Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0lefi Structured version   Visualization version   GIF version

Theorem sge0lefi 42687
Description: A sum of nonnegative extended reals is smaller than a given extended real if and only if every finite subsum is smaller than it. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0lefi.1 (𝜑𝑋𝑉)
sge0lefi.2 (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0lefi.3 (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
sge0lefi (𝜑 → ((Σ^𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0lefi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ (𝒫 𝑋 ∩ Fin))
2 sge0lefi.2 . . . . . . . . 9 (𝜑𝐹:𝑋⟶(0[,]+∞))
32adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
4 elpwinss 41317 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
54adantl 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
63, 5fssresd 6548 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,]+∞))
71, 6sge0xrcl 42674 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ∈ ℝ*)
87adantlr 713 . . . . 5 (((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ∈ ℝ*)
9 sge0lefi.1 . . . . . . 7 (𝜑𝑋𝑉)
109, 2sge0xrcl 42674 . . . . . 6 (𝜑 → (Σ^𝐹) ∈ ℝ*)
1110ad2antrr 724 . . . . 5 (((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^𝐹) ∈ ℝ*)
12 sge0lefi.3 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
1312ad2antrr 724 . . . . 5 (((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐴 ∈ ℝ*)
149adantr 483 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑋𝑉)
1514, 3sge0less 42681 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ≤ (Σ^𝐹))
1615adantlr 713 . . . . 5 (((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ≤ (Σ^𝐹))
17 simplr 767 . . . . 5 (((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^𝐹) ≤ 𝐴)
188, 11, 13, 16, 17xrletrd 12558 . . . 4 (((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ≤ 𝐴)
1918ralrimiva 3185 . . 3 ((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴)
2019ex 415 . 2 (𝜑 → ((Σ^𝐹) ≤ 𝐴 → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴))
219, 2sge0sup 42680 . . . . 5 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
2221adantr 483 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
23 vex 3500 . . . . . . . . . 10 𝑦 ∈ V
24 eqid 2824 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
2524elrnmpt 5831 . . . . . . . . . 10 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑦 = (Σ^‘(𝐹𝑥))))
2623, 25ax-mp 5 . . . . . . . . 9 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑦 = (Σ^‘(𝐹𝑥)))
2726biimpi 218 . . . . . . . 8 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑦 = (Σ^‘(𝐹𝑥)))
2827adantl 484 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑦 = (Σ^‘(𝐹𝑥)))
29 nfv 1914 . . . . . . . . . 10 𝑥𝜑
30 nfra1 3222 . . . . . . . . . 10 𝑥𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴
3129, 30nfan 1899 . . . . . . . . 9 𝑥(𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴)
32 nfcv 2980 . . . . . . . . . 10 𝑥𝑦
33 nfmpt1 5167 . . . . . . . . . . 11 𝑥(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
3433nfrn 5827 . . . . . . . . . 10 𝑥ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
3532, 34nfel 2995 . . . . . . . . 9 𝑥 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
3631, 35nfan 1899 . . . . . . . 8 𝑥((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))))
37 nfv 1914 . . . . . . . 8 𝑥 𝑦𝐴
38 simp3 1134 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 = (Σ^‘(𝐹𝑥))) → 𝑦 = (Σ^‘(𝐹𝑥)))
39 rspa 3209 . . . . . . . . . . . . 13 ((∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ≤ 𝐴)
40393adant3 1128 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 = (Σ^‘(𝐹𝑥))) → (Σ^‘(𝐹𝑥)) ≤ 𝐴)
4138, 40eqbrtrd 5091 . . . . . . . . . . 11 ((∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 = (Σ^‘(𝐹𝑥))) → 𝑦𝐴)
42413adant1l 1172 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 = (Σ^‘(𝐹𝑥))) → 𝑦𝐴)
43423exp 1115 . . . . . . . . 9 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑦 = (Σ^‘(𝐹𝑥)) → 𝑦𝐴)))
4443adantr 483 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑦 = (Σ^‘(𝐹𝑥)) → 𝑦𝐴)))
4536, 37, 44rexlimd 3320 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))) → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑦 = (Σ^‘(𝐹𝑥)) → 𝑦𝐴))
4628, 45mpd 15 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))) → 𝑦𝐴)
4746ralrimiva 3185 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → ∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦𝐴)
487ralrimiva 3185 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ*)
4924rnmptss 6889 . . . . . . . 8 (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
5048, 49syl 17 . . . . . . 7 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
5150adantr 483 . . . . . 6 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
5212adantr 483 . . . . . 6 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → 𝐴 ∈ ℝ*)
53 supxrleub 12722 . . . . . 6 ((ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*𝐴 ∈ ℝ*) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦𝐴))
5451, 52, 53syl2anc 586 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦𝐴))
5547, 54mpbird 259 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) ≤ 𝐴)
5622, 55eqbrtrd 5091 . . 3 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → (Σ^𝐹) ≤ 𝐴)
5756ex 415 . 2 (𝜑 → (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴 → (Σ^𝐹) ≤ 𝐴))
5820, 57impbid 214 1 (𝜑 → ((Σ^𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142  Vcvv 3497  cin 3938  wss 3939  𝒫 cpw 4542   class class class wbr 5069  cmpt 5149  ran crn 5559  cres 5560  wf 6354  cfv 6358  (class class class)co 7159  Fincfn 8512  supcsup 8907  0cc0 10540  +∞cpnf 10675  *cxr 10677   < clt 10678  cle 10679  [,]cicc 12744  Σ^csumge0 42651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-sumge0 42652
This theorem is referenced by:  sge0le  42696  sge0iunmptlemre  42704  sge0lefimpt  42712  caratheodorylem2  42816
  Copyright terms: Public domain W3C validator