Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmimasubrng Structured version   Visualization version   GIF version

Theorem rhmimasubrng 46729
Description: The homomorphic image of a subring is a subring. (Contributed by AV, 16-Feb-2025.)
Assertion
Ref Expression
rhmimasubrng ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → (𝐹𝑋) ∈ (SubRng‘𝑁))

Proof of Theorem rhmimasubrng
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmghm 20254 . . 3 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
2 subrngsubg 46715 . . 3 (𝑋 ∈ (SubRng‘𝑀) → 𝑋 ∈ (SubGrp‘𝑀))
3 ghmima 19107 . . 3 ((𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝑋 ∈ (SubGrp‘𝑀)) → (𝐹𝑋) ∈ (SubGrp‘𝑁))
41, 2, 3syl2an 596 . 2 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → (𝐹𝑋) ∈ (SubGrp‘𝑁))
5 eqid 2732 . . . 4 (mulGrp‘𝑀) = (mulGrp‘𝑀)
6 eqid 2732 . . . 4 (mulGrp‘𝑁) = (mulGrp‘𝑁)
75, 6rhmmhm 20250 . . 3 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)))
8 simpl 483 . . . . 5 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → 𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)))
9 eqid 2732 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
105, 9mgpbas 19987 . . . . . . . 8 (Base‘𝑀) = (Base‘(mulGrp‘𝑀))
1110eqcomi 2741 . . . . . . 7 (Base‘(mulGrp‘𝑀)) = (Base‘𝑀)
1211subrngss 46711 . . . . . 6 (𝑋 ∈ (SubRng‘𝑀) → 𝑋 ⊆ (Base‘(mulGrp‘𝑀)))
1312adantl 482 . . . . 5 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → 𝑋 ⊆ (Base‘(mulGrp‘𝑀)))
14 eqidd 2733 . . . . 5 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → (+g‘(mulGrp‘𝑀)) = (+g‘(mulGrp‘𝑀)))
15 eqidd 2733 . . . . 5 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → (+g‘(mulGrp‘𝑁)) = (+g‘(mulGrp‘𝑁)))
16 eqid 2732 . . . . . . . . 9 (.r𝑀) = (.r𝑀)
175, 16mgpplusg 19985 . . . . . . . 8 (.r𝑀) = (+g‘(mulGrp‘𝑀))
1817eqcomi 2741 . . . . . . 7 (+g‘(mulGrp‘𝑀)) = (.r𝑀)
1918subrngmcl 46720 . . . . . 6 ((𝑋 ∈ (SubRng‘𝑀) ∧ 𝑧𝑋𝑥𝑋) → (𝑧(+g‘(mulGrp‘𝑀))𝑥) ∈ 𝑋)
20193adant1l 1176 . . . . 5 (((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) ∧ 𝑧𝑋𝑥𝑋) → (𝑧(+g‘(mulGrp‘𝑀))𝑥) ∈ 𝑋)
218, 13, 14, 15, 20mhmimalem 18701 . . . 4 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g‘(mulGrp‘𝑁))𝑦) ∈ (𝐹𝑋))
22 eqid 2732 . . . . . . . . 9 (.r𝑁) = (.r𝑁)
236, 22mgpplusg 19985 . . . . . . . 8 (.r𝑁) = (+g‘(mulGrp‘𝑁))
2423eqcomi 2741 . . . . . . 7 (+g‘(mulGrp‘𝑁)) = (.r𝑁)
2524oveqi 7418 . . . . . 6 (𝑥(+g‘(mulGrp‘𝑁))𝑦) = (𝑥(.r𝑁)𝑦)
2625eleq1i 2824 . . . . 5 ((𝑥(+g‘(mulGrp‘𝑁))𝑦) ∈ (𝐹𝑋) ↔ (𝑥(.r𝑁)𝑦) ∈ (𝐹𝑋))
27262ralbii 3128 . . . 4 (∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g‘(mulGrp‘𝑁))𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(.r𝑁)𝑦) ∈ (𝐹𝑋))
2821, 27sylib 217 . . 3 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(.r𝑁)𝑦) ∈ (𝐹𝑋))
297, 28sylan 580 . 2 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(.r𝑁)𝑦) ∈ (𝐹𝑋))
30 rhmrcl2 20248 . . . . 5 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝑁 ∈ Ring)
31 ringrng 46641 . . . . 5 (𝑁 ∈ Ring → 𝑁 ∈ Rng)
3230, 31syl 17 . . . 4 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝑁 ∈ Rng)
3332adantr 481 . . 3 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → 𝑁 ∈ Rng)
34 eqid 2732 . . . 4 (Base‘𝑁) = (Base‘𝑁)
3534, 22issubrng2 46721 . . 3 (𝑁 ∈ Rng → ((𝐹𝑋) ∈ (SubRng‘𝑁) ↔ ((𝐹𝑋) ∈ (SubGrp‘𝑁) ∧ ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(.r𝑁)𝑦) ∈ (𝐹𝑋))))
3633, 35syl 17 . 2 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → ((𝐹𝑋) ∈ (SubRng‘𝑁) ↔ ((𝐹𝑋) ∈ (SubGrp‘𝑁) ∧ ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(.r𝑁)𝑦) ∈ (𝐹𝑋))))
374, 29, 36mpbir2and 711 1 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → (𝐹𝑋) ∈ (SubRng‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wral 3061  wss 3947  cima 5678  cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  .rcmulr 17194   MndHom cmhm 18665  SubGrpcsubg 18994   GrpHom cghm 19083  mulGrpcmgp 19981  Ringcrg 20049   RingHom crh 20240  Rngcrng 46634  SubRngcsubrng 46708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-grp 18818  df-minusg 18819  df-subg 18997  df-ghm 19084  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-rnghom 20243  df-rng 46635  df-subrng 46709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator