Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0lefi Structured version   Visualization version   GIF version

Theorem sge0lefi 45193
Description: A sum of nonnegative extended reals is smaller than a given extended real if and only if every finite subsum is smaller than it. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0lefi.1 (𝜑𝑋𝑉)
sge0lefi.2 (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0lefi.3 (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
sge0lefi (𝜑 → ((Σ^𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑋   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sge0lefi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ (𝒫 𝑋 ∩ Fin))
2 sge0lefi.2 . . . . . . . . 9 (𝜑𝐹:𝑋⟶(0[,]+∞))
32adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐹:𝑋⟶(0[,]+∞))
4 elpwinss 43818 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥𝑋)
54adantl 482 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥𝑋)
63, 5fssresd 6758 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (𝐹𝑥):𝑥⟶(0[,]+∞))
71, 6sge0xrcl 45180 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ∈ ℝ*)
87adantlr 713 . . . . 5 (((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ∈ ℝ*)
9 sge0lefi.1 . . . . . . 7 (𝜑𝑋𝑉)
109, 2sge0xrcl 45180 . . . . . 6 (𝜑 → (Σ^𝐹) ∈ ℝ*)
1110ad2antrr 724 . . . . 5 (((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^𝐹) ∈ ℝ*)
12 sge0lefi.3 . . . . . 6 (𝜑𝐴 ∈ ℝ*)
1312ad2antrr 724 . . . . 5 (((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝐴 ∈ ℝ*)
149adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑋𝑉)
1514, 3sge0less 45187 . . . . . 6 ((𝜑𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ≤ (Σ^𝐹))
1615adantlr 713 . . . . 5 (((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ≤ (Σ^𝐹))
17 simplr 767 . . . . 5 (((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^𝐹) ≤ 𝐴)
188, 11, 13, 16, 17xrletrd 13143 . . . 4 (((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ≤ 𝐴)
1918ralrimiva 3146 . . 3 ((𝜑 ∧ (Σ^𝐹) ≤ 𝐴) → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴)
2019ex 413 . 2 (𝜑 → ((Σ^𝐹) ≤ 𝐴 → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴))
219, 2sge0sup 45186 . . . . 5 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
2221adantr 481 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ))
23 vex 3478 . . . . . . . . . 10 𝑦 ∈ V
24 eqid 2732 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
2524elrnmpt 5955 . . . . . . . . . 10 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑦 = (Σ^‘(𝐹𝑥))))
2623, 25ax-mp 5 . . . . . . . . 9 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ↔ ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑦 = (Σ^‘(𝐹𝑥)))
2726biimpi 215 . . . . . . . 8 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑦 = (Σ^‘(𝐹𝑥)))
2827adantl 482 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))) → ∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑦 = (Σ^‘(𝐹𝑥)))
29 nfv 1917 . . . . . . . . . 10 𝑥𝜑
30 nfra1 3281 . . . . . . . . . 10 𝑥𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴
3129, 30nfan 1902 . . . . . . . . 9 𝑥(𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴)
32 nfcv 2903 . . . . . . . . . 10 𝑥𝑦
33 nfmpt1 5256 . . . . . . . . . . 11 𝑥(𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
3433nfrn 5951 . . . . . . . . . 10 𝑥ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
3532, 34nfel 2917 . . . . . . . . 9 𝑥 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))
3631, 35nfan 1902 . . . . . . . 8 𝑥((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))))
37 nfv 1917 . . . . . . . 8 𝑥 𝑦𝐴
38 simp3 1138 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 = (Σ^‘(𝐹𝑥))) → 𝑦 = (Σ^‘(𝐹𝑥)))
39 rspa 3245 . . . . . . . . . . . . 13 ((∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → (Σ^‘(𝐹𝑥)) ≤ 𝐴)
40393adant3 1132 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 = (Σ^‘(𝐹𝑥))) → (Σ^‘(𝐹𝑥)) ≤ 𝐴)
4138, 40eqbrtrd 5170 . . . . . . . . . . 11 ((∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 = (Σ^‘(𝐹𝑥))) → 𝑦𝐴)
42413adant1l 1176 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 = (Σ^‘(𝐹𝑥))) → 𝑦𝐴)
43423exp 1119 . . . . . . . . 9 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑦 = (Σ^‘(𝐹𝑥)) → 𝑦𝐴)))
4443adantr 481 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))) → (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → (𝑦 = (Σ^‘(𝐹𝑥)) → 𝑦𝐴)))
4536, 37, 44rexlimd 3263 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))) → (∃𝑥 ∈ (𝒫 𝑋 ∩ Fin)𝑦 = (Σ^‘(𝐹𝑥)) → 𝑦𝐴))
4628, 45mpd 15 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))) → 𝑦𝐴)
4746ralrimiva 3146 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → ∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦𝐴)
487ralrimiva 3146 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ*)
4924rnmptss 7124 . . . . . . . 8 (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
5048, 49syl 17 . . . . . . 7 (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
5150adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*)
5212adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → 𝐴 ∈ ℝ*)
53 supxrleub 13307 . . . . . 6 ((ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))) ⊆ ℝ*𝐴 ∈ ℝ*) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦𝐴))
5451, 52, 53syl2anc 584 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → (sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) ≤ 𝐴 ↔ ∀𝑦 ∈ ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥)))𝑦𝐴))
5547, 54mpbird 256 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ (Σ^‘(𝐹𝑥))), ℝ*, < ) ≤ 𝐴)
5622, 55eqbrtrd 5170 . . 3 ((𝜑 ∧ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴) → (Σ^𝐹) ≤ 𝐴)
5756ex 413 . 2 (𝜑 → (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴 → (Σ^𝐹) ≤ 𝐴))
5820, 57impbid 211 1 (𝜑 → ((Σ^𝐹) ≤ 𝐴 ↔ ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)(Σ^‘(𝐹𝑥)) ≤ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  wrex 3070  Vcvv 3474  cin 3947  wss 3948  𝒫 cpw 4602   class class class wbr 5148  cmpt 5231  ran crn 5677  cres 5678  wf 6539  cfv 6543  (class class class)co 7411  Fincfn 8941  supcsup 9437  0cc0 11112  +∞cpnf 11247  *cxr 11249   < clt 11250  cle 11251  [,]cicc 13329  Σ^csumge0 45157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-oi 9507  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-n0 12475  df-z 12561  df-uz 12825  df-rp 12977  df-ico 13332  df-icc 13333  df-fz 13487  df-fzo 13630  df-seq 13969  df-exp 14030  df-hash 14293  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-clim 15434  df-sum 15635  df-sumge0 45158
This theorem is referenced by:  sge0le  45202  sge0iunmptlemre  45210  sge0lefimpt  45218  caratheodorylem2  45322
  Copyright terms: Public domain W3C validator