MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubmnd Structured version   Visualization version   GIF version

Theorem issubmnd 17786
Description: Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
issubmnd.b 𝐵 = (Base‘𝐺)
issubmnd.p + = (+g𝐺)
issubmnd.z 0 = (0g𝐺)
issubmnd.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
issubmnd ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥, 0 ,𝑦

Proof of Theorem issubmnd
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 756 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝐻 ∈ Mnd)
2 simprl 758 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝑆)
3 simpll2 1193 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑆𝐵)
4 issubmnd.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
5 issubmnd.b . . . . . . . 8 𝐵 = (Base‘𝐺)
64, 5ressbas2 16411 . . . . . . 7 (𝑆𝐵𝑆 = (Base‘𝐻))
73, 6syl 17 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑆 = (Base‘𝐻))
82, 7eleqtrd 2868 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐻))
9 simprr 760 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝑆)
109, 7eleqtrd 2868 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐻))
11 eqid 2778 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
12 eqid 2778 . . . . . 6 (+g𝐻) = (+g𝐻)
1311, 12mndcl 17769 . . . . 5 ((𝐻 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
141, 8, 10, 13syl3anc 1351 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
155fvexi 6513 . . . . . . . . 9 𝐵 ∈ V
1615ssex 5081 . . . . . . . 8 (𝑆𝐵𝑆 ∈ V)
17163ad2ant2 1114 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → 𝑆 ∈ V)
18 issubmnd.p . . . . . . . 8 + = (+g𝐺)
194, 18ressplusg 16468 . . . . . . 7 (𝑆 ∈ V → + = (+g𝐻))
2017, 19syl 17 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → + = (+g𝐻))
2120ad2antrr 713 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → + = (+g𝐻))
2221oveqd 6993 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
2314, 22, 73eltr4d 2881 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2423ralrimivva 3141 . 2 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
25 simpl2 1172 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝑆𝐵)
2625, 6syl 17 . . 3 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝑆 = (Base‘𝐻))
2720adantr 473 . . 3 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → + = (+g𝐻))
28 ovrspc2v 7002 . . . . . 6 (((𝑢𝑆𝑣𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
2928ancoms 451 . . . . 5 ((∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝑢𝑆𝑣𝑆)) → (𝑢 + 𝑣) ∈ 𝑆)
30293impb 1095 . . . 4 ((∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
31303adant1l 1156 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆𝑣𝑆) → (𝑢 + 𝑣) ∈ 𝑆)
32 simpl1 1171 . . . 4 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝐺 ∈ Mnd)
3325sseld 3857 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑢𝑆𝑢𝐵))
3425sseld 3857 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑣𝑆𝑣𝐵))
3525sseld 3857 . . . . . 6 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑤𝑆𝑤𝐵))
3633, 34, 353anim123d 1422 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → ((𝑢𝑆𝑣𝑆𝑤𝑆) → (𝑢𝐵𝑣𝐵𝑤𝐵)))
3736imp 398 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → (𝑢𝐵𝑣𝐵𝑤𝐵))
385, 18mndass 17770 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
3932, 37, 38syl2an2r 672 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ (𝑢𝑆𝑣𝑆𝑤𝑆)) → ((𝑢 + 𝑣) + 𝑤) = (𝑢 + (𝑣 + 𝑤)))
40 simpl3 1173 . . 3 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 0𝑆)
4125sselda 3858 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆) → 𝑢𝐵)
42 issubmnd.z . . . . 5 0 = (0g𝐺)
435, 18, 42mndlid 17779 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑢𝐵) → ( 0 + 𝑢) = 𝑢)
4432, 41, 43syl2an2r 672 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆) → ( 0 + 𝑢) = 𝑢)
455, 18, 42mndrid 17780 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑢𝐵) → (𝑢 + 0 ) = 𝑢)
4632, 41, 45syl2an2r 672 . . 3 ((((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ∧ 𝑢𝑆) → (𝑢 + 0 ) = 𝑢)
4726, 27, 31, 39, 40, 44, 46ismndd 17781 . 2 (((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝐻 ∈ Mnd)
4824, 47impbida 788 1 ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wral 3088  Vcvv 3415  wss 3829  cfv 6188  (class class class)co 6976  Basecbs 16339  s cress 16340  +gcplusg 16421  0gc0g 16569  Mndcmnd 17762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-2 11503  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-0g 16571  df-mgm 17710  df-sgrp 17752  df-mnd 17763
This theorem is referenced by:  issubm2  17816
  Copyright terms: Public domain W3C validator