Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendlmod Structured version   Visualization version   GIF version

Theorem mendlmod 39660
 Description: The module endomorphism algebra is a left module. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
mendassa.a 𝐴 = (MEndo‘𝑀)
mendassa.s 𝑆 = (Scalar‘𝑀)
Assertion
Ref Expression
mendlmod ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ LMod)

Proof of Theorem mendlmod
Dummy variables 𝑥 𝑦 𝑧 𝑢 𝑘 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mendassa.a . . . 4 𝐴 = (MEndo‘𝑀)
21mendbas 39651 . . 3 (𝑀 LMHom 𝑀) = (Base‘𝐴)
32a1i 11 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (𝑀 LMHom 𝑀) = (Base‘𝐴))
4 eqidd 2826 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (+g𝐴) = (+g𝐴))
5 mendassa.s . . . 4 𝑆 = (Scalar‘𝑀)
61, 5mendsca 39656 . . 3 𝑆 = (Scalar‘𝐴)
76a1i 11 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝑆 = (Scalar‘𝐴))
8 eqidd 2826 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → ( ·𝑠𝐴) = ( ·𝑠𝐴))
9 eqidd 2826 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (Base‘𝑆) = (Base‘𝑆))
10 eqidd 2826 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (+g𝑆) = (+g𝑆))
11 eqidd 2826 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (.r𝑆) = (.r𝑆))
12 eqidd 2826 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (1r𝑆) = (1r𝑆))
13 crngring 19230 . . 3 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
1413adantl 482 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝑆 ∈ Ring)
151mendring 39659 . . . 4 (𝑀 ∈ LMod → 𝐴 ∈ Ring)
1615adantr 481 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ Ring)
17 ringgrp 19224 . . 3 (𝐴 ∈ Ring → 𝐴 ∈ Grp)
1816, 17syl 17 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ Grp)
19 eqid 2825 . . . . 5 ( ·𝑠𝑀) = ( ·𝑠𝑀)
20 eqid 2825 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
21 eqid 2825 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
22 eqid 2825 . . . . 5 ( ·𝑠𝐴) = ( ·𝑠𝐴)
231, 19, 2, 5, 20, 21, 22mendvsca 39658 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑦) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
24233adant1 1124 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑦) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
2521, 19, 5, 20lmhmvsca 19739 . . . 4 ((𝑆 ∈ CRing ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦) ∈ (𝑀 LMHom 𝑀))
26253adant1l 1170 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦) ∈ (𝑀 LMHom 𝑀))
2724, 26eqeltrd 2917 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
28 simpr2 1189 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ (𝑀 LMHom 𝑀))
29 simpr3 1190 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ (𝑀 LMHom 𝑀))
30 eqid 2825 . . . . . 6 (+g𝑀) = (+g𝑀)
31 eqid 2825 . . . . . 6 (+g𝐴) = (+g𝐴)
321, 2, 30, 31mendplusg 39653 . . . . 5 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(+g𝐴)𝑧) = (𝑦f (+g𝑀)𝑧))
3328, 29, 32syl2anc 584 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(+g𝐴)𝑧) = (𝑦f (+g𝑀)𝑧))
3433oveq2d 7167 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)(𝑦(+g𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)(𝑦f (+g𝑀)𝑧)))
35 simpr1 1188 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (Base‘𝑆))
3618adantr 481 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝐴 ∈ Grp)
372, 31grpcl 18043 . . . . 5 ((𝐴 ∈ Grp ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(+g𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
3836, 28, 29, 37syl3anc 1365 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(+g𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
