MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubmnd Structured version   Visualization version   GIF version

Theorem issubmnd 18694
Description: Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
issubmnd.b 𝐵 = (Base‘𝐺)
issubmnd.p + = (+g𝐺)
issubmnd.z 0 = (0g𝐺)
issubmnd.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
issubmnd ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥, 0 ,𝑦

Proof of Theorem issubmnd
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 766 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝐻 ∈ Mnd)
2 simprl 768 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝑆)
3 simpll2 1210 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑆𝐵)
4 issubmnd.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
5 issubmnd.b . . . . . . . 8 𝐵 = (Base‘𝐺)
64, 5ressbas2 17191 . . . . . . 7 (𝑆𝐵𝑆 = (Base‘𝐻))
73, 6syl 17 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑆 = (Base‘𝐻))
82, 7eleqtrd 2829 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐻))
9 simprr 770 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝑆)
109, 7eleqtrd 2829 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐻))
11 eqid 2726 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
12 eqid 2726 . . . . . 6 (+g𝐻) = (+g𝐻)
1311, 12mndcl 18675 . . . . 5 ((𝐻 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
141, 8, 10, 13syl3anc 1368 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
155fvexi 6899 . . . . . . . . 9 𝐵 ∈ V
1615ssex 5314 . . . . . . . 8 (𝑆𝐵𝑆 ∈ V)
17163ad2ant2 1131 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → 𝑆 ∈ V)
18 issubmnd.p . . . . . . . 8 + = (+g𝐺)
194, 18ressplusg 17244 . . . . . . 7 (𝑆 ∈ V → + = (+g𝐻))
2017, 19syl 17 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → + = (+g𝐻))
2120ad2antrr 723 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → + = (+g𝐻))
2221oveqd 7422 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
2314, 22, 73eltr4d 2842 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2423ralrimivva 3194 . 2 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
25 simpl2 1189 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝑆𝐵)
2625, 6syl 17 . . 3 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝑆 = (Base‘𝐻))
2720adantr 480 . . 3 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → + = (+g𝐻))
28 ovrspc2v 7431 . . . . . 6 (((𝑢𝑆𝑣𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
2928ancoms 458 . . . . 5 ((∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝑢𝑆𝑣𝑆)) → (𝑢 + 𝑣) ∈ 𝑆)
30293impb 1112 . . . 4 ((∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
31303adant1l 1173 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
32 simpl1 1188 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝐺 ∈ Mnd)
3325sseld 3976 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑢𝑆𝑢𝐵))
3425sseld 3976 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑣𝑆𝑣𝐵))
3525sseld 3976 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑤𝑆𝑤𝐵))
3633, 34, 353anim123d 1439 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → ((𝑢𝑆𝑣𝑆𝑤𝑆) → (𝑢𝐵𝑣𝐵𝑤𝐵)))
3736imp 406 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → (𝑢𝐵𝑣𝐵𝑤𝐵))
385, 18mndass 18676 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
3932, 37, 38syl2an2r 682 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
40 simpl3 1190 . . 3 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 0𝑆)
4125sselda 3977 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆) → 𝑢𝐵)
42 issubmnd.z . . . . 5 0 = (0g𝐺)
435, 18, 42mndlid 18687 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑢𝐵) → ( 0 + 𝑢) = 𝑢)
4432, 41, 43syl2an2r 682 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆) → ( 0 + 𝑢) = 𝑢)
455, 18, 42mndrid 18688 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑢𝐵) → (𝑢 + 0 ) = 𝑢)
4632, 41, 45syl2an2r 682 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆) → (𝑢 + 0 ) = 𝑢)
4726, 27, 31, 39, 40, 44, 46ismndd 18689 . 2 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝐻 ∈ Mnd)
4824, 47impbida 798 1 ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3055  Vcvv 3468  wss 3943  cfv 6537  (class class class)co 7405  Basecbs 17153  s cress 17182  +gcplusg 17206  0gc0g 17394  Mndcmnd 18667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-0g 17396  df-mgm 18573  df-sgrp 18652  df-mnd 18668
This theorem is referenced by:  issubm2  18729  primrootsunit1  41477
  Copyright terms: Public domain W3C validator