Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendlmod Structured version   Visualization version   GIF version

Theorem mendlmod 43162
Description: The module endomorphism algebra is a left module. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
mendassa.a 𝐴 = (MEndo‘𝑀)
mendassa.s 𝑆 = (Scalar‘𝑀)
Assertion
Ref Expression
mendlmod ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ LMod)

Proof of Theorem mendlmod
Dummy variables 𝑥 𝑦 𝑧 𝑢 𝑘 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mendassa.a . . . 4 𝐴 = (MEndo‘𝑀)
21mendbas 43153 . . 3 (𝑀 LMHom 𝑀) = (Base‘𝐴)
32a1i 11 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (𝑀 LMHom 𝑀) = (Base‘𝐴))
4 eqidd 2730 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (+g𝐴) = (+g𝐴))
5 mendassa.s . . . 4 𝑆 = (Scalar‘𝑀)
61, 5mendsca 43158 . . 3 𝑆 = (Scalar‘𝐴)
76a1i 11 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝑆 = (Scalar‘𝐴))
8 eqidd 2730 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → ( ·𝑠𝐴) = ( ·𝑠𝐴))
9 eqidd 2730 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (Base‘𝑆) = (Base‘𝑆))
10 eqidd 2730 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (+g𝑆) = (+g𝑆))
11 eqidd 2730 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (.r𝑆) = (.r𝑆))
12 eqidd 2730 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (1r𝑆) = (1r𝑆))
13 crngring 20148 . . 3 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
1413adantl 481 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝑆 ∈ Ring)
151mendring 43161 . . . 4 (𝑀 ∈ LMod → 𝐴 ∈ Ring)
1615adantr 480 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ Ring)
17 ringgrp 20141 . . 3 (𝐴 ∈ Ring → 𝐴 ∈ Grp)
1816, 17syl 17 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ Grp)
19 eqid 2729 . . . . 5 ( ·𝑠𝑀) = ( ·𝑠𝑀)
20 eqid 2729 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
21 eqid 2729 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
22 eqid 2729 . . . . 5 ( ·𝑠𝐴) = ( ·𝑠𝐴)
231, 19, 2, 5, 20, 21, 22mendvsca 43160 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑦) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
24233adant1 1130 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑦) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
2521, 19, 5, 20lmhmvsca 20967 . . . 4 ((𝑆 ∈ CRing ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦) ∈ (𝑀 LMHom 𝑀))
26253adant1l 1177 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦) ∈ (𝑀 LMHom 𝑀))
2724, 26eqeltrd 2828 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
28 simpr2 1196 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ (𝑀 LMHom 𝑀))
29 simpr3 1197 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ (𝑀 LMHom 𝑀))
30 eqid 2729 . . . . . 6 (+g𝑀) = (+g𝑀)
31 eqid 2729 . . . . . 6 (+g𝐴) = (+g𝐴)
321, 2, 30, 31mendplusg 43155 . . . . 5 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(+g𝐴)𝑧) = (𝑦f (+g𝑀)𝑧))
3328, 29, 32syl2anc 584 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(+g𝐴)𝑧) = (𝑦f (+g𝑀)𝑧))
3433oveq2d 7369 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)(𝑦(+g𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)(𝑦f (+g𝑀)𝑧)))
35 simpr1 1195 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (Base‘𝑆))
3618adantr 480 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝐴 ∈ Grp)
372, 31grpcl 18838 . . . . 5 ((𝐴 ∈ Grp ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(+g𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