391, 19, 2, 5, 20, 21, 22mendvsca 39658 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ (𝑦(+g𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)(𝑦(+g𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)(𝑦(+g𝐴)𝑧)))
4035, 38, 39syl2anc 584 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)(𝑦(+g𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)(𝑦(+g𝐴)𝑧)))
4135, 28, 23syl2anc 584 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑦) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦))
421, 19, 2, 5, 20, 21, 22mendvsca 39658 . . . . . 6 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑧))
4335, 29, 42syl2anc 584 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑧))
4441, 43oveq12d 7169 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑦) ∘f (+g𝑀)(𝑥( ·𝑠𝐴)𝑧)) = ((((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦) ∘f (+g𝑀)(((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑧)))
45273adant3r3 1178 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
46 eleq1w 2899 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑦 ∈ (𝑀 LMHom 𝑀) ↔ 𝑧 ∈ (𝑀 LMHom 𝑀)))
47463anbi3d 1435 . . . . . . . 8 (𝑦 = 𝑧 → (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) ↔ ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))))
48 oveq2 7159 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑥( ·𝑠𝐴)𝑦) = (𝑥( ·𝑠𝐴)𝑧))
4948eleq1d 2901 . . . . . . . 8 (𝑦 = 𝑧 → ((𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀) ↔ (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)))
5047, 49imbi12d 346 . . . . . . 7 (𝑦 = 𝑧 → ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀)) ↔ (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))))
5150, 27chvarv 2410 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
52513adant3r2 1177 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
531, 2, 30, 31mendplusg 39653 . . . . 5 (((𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)) → ((𝑥( ·𝑠𝐴)𝑦)(+g𝐴)(𝑥( ·𝑠𝐴)𝑧)) = ((𝑥( ·𝑠𝐴)𝑦) ∘f (+g𝑀)(𝑥( ·𝑠𝐴)𝑧)))
5445, 52, 53syl2anc 584 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑦)(+g𝐴)(𝑥( ·𝑠𝐴)𝑧)) = ((𝑥( ·𝑠𝐴)𝑦) ∘f (+g𝑀)(𝑥( ·𝑠𝐴)𝑧)))
55 fvexd 6681 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (Base‘𝑀) ∈ V)
56 fconst6g 6564 . . . . . 6 (𝑥 ∈ (Base‘𝑆) → ((Base‘𝑀) × {𝑥}):(Base‘𝑀)⟶(Base‘𝑆))
5735, 56syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((Base‘𝑀) × {𝑥}):(Base‘𝑀)⟶(Base‘𝑆))
5821, 21lmhmf 19728 . . . . . 6 (𝑦 ∈ (𝑀 LMHom 𝑀) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
5928, 58syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
6021, 21lmhmf 19728 . . . . . 6 (𝑧 ∈ (𝑀 LMHom 𝑀) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
6129, 60syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
62 simpll 763 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑀 ∈ LMod)
6321, 30, 5, 19, 20lmodvsdi 19579 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑤 ∈ (Base‘𝑆) ∧ 𝑣 ∈ (Base‘𝑀) ∧ 𝑢 ∈ (Base‘𝑀))) → (𝑤( ·𝑠𝑀)(𝑣(+g𝑀)𝑢)) = ((𝑤( ·𝑠𝑀)𝑣)(+g𝑀)(𝑤( ·𝑠𝑀)𝑢)))
6462, 63sylan 580 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ (𝑤 ∈ (Base‘𝑆) ∧ 𝑣 ∈ (Base‘𝑀) ∧ 𝑢 ∈ (Base‘𝑀))) → (𝑤( ·𝑠𝑀)(𝑣(+g𝑀)𝑢)) = ((𝑤( ·𝑠𝑀)𝑣)(+g𝑀)(𝑤( ·𝑠𝑀)𝑢)))
6555, 57, 59, 61, 64caofdi 7438 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)(𝑦f (+g𝑀)𝑧)) = ((((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑦) ∘f (+g𝑀)(((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑧)))
