Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjf1o Structured version   Visualization version   GIF version

Theorem disjf1o 40992
Description: A bijection built from disjoint sets. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
disjf1o.xph 𝑥𝜑
disjf1o.f 𝐹 = (𝑥𝐴𝐵)
disjf1o.b ((𝜑𝑥𝐴) → 𝐵𝑉)
disjf1o.dj (𝜑Disj 𝑥𝐴 𝐵)
disjf1o.d 𝐶 = {𝑥𝐴𝐵 ≠ ∅}
disjf1o.e 𝐷 = (ran 𝐹 ∖ {∅})
Assertion
Ref Expression
disjf1o (𝜑 → (𝐹𝐶):𝐶1-1-onto𝐷)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem disjf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 disjf1o.xph . . . 4 𝑥𝜑
2 eqid 2795 . . . 4 (𝑥𝐶𝐵) = (𝑥𝐶𝐵)
3 simpl 483 . . . . 5 ((𝜑𝑥𝐶) → 𝜑)
4 disjf1o.d . . . . . . . 8 𝐶 = {𝑥𝐴𝐵 ≠ ∅}
5 ssrab2 3977 . . . . . . . 8 {𝑥𝐴𝐵 ≠ ∅} ⊆ 𝐴
64, 5eqsstri 3922 . . . . . . 7 𝐶𝐴
7 id 22 . . . . . . 7 (𝑥𝐶𝑥𝐶)
86, 7sseldi 3887 . . . . . 6 (𝑥𝐶𝑥𝐴)
98adantl 482 . . . . 5 ((𝜑𝑥𝐶) → 𝑥𝐴)
10 disjf1o.b . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
113, 9, 10syl2anc 584 . . . 4 ((𝜑𝑥𝐶) → 𝐵𝑉)
127, 4syl6eleq 2893 . . . . . . 7 (𝑥𝐶𝑥 ∈ {𝑥𝐴𝐵 ≠ ∅})
13 rabid 3337 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 ≠ ∅} ↔ (𝑥𝐴𝐵 ≠ ∅))
1413a1i 11 . . . . . . 7 (𝑥𝐶 → (𝑥 ∈ {𝑥𝐴𝐵 ≠ ∅} ↔ (𝑥𝐴𝐵 ≠ ∅)))
1512, 14mpbid 233 . . . . . 6 (𝑥𝐶 → (𝑥𝐴𝐵 ≠ ∅))
1615simprd 496 . . . . 5 (𝑥𝐶𝐵 ≠ ∅)
1716adantl 482 . . . 4 ((𝜑𝑥𝐶) → 𝐵 ≠ ∅)
186a1i 11 . . . . 5 (𝜑𝐶𝐴)
19 disjf1o.dj . . . . 5 (𝜑Disj 𝑥𝐴 𝐵)
20 disjss1 4936 . . . . 5 (𝐶𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐶 𝐵))
2118, 19, 20sylc 65 . . . 4 (𝜑Disj 𝑥𝐶 𝐵)
221, 2, 11, 17, 21disjf1 40983 . . 3 (𝜑 → (𝑥𝐶𝐵):𝐶1-1𝑉)
23 f1f1orn 6494 . . 3 ((𝑥𝐶𝐵):𝐶1-1𝑉 → (𝑥𝐶𝐵):𝐶1-1-onto→ran (𝑥𝐶𝐵))
2422, 23syl 17 . 2 (𝜑 → (𝑥𝐶𝐵):𝐶1-1-onto→ran (𝑥𝐶𝐵))
25 disjf1o.f . . . . . 6 𝐹 = (𝑥𝐴𝐵)
2625a1i 11 . . . . 5 (𝜑𝐹 = (𝑥𝐴𝐵))
2726reseq1d 5733 . . . 4 (𝜑 → (𝐹𝐶) = ((𝑥𝐴𝐵) ↾ 𝐶))
2818resmptd 5789 . . . 4 (𝜑 → ((𝑥𝐴𝐵) ↾ 𝐶) = (𝑥𝐶𝐵))
2927, 28eqtrd 2831 . . 3 (𝜑 → (𝐹𝐶) = (𝑥𝐶𝐵))
30 eqidd 2796 . . 3 (𝜑𝐶 = 𝐶)
31 simpl 483 . . . . . . 7 ((𝜑𝑦𝐷) → 𝜑)
32 id 22 . . . . . . . . . 10 (𝑦𝐷𝑦𝐷)
33 disjf1o.e . . . . . . . . . 10 𝐷 = (ran 𝐹 ∖ {∅})
3432, 33syl6eleq 2893 . . . . . . . . 9 (𝑦𝐷𝑦 ∈ (ran 𝐹 ∖ {∅}))
35 eldifsni 4629 . . . . . . . . 9 (𝑦 ∈ (ran 𝐹 ∖ {∅}) → 𝑦 ≠ ∅)
3634, 35syl 17 . . . . . . . 8 (𝑦𝐷𝑦 ≠ ∅)
3736adantl 482 . . . . . . 7 ((𝜑𝑦𝐷) → 𝑦 ≠ ∅)
38 eldifi 4024 . . . . . . . . . 10 (𝑦 ∈ (ran 𝐹 ∖ {∅}) → 𝑦 ∈ ran 𝐹)
3934, 38syl 17 . . . . . . . . 9 (𝑦𝐷𝑦 ∈ ran 𝐹)
4025elrnmpt 5710 . . . . . . . . . 10 (𝑦 ∈ ran 𝐹 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝑦 = 𝐵))
