)
5352eqcomd 2764 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝐵𝐵 = 𝑦)
5453adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑦 ≠ ∅ ∧ 𝑦 = 𝐵) → 𝐵 = 𝑦)
55 simpl 486 . . . . . . . . . . . . . . . . . 18 ((𝑦 ≠ ∅ ∧ 𝑦 = 𝐵) → 𝑦 ≠ ∅)
5654, 55eqnetrd 3018 . . . . . . . . . . . . . . . . 17 ((𝑦 ≠ ∅ ∧ 𝑦 = 𝐵) → 𝐵 ≠ ∅)
57563adant2 1128 . . . . . . . . . . . . . . . 16 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → 𝐵 ≠ ∅)
5851, 57jca 515 . . . . . . . . . . . . . . 15 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → (𝑥𝐴𝐵 ≠ ∅))
5958, 13sylibr 237 . . . . . . . . . . . . . 14 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → 𝑥 ∈ {𝑥𝐴𝐵 ≠ ∅})
604eqcomi 2767 . . . . . . . . . . . . . . 15 {𝑥𝐴𝐵 ≠ ∅} = 𝐶
6160a1i 11 . . . . . . . . . . . . . 14 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → {𝑥𝐴𝐵 ≠ ∅} = 𝐶)
6259, 61eleqtrd 2854 . . . . . . . . . . . . 13 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → 𝑥𝐶)
63 eqvisset 3427 . . . . . . . . . . . . . 14 (𝑦 = 𝐵𝐵 ∈ V)
64633ad2ant3 1132 . . . . . . . . . . . . 13 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → 𝐵 ∈ V)
652elrnmpt1 5799 . . . . . . . . . . . . 13 ((𝑥𝐶𝐵 ∈ V) → 𝐵 ∈ ran (𝑥𝐶𝐵))
6662, 64, 65syl2anc 587 . . . . . . . . . . . 12 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → 𝐵 ∈ ran (𝑥𝐶𝐵))
6750, 66eqeltrd 2852 . . . . . . . . . . 11 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → 𝑦 ∈ ran (𝑥𝐶𝐵))
68673adant1l 1173 . . . . . . . . . 10 (((𝜑𝑦 ≠ ∅) ∧ 𝑥𝐴𝑦 = 𝐵) → 𝑦 ∈ ran (𝑥𝐶𝐵))
69683exp 1116 . . . . . . . . 9 ((𝜑𝑦 ≠ ∅) → (𝑥𝐴 → (𝑦 = 𝐵𝑦 ∈ ran (𝑥𝐶𝐵))))
7045, 49, 69rexlimd 3241 . . . . . . . 8 ((𝜑𝑦 ≠ ∅) → (∃𝑥𝐴 𝑦 = 𝐵𝑦 ∈ ran (𝑥𝐶𝐵)))
7170imp 410 . . . . . . 7 (((𝜑𝑦 ≠ ∅) ∧ ∃𝑥𝐴 𝑦 = 𝐵) → 𝑦 ∈ ran (𝑥𝐶𝐵))
7231, 37, 43, 71syl21anc 836 . . . . . 6 ((𝜑𝑦𝐷) → 𝑦 ∈ ran (𝑥𝐶𝐵))
7372ralrimiva 3113 . . . . 5 (𝜑 → ∀𝑦𝐷 𝑦 ∈ ran (𝑥𝐶𝐵))
74 dfss3 3880 . . . . 5 (𝐷 ⊆ ran (𝑥𝐶𝐵) ↔ ∀𝑦𝐷 𝑦 ∈ ran (𝑥𝐶𝐵))
7573, 74sylibr 237 . . . 4 (𝜑𝐷 ⊆ ran (𝑥𝐶𝐵))
76 simpl 486 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥𝐶𝐵)) → 𝜑)
77 vex 3413 . . . . . . . 8 𝑦 ∈ V