6644, 54, 653eqtr4d 2870 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑦)(+g𝐴)(𝑥( ·𝑠𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)(𝑦f (+g𝑀)𝑧)))
6734, 40, 663eqtr4d 2870 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)(𝑦(+g𝐴)𝑧)) = ((𝑥( ·𝑠𝐴)𝑦)(+g𝐴)(𝑥( ·𝑠𝐴)𝑧)))
68 fvexd 6681 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (Base‘𝑀) ∈ V)
69 simpr3 1190 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ (𝑀 LMHom 𝑀))
7069, 60syl 17 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
71 simpr1 1188 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (Base‘𝑆))
7271, 56syl 17 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((Base‘𝑀) × {𝑥}):(Base‘𝑀)⟶(Base‘𝑆))
73 simpr2 1189 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ (Base‘𝑆))
74 fconst6g 6564 . . . . 5 (𝑦 ∈ (Base‘𝑆) → ((Base‘𝑀) × {𝑦}):(Base‘𝑀)⟶(Base‘𝑆))
7573, 74syl 17 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((Base‘𝑀) × {𝑦}):(Base‘𝑀)⟶(Base‘𝑆))
76 simpll 763 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑀 ∈ LMod)
77 eqid 2825 . . . . . 6 (+g𝑆) = (+g𝑆)
7821, 30, 5, 19, 20, 77lmodvsdir 19580 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑤 ∈ (Base‘𝑆) ∧ 𝑣 ∈ (Base‘𝑆) ∧ 𝑢 ∈ (Base‘𝑀))) → ((𝑤(+g𝑆)𝑣)( ·𝑠𝑀)𝑢) = ((𝑤( ·𝑠𝑀)𝑢)(+g𝑀)(𝑣( ·𝑠𝑀)𝑢)))
7976, 78sylan 580 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ (𝑤 ∈ (Base‘𝑆) ∧ 𝑣 ∈ (Base‘𝑆) ∧ 𝑢 ∈ (Base‘𝑀))) → ((𝑤(+g𝑆)𝑣)( ·𝑠𝑀)𝑢) = ((𝑤( ·𝑠𝑀)𝑢)(+g𝑀)(𝑣( ·𝑠𝑀)𝑢)))
8068, 70, 72, 75, 79caofdir 7439 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((((Base‘𝑀) × {𝑥}) ∘f (+g𝑆)((Base‘𝑀) × {𝑦})) ∘f ( ·𝑠𝑀)𝑧) = ((((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑧) ∘f (+g𝑀)(((Base‘𝑀) × {𝑦}) ∘f ( ·𝑠𝑀)𝑧)))
8114adantr 481 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑆 ∈ Ring)
8220, 77ringacl 19250 . . . . . 6 ((𝑆 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
8381, 71, 73, 82syl3anc 1365 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
841, 19, 2, 5, 20, 21, 22mendvsca 39658 . . . . 5 (((𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥(+g𝑆)𝑦)( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {(𝑥(+g𝑆)𝑦)}) ∘f ( ·𝑠𝑀)𝑧))
8583, 69, 84syl2anc 584 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝑆)𝑦)( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {(𝑥(+g𝑆)𝑦)}) ∘f ( ·𝑠𝑀)𝑧))
8668, 71, 73ofc12 7427 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑥}) ∘f (+g𝑆)((Base‘𝑀) × {𝑦})) = ((Base‘𝑀) × {(𝑥(+g𝑆)𝑦)}))
8786oveq1d 7166 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((((Base‘𝑀) × {𝑥}) ∘f (+g𝑆)((Base‘𝑀) × {𝑦})) ∘f ( ·𝑠𝑀)𝑧) = (((Base‘𝑀) × {(𝑥(+g𝑆)𝑦)}) ∘f ( ·𝑠𝑀)𝑧))
8885, 87eqtr4d 2863 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝑆)𝑦)( ·𝑠𝐴)𝑧) = ((((Base‘𝑀) × {𝑥}) ∘f (+g𝑆)((Base‘𝑀) × {𝑦})) ∘f ( ·𝑠𝑀)𝑧))
89513adant3r2 1177 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
90 eleq1w 2899 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ∈ (Base‘𝑆) ↔ 𝑦 ∈ (Base‘𝑆)))
91903anbi2d 1434 . . . . . . . 8 (𝑥 = 𝑦 → (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) ↔ ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))))
92 oveq1 7158 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥( ·𝑠𝐴)𝑧) = (𝑦( ·𝑠𝐴)𝑧))
9392eleq1d 2901 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀) ↔ (𝑦( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)))
9491, 93imbi12d 346 . . . . . . 7 (𝑥 = 𝑦 → ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)) ↔ (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))))
9594, 51chvarv 2410 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