3836, 28, 29, 37syl3anc 1373 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(+g𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
391, 19, 2, 5, 20, 21, 22mendvsca 43160 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ (𝑦(+g𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)(𝑦(+g𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)(𝑦(+g𝐴)𝑧)))
4035, 38, 39syl2anc 584 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)(𝑦(+g𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)(𝑦(+g𝐴)𝑧)))
4135, 28, 23syl2anc 584 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑦) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
421, 19, 2, 5, 20, 21, 22mendvsca 43160 . . . . . 6 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑧))
4335, 29, 42syl2anc 584 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑧))
4441, 43oveq12d 7371 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑦) ∘f (+g𝑀)(𝑥( ·𝑠𝐴)𝑧)) = ((((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦) ∘f (+g𝑀)(((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑧)))
45273adant3r3 1185 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
46 eleq1w 2811 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦 ∈ (𝑀 LMHom 𝑀) ↔ 𝑧 ∈ (𝑀 LMHom 𝑀)))
47463anbi3d 1444 . . . . . . . 8 (𝑦 = 𝑧 → (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) ↔ ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))))
48 oveq2 7361 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑥( ·𝑠𝐴)𝑦) = (𝑥( ·𝑠𝐴)𝑧))
4948eleq1d 2813 . . . . . . . 8 (𝑦 = 𝑧 → ((𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀) ↔ (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)))
5047, 49imbi12d 344 . . . . . . 7 (𝑦 = 𝑧 → ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀)) ↔ (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))))
5150, 27chvarvv 1989 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
52513adant3r2 1184 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
531, 2, 30, 31mendplusg 43155 . . . . 5 (((𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)) → ((𝑥( ·𝑠𝐴)𝑦)(+g𝐴)(𝑥( ·𝑠𝐴)𝑧)) = ((𝑥( ·𝑠𝐴)𝑦) ∘f (+g𝑀)(𝑥( ·𝑠𝐴)𝑧)))
5445, 52, 53syl2anc 584 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑦)(+g𝐴)(𝑥( ·𝑠𝐴)𝑧)) = ((𝑥( ·𝑠𝐴)𝑦) ∘f (+g𝑀)(𝑥( ·𝑠𝐴)𝑧)))
55 fvexd 6841 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (Base‘𝑀) ∈ V)
56 fconst6g 6717 . . . . . 6 (𝑥 ∈ (Base‘𝑆) → ((Base‘𝑀) × {𝑥}):(Base‘𝑀)⟶(Base‘𝑆))
5735, 56syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((Base‘𝑀) × {𝑥}):(Base‘𝑀)⟶(Base‘𝑆))
5821, 21lmhmf 20956 . . . . . 6 (𝑦 ∈ (𝑀 LMHom 𝑀) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
5928, 58syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
6021, 21lmhmf 20956 . . . . . 6 (𝑧 ∈ (𝑀 LMHom 𝑀) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
6129, 60syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
62 simpll 766 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑀 ∈ LMod)
6321, 30, 5, 19, 20lmodvsdi 20806 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑤 ∈ (Base‘𝑆) ∧ 𝑣 ∈ (Base‘𝑀) ∧ 𝑢 ∈ (Base‘𝑀))) → (𝑤( ·𝑠𝑀)(𝑣(+g𝑀)𝑢)) = ((𝑤( ·𝑠𝑀)𝑣)(+g𝑀)(𝑤( ·𝑠𝑀)𝑢)))
6462, 63sylan 580 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ (𝑤 ∈ (Base‘𝑆) ∧ 𝑣 ∈ (Base‘𝑀) ∧ 𝑢 ∈ (Base‘𝑀))) → (𝑤( ·𝑠𝑀)(𝑣(+g𝑀)𝑢)) = ((𝑤( ·𝑠𝑀)𝑣)(+g𝑀)(𝑤( ·𝑠𝑀)𝑢)))
6555, 57, 59, 61, 64caofdi 7659 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)(𝑦f (+g𝑀)𝑧)) = ((((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦) ∘f (+g𝑀)(((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑧)))
