Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0lefi Structured version   Visualization version   GIF version

Theorem sge0lefi 44629
Description: A sum of nonnegative extended reals is smaller than a given extended real if and only if every finite subsum is smaller than it. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0lefi.1 (𝜑𝑋𝑉)
sge0lefi.2 (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0lefi.3 (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
sge0lefi (𝜑 → ((Σ^𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0lefi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ (𝒫 𝑋 ∩ Fin))
2 sge0lefi.2 . . . . . . . . 9 (𝜑𝐹:𝑋⟶(0[,]+∞))
32adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
4 elpwinss 43247 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
54adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
63, 5fssresd 6709 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,]+∞))
71, 6sge0xrcl 44616 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ∈ ℝ*)
87adantlr 713 . . . . 5 (((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ∈ ℝ*)
9 sge0lefi.1 . . . . . . 7 (𝜑𝑋𝑉)
109, 2sge0xrcl 44616 . . . . . 6 (𝜑 → (Σ^𝐹) ∈ ℝ*)
1110ad2antrr 724 . . . . 5 (((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^𝐹) ∈ ℝ*)
12 sge0lefi.3 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
1312ad2antrr 724 . . . . 5 (((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐴 ∈ ℝ*)
149adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑋𝑉)
1514, 3sge0less 44623 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ≤ (Σ^𝐹))
1615adantlr 713 . . . . 5 (((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ≤ (Σ^𝐹))
17 simplr 767 . . . . 5 (((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^𝐹) ≤ 𝐴)
188, 11, 13, 16, 17xrletrd 13081 . . . 4 (((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ≤ 𝐴)
1918ralrimiva 3143 . . 3 ((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴)
2019ex 413 . 2 (𝜑 → ((Σ^𝐹) ≤ 𝐴 → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴))
219, 2sge0sup 44622 . . . . 5 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
2221adantr 481 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
23 vex 3449 . . . . . . . . . 10 𝑦 ∈ V
24 eqid 2736 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
2524elrnmpt 5911 . . . . . . . . . 10 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑦 = (Σ^‘(𝐹𝑥))))
2623, 25ax-mp 5 . . . . . . . . 9 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑦 = (Σ^‘(𝐹𝑥)))
2726biimpi 215 . . . . . . . 8 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑦 = (Σ^‘(𝐹𝑥)))
2827adantl 482 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑦 = (Σ^‘(𝐹𝑥)))
29 nfv 1917 . . . . . . . . . 10 𝑥𝜑
30 nfra1 3267 . . . . . . . . . 10 𝑥𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴
3129, 30nfan 1902 . . . . . . . . 9 𝑥(𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴)
32 nfcv 2907 . . . . . . . . . 10 𝑥𝑦
33 nfmpt1 5213 . . . . . . . . . . 11 𝑥(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
3433nfrn 5907 . . . . . . . . . 10 𝑥ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
3532, 34nfel 2921 . . . . . . . . 9 𝑥 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
3631, 35nfan 1902 . . . . . . . 8 𝑥((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))))
37 nfv 1917 . . . . . . . 8 𝑥 𝑦𝐴
38 simp3 1138 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 = (Σ^‘(𝐹𝑥))) → 𝑦 = (Σ^‘(𝐹𝑥)))
39 rspa 3231 . . . . . . . . . . . . 13 ((∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ≤ 𝐴)
40393adant3 1132 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 = (Σ^‘(𝐹𝑥))) → (Σ^‘(𝐹𝑥)) ≤ 𝐴)
4138, 40eqbrtrd 5127 . . . . . . . . . . 11 ((∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 = (Σ^‘(𝐹𝑥))) → 𝑦𝐴)
42413adant1l 1176 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 = (Σ^‘(𝐹𝑥))) → 𝑦𝐴)
43423exp 1119 . . . . . . . . 9 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑦 = (Σ^‘(𝐹𝑥)) → 𝑦𝐴)))
4443adantr 481 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑦 = (Σ^‘(𝐹𝑥)) → 𝑦𝐴)))
4536, 37, 44rexlimd 3249 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))) → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑦 = (Σ^‘(𝐹𝑥)) → 𝑦𝐴))
4628, 45mpd 15 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))) → 𝑦𝐴)
4746ralrimiva 3143 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → ∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦𝐴)
487ralrimiva 3143 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ*)
4924rnmptss 7070 . . . . . . . 8 (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
5048, 49syl 17 . . . . . . 7 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
5150adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
5212adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → 𝐴 ∈ ℝ*)
53 supxrleub 13245 . . . . . 6 ((ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*𝐴 ∈ ℝ*) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦𝐴))
5451, 52, 53syl2anc 584 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦𝐴))
5547, 54mpbird 256 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) ≤ 𝐴)
5622, 55eqbrtrd 5127 . . 3 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → (Σ^𝐹) ≤ 𝐴)
5756ex 413 . 2 (𝜑 → (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴 → (Σ^𝐹) ≤ 𝐴))
5820, 57impbid 211 1 (𝜑 → ((Σ^𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cin 3909  wss 3910  𝒫 cpw 4560   class class class wbr 5105  cmpt 5188  ran crn 5634  cres 5635  wf 6492  cfv 6496  (class class class)co 7357  Fincfn 8883  supcsup 9376  0cc0 11051  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  [,]cicc 13267  Σ^csumge0 44593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-sumge0 44594
This theorem is referenced by:  sge0le  44638  sge0iunmptlemre  44646  sge0lefimpt  44654  caratheodorylem2  44758
  Copyright terms: Public domain W3C validator