96953adant3r1 1176 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
971, 2, 30, 31mendplusg 39653 . . . . 5 (((𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀) ∧ (𝑦( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)) → ((𝑥( ·𝑠𝐴)𝑧)(+g𝐴)(𝑦( ·𝑠𝐴)𝑧)) = ((𝑥( ·𝑠𝐴)𝑧) ∘f (+g𝑀)(𝑦( ·𝑠𝐴)𝑧)))
9889, 96, 97syl2anc 584 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑧)(+g𝐴)(𝑦( ·𝑠𝐴)𝑧)) = ((𝑥( ·𝑠𝐴)𝑧) ∘f (+g𝑀)(𝑦( ·𝑠𝐴)𝑧)))
9971, 69, 42syl2anc 584 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑧))
1001, 19, 2, 5, 20, 21, 22mendvsca 39658 . . . . . 6 ((𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {𝑦}) ∘f ( ·𝑠𝑀)𝑧))
10173, 69, 100syl2anc 584 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {𝑦}) ∘f ( ·𝑠𝑀)𝑧))
10299, 101oveq12d 7169 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑧) ∘f (+g𝑀)(𝑦( ·𝑠𝐴)𝑧)) = ((((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑧) ∘f (+g𝑀)(((Base‘𝑀) × {𝑦}) ∘f ( ·𝑠𝑀)𝑧)))
10398, 102eqtrd 2860 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑧)(+g𝐴)(𝑦( ·𝑠𝐴)𝑧)) = ((((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)𝑧) ∘f (+g𝑀)(((Base‘𝑀) × {𝑦}) ∘f ( ·𝑠𝑀)𝑧)))
10480, 88, 1033eqtr4d 2870 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝑆)𝑦)( ·𝑠𝐴)𝑧) = ((𝑥( ·𝑠𝐴)𝑧)(+g𝐴)(𝑦( ·𝑠𝐴)𝑧)))
105 ovexd 7186 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑘 ∈ (Base‘𝑀)) → (𝑥(.r𝑆)𝑦) ∈ V)
10670ffvelrnda 6846 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑘 ∈ (Base‘𝑀)) → (𝑧𝑘) ∈ (Base‘𝑀))
107 fconstmpt 5612 . . . . 5 ((Base‘𝑀) × {(𝑥(.r𝑆)𝑦)}) = (𝑘 ∈ (Base‘𝑀) ↦ (𝑥(.r𝑆)𝑦))
108107a1i 11 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((Base‘𝑀) × {(𝑥(.r𝑆)𝑦)}) = (𝑘 ∈ (Base‘𝑀) ↦ (𝑥(.r𝑆)𝑦)))
10970feqmptd 6729 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 = (𝑘 ∈ (Base‘𝑀) ↦ (𝑧𝑘)))
11068, 105, 106, 108, 109offval2 7419 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {(𝑥(.r𝑆)𝑦)}) ∘f ( ·𝑠𝑀)𝑧) = (𝑘 ∈ (Base‘𝑀) ↦ ((𝑥(.r𝑆)𝑦)( ·𝑠𝑀)(𝑧𝑘))))
111 eqid 2825 . . . . . 6 (.r𝑆) = (.r𝑆)
11220, 111ringcl 19233 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(.r𝑆)𝑦) ∈ (Base‘𝑆))
11381, 71, 73, 112syl3anc 1365 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝑆)𝑦) ∈ (Base‘𝑆))
1141, 19, 2, 5, 20, 21, 22mendvsca 39658 . . . 4 (((𝑥(.r𝑆)𝑦) ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥(.r𝑆)𝑦)( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {(𝑥(.r𝑆)𝑦)}) ∘f ( ·𝑠𝑀)𝑧))
115113, 69, 114syl2anc 584 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝑆)𝑦)( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {(𝑥(.r𝑆)𝑦)}) ∘f ( ·𝑠𝑀)𝑧))
11671adantr 481 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑘 ∈ (Base‘𝑀)) → 𝑥 ∈ (Base‘𝑆))
117 ovexd 7186 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑘 ∈ (Base‘𝑀)) → (𝑦( ·𝑠𝑀)(𝑧𝑘)) ∈ V)
118 fconstmpt 5612 . . . . . 6 ((Base‘𝑀) × {𝑥}) = (𝑘 ∈ (Base‘𝑀) ↦ 𝑥)
119118a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((Base‘𝑀) × {𝑥}) = (𝑘 ∈ (Base‘𝑀) ↦ 𝑥))
120 simplr2 1210 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑘 ∈ (Base‘𝑀)) → 𝑦 ∈ (Base‘𝑆))
121 fconstmpt 5612 . . . . . . . 8 ((Base‘𝑀) × {𝑦}) = (𝑘 ∈ (Base‘𝑀) ↦ 𝑦)
122121a1i 11 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((Base‘𝑀) × {𝑦}) = (𝑘 ∈ (Base‘𝑀) ↦ 𝑦))
12368, 120, 106, 122, 109offval2 7419 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑦}) ∘f ( ·𝑠𝑀)𝑧) = (𝑘 ∈ (Base‘𝑀) ↦ (𝑦( ·𝑠𝑀)(𝑧𝑘))))
124101, 123eqtrd 2860 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦( ·𝑠𝐴)𝑧) = (𝑘 ∈ (Base‘𝑀) ↦ (𝑦( ·𝑠𝑀)(𝑧𝑘))))