6644, 54, 653eqtr4d 2774 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑦)(+g𝐴)(𝑥( ·𝑠𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)(𝑦f (+g𝑀)𝑧)))
6734, 40, 663eqtr4d 2774 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)(𝑦(+g𝐴)𝑧)) = ((𝑥( ·𝑠𝐴)𝑦)(+g𝐴)(𝑥( ·𝑠𝐴)𝑧)))
68 fvexd 6841 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (Base‘𝑀) ∈ V)
69 simpr3 1197 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ (𝑀 LMHom 𝑀))
7069, 60syl 17 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
71 simpr1 1195 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (Base‘𝑆))
7271, 56syl 17 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((Base‘𝑀) × {𝑥}):(Base‘𝑀)⟶(Base‘𝑆))
73 simpr2 1196 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ (Base‘𝑆))
74 fconst6g 6717 . . . . 5 (𝑦 ∈ (Base‘𝑆) → ((Base‘𝑀) × {𝑦}):(Base‘𝑀)⟶(Base‘𝑆))
7573, 74syl 17 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((Base‘𝑀) × {𝑦}):(Base‘𝑀)⟶(Base‘𝑆))
76 simpll 766 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑀 ∈ LMod)
77 eqid 2729 . . . . . 6 (+g𝑆) = (+g𝑆)
7821, 30, 5, 19, 20, 77lmodvsdir 20807 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑤 ∈ (Base‘𝑆) ∧ 𝑣 ∈ (Base‘𝑆) ∧ 𝑢 ∈ (Base‘𝑀))) → ((𝑤(+g𝑆)𝑣)( ·𝑠𝑀)𝑢) = ((𝑤( ·𝑠𝑀)𝑢)(+g𝑀)(𝑣( ·𝑠𝑀)𝑢)))
7976, 78sylan 580 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ (𝑤 ∈ (Base‘𝑆) ∧ 𝑣 ∈ (Base‘𝑆) ∧ 𝑢 ∈ (Base‘𝑀))) → ((𝑤(+g𝑆)𝑣)( ·𝑠𝑀)𝑢) = ((𝑤( ·𝑠𝑀)𝑢)(+g𝑀)(𝑣( ·𝑠𝑀)𝑢)))
8068, 70, 72, 75, 79caofdir 7660 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((((Base‘𝑀) × {𝑥}) ∘f (+g𝑆)((Base‘𝑀) × {𝑦})) ∘f ( ·𝑠𝑀)𝑧) = ((((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑧) ∘f (+g𝑀)(((Base‘𝑀) × {𝑦}) ∘f ( ·𝑠𝑀)𝑧)))
8114adantr 480 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑆 ∈ Ring)
8220, 77ringacl 20181 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
8381, 71, 73, 82syl3anc 1373 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
841, 19, 2, 5, 20, 21, 22mendvsca 43160 . . . . 5 (((𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥(+g𝑆)𝑦)( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {(𝑥(+g𝑆)𝑦)}) ∘f ( ·𝑠𝑀)𝑧))
8583, 69, 84syl2anc 584 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝑆)𝑦)( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {(𝑥(+g𝑆)𝑦)}) ∘f ( ·𝑠𝑀)𝑧))
8668, 71, 73ofc12 7647 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑥}) ∘f (+g𝑆)((Base‘𝑀) × {𝑦})) = ((Base‘𝑀) × {(𝑥(+g𝑆)𝑦)}))
8786oveq1d 7368 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((((Base‘𝑀) × {𝑥}) ∘f (+g𝑆)((Base‘𝑀) × {𝑦})) ∘f ( ·𝑠𝑀)𝑧) = (((Base‘𝑀) × {(𝑥(+g𝑆)𝑦)}) ∘f ( ·𝑠𝑀)𝑧))
8885, 87eqtr4d 2767 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝑆)𝑦)( ·𝑠𝐴)𝑧) = ((((Base‘𝑀) × {𝑥}) ∘f (+g𝑆)((Base‘𝑀) × {𝑦})) ∘f ( ·𝑠𝑀)𝑧))
89513adant3r2 1184 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
90 eleq1w 2811 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ∈ (Base‘𝑆) ↔ 𝑦 ∈ (Base‘𝑆)))
91903anbi2d 1443 . . . . . . . 8 (𝑥 = 𝑦 → (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) ↔ ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))))
92 oveq1 7360 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥( ·𝑠𝐴)𝑧) = (𝑦( ·𝑠𝐴)𝑧))
9392eleq1d 2813 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀) ↔ (𝑦( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)))
9491, 93imbi12d 344 . . . . . . 7 (𝑥 = 𝑦 → ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)) ↔ (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))))