4139, 40syl 17 . . . . . . . . 9 (𝑦𝐷 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝑦 = 𝐵))
4239, 41mpbid 233 . . . . . . . 8 (𝑦𝐷 → ∃𝑥𝐴 𝑦 = 𝐵)
4342adantl 482 . . . . . . 7 ((𝜑𝑦𝐷) → ∃𝑥𝐴 𝑦 = 𝐵)
44 nfv 1892 . . . . . . . . . 10 𝑥 𝑦 ≠ ∅
451, 44nfan 1881 . . . . . . . . 9 𝑥(𝜑𝑦 ≠ ∅)
46 nfcv 2949 . . . . . . . . . 10 𝑥𝑦
47 nfmpt1 5058 . . . . . . . . . . 11 𝑥(𝑥𝐶𝐵)
4847nfrn 5706 . . . . . . . . . 10 𝑥ran (𝑥𝐶𝐵)
4946, 48nfel 2961 . . . . . . . . 9 𝑥 𝑦 ∈ ran (𝑥𝐶𝐵)
50 simp3 1131 . . . . . . . . . . . 12 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
51 simp2 1130 . . . . . . . . . . . . . . . 16 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → 𝑥𝐴)
52 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝐵𝑦 = 𝐵)
5352eqcomd 2801 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝐵𝐵 = 𝑦)
5453adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑦 ≠ ∅ ∧ 𝑦 = 𝐵) → 𝐵 = 𝑦)
55 simpl 483 . . . . . . . . . . . . . . . . . 18 ((𝑦 ≠ ∅ ∧ 𝑦 = 𝐵) → 𝑦 ≠ ∅)
5654, 55eqnetrd 3051 . . . . . . . . . . . . . . . . 17 ((𝑦 ≠ ∅ ∧ 𝑦 = 𝐵) → 𝐵 ≠ ∅)
57563adant2 1124 . . . . . . . . . . . . . . . 16 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → 𝐵 ≠ ∅)
5851, 57jca 512 . . . . . . . . . . . . . . 15 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → (𝑥𝐴𝐵 ≠ ∅))
5958, 13sylibr 235 . . . . . . . . . . . . . 14 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → 𝑥 ∈ {𝑥𝐴𝐵 ≠ ∅})
604eqcomi 2804 . . . . . . . . . . . . . . 15 {𝑥𝐴𝐵 ≠ ∅} = 𝐶
6160a1i 11 . . . . . . . . . . . . . 14 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → {𝑥𝐴𝐵 ≠ ∅} = 𝐶)
6259, 61eleqtrd 2885 . . . . . . . . . . . . 13 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → 𝑥𝐶)
63 eqvisset 3454 . . . . . . . . . . . . . 14 (𝑦 = 𝐵𝐵 ∈ V)
64633ad2ant3 1128 . . . . . . . . . . . . 13 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → 𝐵 ∈ V)
652elrnmpt1 5712 . . . . . . . . . . . . 13 ((𝑥𝐶𝐵 ∈ V) → 𝐵 ∈ ran (𝑥𝐶𝐵))
6662, 64, 65syl2anc 584 . . . . . . . . . . . 12 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → 𝐵 ∈ ran (𝑥𝐶𝐵))
6750, 66eqeltrd 2883 . . . . . . . . . . 11 ((𝑦 ≠ ∅ ∧ 𝑥𝐴𝑦 = 𝐵) → 𝑦 ∈ ran (𝑥𝐶𝐵))
68673adant1l 1169 . . . . . . . . . 10 (((𝜑𝑦 ≠ ∅) ∧ 𝑥𝐴𝑦 = 𝐵) → 𝑦 ∈ ran (𝑥𝐶𝐵))
69683exp 1112 . . . . . . . . 9 ((𝜑𝑦 ≠ ∅) → (𝑥𝐴 → (𝑦 = 𝐵𝑦 ∈ ran (𝑥𝐶𝐵))))
7045, 49, 69rexlimd 3278 . . . . . . . 8 ((𝜑𝑦 ≠ ∅) → (∃𝑥𝐴 𝑦 = 𝐵𝑦 ∈ ran (𝑥𝐶𝐵)))
7170imp 407 . . . . . . 7 (((𝜑𝑦 ≠ ∅) ∧ ∃𝑥𝐴 𝑦 = 𝐵) → 𝑦 ∈ ran (𝑥𝐶𝐵))