12568, 116, 117, 119, 124offval2 7419 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)(𝑦( ·𝑠𝐴)𝑧)) = (𝑘 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦( ·𝑠𝑀)(𝑧𝑘)))))
1261, 19, 2, 5, 20, 21, 22mendvsca 39658 . . . . 5 ((𝑥 ∈ (Base‘𝑆) ∧ (𝑦( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)(𝑦( ·𝑠𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)(𝑦( ·𝑠𝐴)𝑧)))
12771, 96, 126syl2anc 584 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)(𝑦( ·𝑠𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠𝑀)(𝑦( ·𝑠𝐴)𝑧)))
12876adantr 481 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑘 ∈ (Base‘𝑀)) → 𝑀 ∈ LMod)
12921, 5, 19, 20, 111lmodvsass 19581 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ (𝑧𝑘) ∈ (Base‘𝑀))) → ((𝑥(.r𝑆)𝑦)( ·𝑠𝑀)(𝑧𝑘)) = (𝑥( ·𝑠𝑀)(𝑦( ·𝑠𝑀)(𝑧𝑘))))
130128, 116, 120, 106, 129syl13anc 1366 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑘 ∈ (Base‘𝑀)) → ((𝑥(.r𝑆)𝑦)( ·𝑠𝑀)(𝑧𝑘)) = (𝑥( ·𝑠𝑀)(𝑦( ·𝑠𝑀)(𝑧𝑘))))
131130mpteq2dva 5157 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑘 ∈ (Base‘𝑀) ↦ ((𝑥(.r𝑆)𝑦)( ·𝑠𝑀)(𝑧𝑘))) = (𝑘 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦( ·𝑠𝑀)(𝑧𝑘)))))
132125, 127, 1313eqtr4d 2870 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)(𝑦( ·𝑠𝐴)𝑧)) = (𝑘 ∈ (Base‘𝑀) ↦ ((𝑥(.r𝑆)𝑦)( ·𝑠𝑀)(𝑧𝑘))))
133110, 115, 1323eqtr4d 2870 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝑆)𝑦)( ·𝑠𝐴)𝑧) = (𝑥( ·𝑠𝐴)(𝑦( ·𝑠𝐴)𝑧)))
13414adantr 481 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → 𝑆 ∈ Ring)
135 eqid 2825 . . . . . 6 (1r𝑆) = (1r𝑆)
13620, 135ringidcl 19240 . . . . 5 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
137134, 136syl 17 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (1r𝑆) ∈ (Base‘𝑆))
1381, 19, 2, 5, 20, 21, 22mendvsca 39658 . . . 4 (((1r𝑆) ∈ (Base‘𝑆) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → ((1r𝑆)( ·𝑠𝐴)𝑥) = (((Base‘𝑀) × {(1r𝑆)}) ∘f ( ·𝑠𝑀)𝑥))
139137, 138sylancom 588 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → ((1r𝑆)( ·𝑠𝐴)𝑥) = (((Base‘𝑀) × {(1r𝑆)}) ∘f ( ·𝑠𝑀)𝑥))
140 fvexd 6681 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (Base‘𝑀) ∈ V)
14121, 21lmhmf 19728 . . . . 5 (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
142141adantl 482 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
143 simpll 763 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → 𝑀 ∈ LMod)
14421, 5, 19, 135lmodvs1 19584 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑀)) → ((1r𝑆)( ·𝑠𝑀)𝑦) = 𝑦)
145143, 144sylan 580 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → ((1r𝑆)( ·𝑠𝑀)𝑦) = 𝑦)
146140, 142, 137, 145caofid0l 7430 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(1r𝑆)}) ∘f ( ·𝑠𝑀)𝑥) = 𝑥)
147139, 146eqtrd 2860 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → ((1r𝑆)( ·𝑠𝐴)𝑥) = 𝑥)
1483, 4, 7, 8, 9, 10, 11, 12, 14, 18, 27, 67, 104, 133, 147islmodd 19562 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ LMod)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107  Vcvv 3499  {csn 4563   ↦ cmpt 5142   × cxp 5551  ⟶wf 6347  ‘cfv 6351  (class class class)co 7151   ∘f cof 7400  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  Grpcgrp 18035  1rcur 19173  Ringcrg 19219  CRingccrg 19220  LModclmod 19556   LMHom clmhm 19713  MEndocmend 39642 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-mhm 17946  df-grp 18038  df-minusg 18039  df-ghm 18288  df-cmn 18830  df-abl 18831  df-mgp 19162  df-ur 19174  df-ring 19221  df-cring 19222  df-lmod 19558  df-lmhm 19716  df-mend 39643 This theorem is referenced by:  mendassa  39661
 Copyright terms: Public domain W3C validator