9594, 51chvarvv 1989 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
96953adant3r1 1183 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
971, 2, 30, 31mendplusg 43155 . . . . 5 (((𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀) ∧ (𝑦( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)) → ((𝑥( ·𝑠𝐴)𝑧)(+g𝐴)(𝑦( ·𝑠𝐴)𝑧)) = ((𝑥( ·𝑠𝐴)𝑧) ∘f (+g𝑀)(𝑦( ·𝑠𝐴)𝑧)))
9889, 96, 97syl2anc 584 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑧)(+g𝐴)(𝑦( ·𝑠𝐴)𝑧)) = ((𝑥( ·𝑠𝐴)𝑧) ∘f (+g𝑀)(𝑦( ·𝑠𝐴)𝑧)))
9971, 69, 42syl2anc 584 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑧))
1001, 19, 2, 5, 20, 21, 22mendvsca 43160 . . . . . 6 ((𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {𝑦}) ∘f ( ·𝑠𝑀)𝑧))
10173, 69, 100syl2anc 584 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {𝑦}) ∘f ( ·𝑠𝑀)𝑧))
10299, 101oveq12d 7371 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑧) ∘f (+g𝑀)(𝑦( ·𝑠𝐴)𝑧)) = ((((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑧) ∘f (+g𝑀)(((Base‘𝑀) × {𝑦}) ∘f ( ·𝑠𝑀)𝑧)))
10398, 102eqtrd 2764 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑧)(+g𝐴)(𝑦( ·𝑠𝐴)𝑧)) = ((((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑧) ∘f (+g𝑀)(((Base‘𝑀) × {𝑦}) ∘f ( ·𝑠𝑀)𝑧)))
10480, 88, 1033eqtr4d 2774 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝑆)𝑦)( ·𝑠𝐴)𝑧) = ((𝑥( ·𝑠𝐴)𝑧)(+g𝐴)(𝑦( ·𝑠𝐴)𝑧)))
105 ovexd 7388 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑘 ∈ (Base‘𝑀)) → (𝑥(.r𝑆)𝑦) ∈ V)
10670ffvelcdmda 7022 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑘 ∈ (Base‘𝑀)) → (𝑧𝑘) ∈ (Base‘𝑀))
107 fconstmpt 5685 . . . . 5 ((Base‘𝑀) × {(𝑥(.r𝑆)𝑦)}) = (𝑘 ∈ (Base‘𝑀) ↦ (𝑥(.r𝑆)𝑦))
108107a1i 11 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((Base‘𝑀) × {(𝑥(.r𝑆)𝑦)}) = (𝑘 ∈ (Base‘𝑀) ↦ (𝑥(.r𝑆)𝑦)))
10970feqmptd 6895 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 = (𝑘 ∈ (Base‘𝑀) ↦ (𝑧𝑘)))
11068, 105, 106, 108, 109offval2 7637 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {(𝑥(.r𝑆)𝑦)}) ∘f ( ·𝑠𝑀)𝑧) = (𝑘 ∈ (Base‘𝑀) ↦ ((𝑥(.r𝑆)𝑦)( ·𝑠𝑀)(𝑧𝑘))))
111 eqid 2729 . . . . . 6 (.r𝑆) = (.r𝑆)
11220, 111ringcl 20153 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(.r𝑆)𝑦) ∈ (Base‘𝑆))
11381, 71, 73, 112syl3anc 1373 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝑆)𝑦) ∈ (Base‘𝑆))
1141, 19, 2, 5, 20, 21, 22mendvsca 43160 . . . 4 (((𝑥(.r𝑆)𝑦) ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥(.r𝑆)𝑦)( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {(𝑥(.r𝑆)𝑦)}) ∘f ( ·𝑠𝑀)𝑧))
115113, 69, 114syl2anc 584 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝑆)𝑦)( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {(𝑥(.r𝑆)𝑦)}) ∘f ( ·𝑠𝑀)𝑧))
11671adantr 480 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑘 ∈ (Base‘𝑀)) → 𝑥 ∈ (Base‘𝑆))
117 ovexd 7388 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑘 ∈ (Base‘𝑀)) → (𝑦( ·𝑠𝑀)(𝑧𝑘)) ∈ V)
118 fconstmpt 5685 . . . . . 6 ((Base‘𝑀) × {𝑥}) = (𝑘 ∈ (Base‘𝑀) ↦ 𝑥)
119118a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((Base‘𝑀) × {𝑥}) = (𝑘 ∈ (Base‘𝑀) ↦ 𝑥))
120 simplr2 1217 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑘 ∈ (Base‘𝑀)) → 𝑦 ∈ (Base‘𝑆))
121 fconstmpt 5685 . . . . . . . 8 ((Base‘𝑀) × {𝑦}) = (𝑘 ∈ (Base‘𝑀) ↦ 𝑦)
122121a1i 11 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((Base‘𝑀) × {𝑦}) = (𝑘 ∈ (Base‘𝑀) ↦ 𝑦))
12368, 120, 106, 122, 109offval2 7637 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑦}) ∘f ( ·𝑠𝑀)𝑧) = (𝑘 ∈ (Base‘𝑀) ↦ (𝑦( ·𝑠𝑀)(𝑧𝑘))))
