MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubmnd Structured version   Visualization version   GIF version

Theorem issubmnd 18327
Description: Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
issubmnd.b 𝐵 = (Base‘𝐺)
issubmnd.p + = (+g𝐺)
issubmnd.z 0 = (0g𝐺)
issubmnd.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
issubmnd ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥, 0 ,𝑦

Proof of Theorem issubmnd
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 765 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝐻 ∈ Mnd)
2 simprl 767 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝑆)
3 simpll2 1211 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑆𝐵)
4 issubmnd.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
5 issubmnd.b . . . . . . . 8 𝐵 = (Base‘𝐺)
64, 5ressbas2 16875 . . . . . . 7 (𝑆𝐵𝑆 = (Base‘𝐻))
73, 6syl 17 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑆 = (Base‘𝐻))
82, 7eleqtrd 2841 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐻))
9 simprr 769 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝑆)
109, 7eleqtrd 2841 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐻))
11 eqid 2738 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
12 eqid 2738 . . . . . 6 (+g𝐻) = (+g𝐻)
1311, 12mndcl 18308 . . . . 5 ((𝐻 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
141, 8, 10, 13syl3anc 1369 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
155fvexi 6770 . . . . . . . . 9 𝐵 ∈ V
1615ssex 5240 . . . . . . . 8 (𝑆𝐵𝑆 ∈ V)
17163ad2ant2 1132 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → 𝑆 ∈ V)
18 issubmnd.p . . . . . . . 8 + = (+g𝐺)
194, 18ressplusg 16926 . . . . . . 7 (𝑆 ∈ V → + = (+g𝐻))
2017, 19syl 17 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → + = (+g𝐻))
2120ad2antrr 722 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → + = (+g𝐻))
2221oveqd 7272 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
2314, 22, 73eltr4d 2854 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2423ralrimivva 3114 . 2 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
25 simpl2 1190 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝑆𝐵)
2625, 6syl 17 . . 3 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝑆 = (Base‘𝐻))
2720adantr 480 . . 3 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → + = (+g𝐻))
28 ovrspc2v 7281 . . . . . 6 (((𝑢𝑆𝑣𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
2928ancoms 458 . . . . 5 ((∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝑢𝑆𝑣𝑆)) → (𝑢 + 𝑣) ∈ 𝑆)
30293impb 1113 . . . 4 ((∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
31303adant1l 1174 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
32 simpl1 1189 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝐺 ∈ Mnd)
3325sseld 3916 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑢𝑆𝑢𝐵))
3425sseld 3916 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑣𝑆𝑣𝐵))
3525sseld 3916 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑤𝑆𝑤𝐵))
3633, 34, 353anim123d 1441 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → ((𝑢𝑆𝑣𝑆𝑤𝑆) → (𝑢𝐵𝑣𝐵𝑤𝐵)))
3736imp 406 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → (𝑢𝐵𝑣𝐵𝑤𝐵))
385, 18mndass 18309 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
3932, 37, 38syl2an2r 681 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
40 simpl3 1191 . . 3 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 0𝑆)
4125sselda 3917 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆) → 𝑢𝐵)
42 issubmnd.z . . . . 5 0 = (0g𝐺)
435, 18, 42mndlid 18320 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑢𝐵) → ( 0 + 𝑢) = 𝑢)
4432, 41, 43syl2an2r 681 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆) → ( 0 + 𝑢) = 𝑢)
455, 18, 42mndrid 18321 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑢𝐵) → (𝑢 + 0 ) = 𝑢)
4632, 41, 45syl2an2r 681 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆) → (𝑢 + 0 ) = 𝑢)
4726, 27, 31, 39, 40, 44, 46ismndd 18322 . 2 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝐻 ∈ Mnd)
4824, 47impbida 797 1 ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  +gcplusg 16888  0gc0g 17067  Mndcmnd 18300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301
This theorem is referenced by:  issubm2  18358
  Copyright terms: Public domain W3C validator