782elrnmpt 5797 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥𝐶𝐵) ↔ ∃𝑥𝐶 𝑦 = 𝐵))
7977, 78ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (𝑥𝐶𝐵) ↔ ∃𝑥𝐶 𝑦 = 𝐵)
8079biimpi 219 . . . . . 6 (𝑦 ∈ ran (𝑥𝐶𝐵) → ∃𝑥𝐶 𝑦 = 𝐵)
8180adantl 485 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥𝐶𝐵)) → ∃𝑥𝐶 𝑦 = 𝐵)
82 nfv 1915 . . . . . . 7 𝑥 𝑦𝐷
83 simpr 488 . . . . . . . . . . . 12 ((𝑥𝐶𝑦 = 𝐵) → 𝑦 = 𝐵)
848adantr 484 . . . . . . . . . . . . 13 ((𝑥𝐶𝑦 = 𝐵) → 𝑥𝐴)
8583, 63syl 17 . . . . . . . . . . . . 13 ((𝑥𝐶𝑦 = 𝐵) → 𝐵 ∈ V)
8625elrnmpt1 5799 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵 ∈ V) → 𝐵 ∈ ran 𝐹)
8784, 85, 86syl2anc 587 . . . . . . . . . . . 12 ((𝑥𝐶𝑦 = 𝐵) → 𝐵 ∈ ran 𝐹)
8883, 87eqeltrd 2852 . . . . . . . . . . 11 ((𝑥𝐶𝑦 = 𝐵) → 𝑦 ∈ ran 𝐹)
89883adant1 1127 . . . . . . . . . 10 ((𝜑𝑥𝐶𝑦 = 𝐵) → 𝑦 ∈ ran 𝐹)
9016adantr 484 . . . . . . . . . . . . 13 ((𝑥𝐶𝑦 = 𝐵) → 𝐵 ≠ ∅)
9183, 90eqnetrd 3018 . . . . . . . . . . . 12 ((𝑥𝐶𝑦 = 𝐵) → 𝑦 ≠ ∅)
92 nelsn 4562 . . . . . . . . . . . 12 (𝑦 ≠ ∅ → ¬ 𝑦 ∈ {∅})
9391, 92syl 17 . . . . . . . . . . 11 ((𝑥𝐶𝑦 = 𝐵) → ¬ 𝑦 ∈ {∅})
94933adant1 1127 . . . . . . . . . 10 ((𝜑𝑥𝐶𝑦 = 𝐵) → ¬ 𝑦 ∈ {∅})
9589, 94eldifd 3869 . . . . . . . . 9 ((𝜑𝑥𝐶𝑦 = 𝐵) → 𝑦 ∈ (ran 𝐹 ∖ {∅}))
9695, 33eleqtrrdi 2863 . . . . . . . 8 ((𝜑𝑥𝐶𝑦 = 𝐵) → 𝑦𝐷)
97963exp 1116 . . . . . . 7 (𝜑 → (𝑥𝐶 → (𝑦 = 𝐵𝑦𝐷)))
981, 82, 97rexlimd 3241 . . . . . 6 (𝜑 → (∃𝑥𝐶 𝑦 = 𝐵𝑦𝐷))
9998imp 410 . . . . 5 ((𝜑 ∧ ∃𝑥𝐶 𝑦 = 𝐵) → 𝑦𝐷)
10076, 81, 99syl2anc 587 . . . 4 ((𝜑𝑦 ∈ ran (𝑥𝐶𝐵)) → 𝑦𝐷)
10175, 100eqelssd 3913 . . 3 (𝜑𝐷 = ran (𝑥𝐶𝐵))
10229, 30, 101f1oeq123d 6596 . 2 (𝜑 → ((𝐹𝐶):𝐶1-1-onto𝐷 ↔ (𝑥𝐶𝐵):𝐶1-1-onto→ran (𝑥𝐶𝐵)))
10324, 102mpbird 260 1 (𝜑 → (𝐹𝐶):𝐶1-1-onto𝐷)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070  ∃wrex 3071  {crab 3074  Vcvv 3409   ∖ cdif 3855   ⊆ wss 3858  ∅c0 4225  {csn 4522  Disj wdisj 4997   ↦ cmpt 5112  ran crn 5525   ↾ cres 5526  –1-1→wf1 6332  –1-1-onto→wf1o 6334 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-disj 4998  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343 This theorem is referenced by:  sge0fodjrnlem  43421
 Copyright terms: Public domain W3C validator