124101, 123eqtrd 2764 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦( ·𝑠𝐴)𝑧) = (𝑘 ∈ (Base‘𝑀) ↦ (𝑦( ·𝑠𝑀)(𝑧𝑘))))
12568, 116, 117, 119, 124offval2 7637 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)(𝑦( ·𝑠𝐴)𝑧)) = (𝑘 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦( ·𝑠𝑀)(𝑧𝑘)))))
1261, 19, 2, 5, 20, 21, 22mendvsca 43160 . . . . 5 ((𝑥 ∈ (Base‘𝑆) ∧ (𝑦( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)(𝑦( ·𝑠𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)(𝑦( ·𝑠𝐴)𝑧)))
12771, 96, 126syl2anc 584 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)(𝑦( ·𝑠𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)(𝑦( ·𝑠𝐴)𝑧)))
12876adantr 480 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑘 ∈ (Base‘𝑀)) → 𝑀 ∈ LMod)
12921, 5, 19, 20, 111lmodvsass 20808 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ (𝑧𝑘) ∈ (Base‘𝑀))) → ((𝑥(.r𝑆)𝑦)( ·𝑠𝑀)(𝑧𝑘)) = (𝑥( ·𝑠𝑀)(𝑦( ·𝑠𝑀)(𝑧𝑘))))
130128, 116, 120, 106, 129syl13anc 1374 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑘 ∈ (Base‘𝑀)) → ((𝑥(.r𝑆)𝑦)( ·𝑠𝑀)(𝑧𝑘)) = (𝑥( ·𝑠𝑀)(𝑦( ·𝑠𝑀)(𝑧𝑘))))
131130mpteq2dva 5188 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑘 ∈ (Base‘𝑀) ↦ ((𝑥(.r𝑆)𝑦)( ·𝑠𝑀)(𝑧𝑘))) = (𝑘 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦( ·𝑠𝑀)(𝑧𝑘)))))
132125, 127, 1313eqtr4d 2774 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)(𝑦( ·𝑠𝐴)𝑧)) = (𝑘 ∈ (Base‘𝑀) ↦ ((𝑥(.r𝑆)𝑦)( ·𝑠𝑀)(𝑧𝑘))))
133110, 115, 1323eqtr4d 2774 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝑆)𝑦)( ·𝑠𝐴)𝑧) = (𝑥( ·𝑠𝐴)(𝑦( ·𝑠𝐴)𝑧)))
13414adantr 480 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → 𝑆 ∈ Ring)
135 eqid 2729 . . . . . 6 (1r𝑆) = (1r𝑆)
13620, 135ringidcl 20168 . . . . 5 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
137134, 136syl 17 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (1r𝑆) ∈ (Base‘𝑆))
1381, 19, 2, 5, 20, 21, 22mendvsca 43160 . . . 4 (((1r𝑆) ∈ (Base‘𝑆) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → ((1r𝑆)( ·𝑠𝐴)𝑥) = (((Base‘𝑀) × {(1r𝑆)}) ∘f ( ·𝑠𝑀)𝑥))
139137, 138sylancom 588 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → ((1r𝑆)( ·𝑠𝐴)𝑥) = (((Base‘𝑀) × {(1r𝑆)}) ∘f ( ·𝑠𝑀)𝑥))
140 fvexd 6841 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (Base‘𝑀) ∈ V)
14121, 21lmhmf 20956 . . . . 5 (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
142141adantl 481 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
143 simpll 766 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → 𝑀 ∈ LMod)
14421, 5, 19, 135lmodvs1 20811 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑀)) → ((1r𝑆)( ·𝑠𝑀)𝑦) = 𝑦)
145143, 144sylan 580 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → ((1r𝑆)( ·𝑠𝑀)𝑦) = 𝑦)
146140, 142, 137, 145caofid0l 7650 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(1r𝑆)}) ∘f ( ·𝑠𝑀)𝑥) = 𝑥)
147139, 146eqtrd 2764 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → ((1r𝑆)( ·𝑠𝐴)𝑥) = 𝑥)
1483, 4, 7, 8, 9, 10, 11, 12, 14, 18, 27, 67, 104, 133, 147islmodd 20787 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579  cmpt 5176   × cxp 5621  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  Scalarcsca 17182   ·𝑠 cvsca 17183  Grpcgrp 18830  1rcur 20084  Ringcrg 20136  CRingccrg 20137  LModclmod 20781   LMHom clmhm 20941  MEndocmend 43144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-grp 18833  df-minusg 18834  df-ghm 19110  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-lmod 20783  df-lmhm 20944  df-mend 43145
This theorem is referenced by:  mendassa  43163
  Copyright terms: Public domain W3C validator