7231, 37, 43, 71syl21anc 834 . . . . . 6 ((𝜑𝑦𝐷) → 𝑦 ∈ ran (𝑥𝐶𝐵))
7372ralrimiva 3149 . . . . 5 (𝜑 → ∀𝑦𝐷 𝑦 ∈ ran (𝑥𝐶𝐵))
74 dfss3 3878 . . . . 5 (𝐷 ⊆ ran (𝑥𝐶𝐵) ↔ ∀𝑦𝐷 𝑦 ∈ ran (𝑥𝐶𝐵))
7573, 74sylibr 235 . . . 4 (𝜑𝐷 ⊆ ran (𝑥𝐶𝐵))
76 simpl 483 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥𝐶𝐵)) → 𝜑)
77 vex 3440 . . . . . . . 8 𝑦 ∈ V
782elrnmpt 5710 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥𝐶𝐵) ↔ ∃𝑥𝐶 𝑦 = 𝐵))
7977, 78ax-mp 5 . . . . . . 7 (𝑦 ∈ ran (𝑥𝐶𝐵) ↔ ∃𝑥𝐶 𝑦 = 𝐵)
8079biimpi 217 . . . . . 6 (𝑦 ∈ ran (𝑥𝐶𝐵) → ∃𝑥𝐶 𝑦 = 𝐵)
8180adantl 482 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥𝐶𝐵)) → ∃𝑥𝐶 𝑦 = 𝐵)
82 nfv 1892 . . . . . . 7 𝑥 𝑦𝐷
83 simpr 485 . . . . . . . . . . . 12 ((𝑥𝐶𝑦 = 𝐵) → 𝑦 = 𝐵)
848adantr 481 . . . . . . . . . . . . 13 ((𝑥𝐶𝑦 = 𝐵) → 𝑥𝐴)
8583, 63syl 17 . . . . . . . . . . . . 13 ((𝑥𝐶𝑦 = 𝐵) → 𝐵 ∈ V)
8625elrnmpt1 5712 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵 ∈ V) → 𝐵 ∈ ran 𝐹)
8784, 85, 86syl2anc 584 . . . . . . . . . . . 12 ((𝑥𝐶𝑦 = 𝐵) → 𝐵 ∈ ran 𝐹)
8883, 87eqeltrd 2883 . . . . . . . . . . 11 ((𝑥𝐶𝑦 = 𝐵) → 𝑦 ∈ ran 𝐹)
89883adant1 1123 . . . . . . . . . 10 ((𝜑𝑥𝐶𝑦 = 𝐵) → 𝑦 ∈ ran 𝐹)
9016adantr 481 . . . . . . . . . . . . 13 ((𝑥𝐶𝑦 = 𝐵) → 𝐵 ≠ ∅)
9183, 90eqnetrd 3051 . . . . . . . . . . . 12 ((𝑥𝐶𝑦 = 𝐵) → 𝑦 ≠ ∅)
92 nelsn 4510 . . . . . . . . . . . 12 (𝑦 ≠ ∅ → ¬ 𝑦 ∈ {∅})
9391, 92syl 17 . . . . . . . . . . 11 ((𝑥𝐶𝑦 = 𝐵) → ¬ 𝑦 ∈ {∅})
94933adant1 1123 . . . . . . . . . 10 ((𝜑𝑥𝐶𝑦 = 𝐵) → ¬ 𝑦 ∈ {∅})
9589, 94eldifd 3870 . . . . . . . . 9 ((𝜑𝑥𝐶𝑦 = 𝐵) → 𝑦 ∈ (ran 𝐹 ∖ {∅}))
9695, 33syl6eleqr 2894 . . . . . . . 8 ((𝜑𝑥𝐶𝑦 = 𝐵) → 𝑦𝐷)
97963exp 1112 . . . . . . 7 (𝜑 → (𝑥𝐶 → (𝑦 = 𝐵𝑦𝐷)))
981, 82, 97rexlimd 3278 . . . . . 6 (𝜑 → (∃𝑥𝐶 𝑦 = 𝐵𝑦𝐷))
9998imp 407 . . . . 5 ((𝜑 ∧ ∃𝑥𝐶 𝑦 = 𝐵) → 𝑦𝐷)
10076, 81, 99syl2anc 584 . . . 4 ((𝜑𝑦 ∈ ran (𝑥𝐶𝐵)) → 𝑦𝐷)
10175, 100eqelssd 3909 . . 3 (𝜑𝐷 = ran (𝑥𝐶𝐵))
10229, 30, 101f1oeq123d 6478 . 2 (𝜑 → ((𝐹𝐶):𝐶1-1-onto𝐷 ↔ (𝑥𝐶𝐵):𝐶1-1-onto→ran (𝑥𝐶𝐵)))
10324, 102mpbird 258 1 (𝜑 → (𝐹𝐶):𝐶1-1-onto𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wnf 1765  wcel 2081  wne 2984  wral 3105  wrex 3106  {crab 3109  Vcvv 3437  cdif 3856  wss 3859  c0 4211  {csn 4472  Disj wdisj 4930  cmpt 5041  ran crn 5444  cres 5445  1-1wf1 6222  1-1-ontowf1o 6224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-disj 4931  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233
This theorem is referenced by:  sge0fodjrnlem  42240
  Copyright terms: Public domain W3C validator