| Step | Hyp | Ref
| Expression |
| 1 | | rhmghm 20444 |
. . 3
⊢ (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁)) |
| 2 | | subrngsubg 20512 |
. . 3
⊢ (𝑋 ∈ (SubRng‘𝑀) → 𝑋 ∈ (SubGrp‘𝑀)) |
| 3 | | ghmima 19220 |
. . 3
⊢ ((𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝑋 ∈ (SubGrp‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubGrp‘𝑁)) |
| 4 | 1, 2, 3 | syl2an 596 |
. 2
⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubGrp‘𝑁)) |
| 5 | | eqid 2735 |
. . . 4
⊢
(mulGrp‘𝑀) =
(mulGrp‘𝑀) |
| 6 | | eqid 2735 |
. . . 4
⊢
(mulGrp‘𝑁) =
(mulGrp‘𝑁) |
| 7 | 5, 6 | rhmmhm 20439 |
. . 3
⊢ (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁))) |
| 8 | | simpl 482 |
. . . . 5
⊢ ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → 𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁))) |
| 9 | | eqid 2735 |
. . . . . . . . 9
⊢
(Base‘𝑀) =
(Base‘𝑀) |
| 10 | 5, 9 | mgpbas 20105 |
. . . . . . . 8
⊢
(Base‘𝑀) =
(Base‘(mulGrp‘𝑀)) |
| 11 | 10 | eqcomi 2744 |
. . . . . . 7
⊢
(Base‘(mulGrp‘𝑀)) = (Base‘𝑀) |
| 12 | 11 | subrngss 20508 |
. . . . . 6
⊢ (𝑋 ∈ (SubRng‘𝑀) → 𝑋 ⊆ (Base‘(mulGrp‘𝑀))) |
| 13 | 12 | adantl 481 |
. . . . 5
⊢ ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → 𝑋 ⊆ (Base‘(mulGrp‘𝑀))) |
| 14 | | eqidd 2736 |
. . . . 5
⊢ ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) →
(+g‘(mulGrp‘𝑀)) =
(+g‘(mulGrp‘𝑀))) |
| 15 | | eqidd 2736 |
. . . . 5
⊢ ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) →
(+g‘(mulGrp‘𝑁)) =
(+g‘(mulGrp‘𝑁))) |
| 16 | | eqid 2735 |
. . . . . . . . 9
⊢
(.r‘𝑀) = (.r‘𝑀) |
| 17 | 5, 16 | mgpplusg 20104 |
. . . . . . . 8
⊢
(.r‘𝑀) = (+g‘(mulGrp‘𝑀)) |
| 18 | 17 | eqcomi 2744 |
. . . . . . 7
⊢
(+g‘(mulGrp‘𝑀)) = (.r‘𝑀) |
| 19 | 18 | subrngmcl 20517 |
. . . . . 6
⊢ ((𝑋 ∈ (SubRng‘𝑀) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(+g‘(mulGrp‘𝑀))𝑥) ∈ 𝑋) |
| 20 | 19 | 3adant1l 1177 |
. . . . 5
⊢ (((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(+g‘(mulGrp‘𝑀))𝑥) ∈ 𝑋) |
| 21 | 8, 13, 14, 15, 20 | mhmimalem 18802 |
. . . 4
⊢ ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘(mulGrp‘𝑁))𝑦) ∈ (𝐹 “ 𝑋)) |
| 22 | | eqid 2735 |
. . . . . . . . 9
⊢
(.r‘𝑁) = (.r‘𝑁) |
| 23 | 6, 22 | mgpplusg 20104 |
. . . . . . . 8
⊢
(.r‘𝑁) = (+g‘(mulGrp‘𝑁)) |
| 24 | 23 | eqcomi 2744 |
. . . . . . 7
⊢
(+g‘(mulGrp‘𝑁)) = (.r‘𝑁) |
| 25 | 24 | oveqi 7418 |
. . . . . 6
⊢ (𝑥(+g‘(mulGrp‘𝑁))𝑦) = (𝑥(.r‘𝑁)𝑦) |
| 26 | 25 | eleq1i 2825 |
. . . . 5
⊢ ((𝑥(+g‘(mulGrp‘𝑁))𝑦) ∈ (𝐹 “ 𝑋) ↔ (𝑥(.r‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)) |
| 27 | 26 | 2ralbii 3115 |
. . . 4
⊢
(∀𝑥 ∈
(𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘(mulGrp‘𝑁))𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(.r‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)) |
| 28 | 21, 27 | sylib 218 |
. . 3
⊢ ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(.r‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)) |
| 29 | 7, 28 | sylan 580 |
. 2
⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(.r‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)) |
| 30 | | rhmrcl2 20437 |
. . . . 5
⊢ (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝑁 ∈ Ring) |
| 31 | | ringrng 20245 |
. . . . 5
⊢ (𝑁 ∈ Ring → 𝑁 ∈ Rng) |
| 32 | 30, 31 | syl 17 |
. . . 4
⊢ (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝑁 ∈ Rng) |
| 33 | 32 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → 𝑁 ∈ Rng) |
| 34 | | eqid 2735 |
. . . 4
⊢
(Base‘𝑁) =
(Base‘𝑁) |
| 35 | 34, 22 | issubrng2 20518 |
. . 3
⊢ (𝑁 ∈ Rng → ((𝐹 “ 𝑋) ∈ (SubRng‘𝑁) ↔ ((𝐹 “ 𝑋) ∈ (SubGrp‘𝑁) ∧ ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(.r‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)))) |
| 36 | 33, 35 | syl 17 |
. 2
⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → ((𝐹 “ 𝑋) ∈ (SubRng‘𝑁) ↔ ((𝐹 “ 𝑋) ∈ (SubGrp‘𝑁) ∧ ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(.r‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)))) |
| 37 | 4, 29, 36 | mpbir2and 713 |
1
⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubRng‘𝑁)) |