MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmimasubrng Structured version   Visualization version   GIF version

Theorem rhmimasubrng 20481
Description: The homomorphic image of a subring is a subring. (Contributed by AV, 16-Feb-2025.)
Assertion
Ref Expression
rhmimasubrng ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → (𝐹𝑋) ∈ (SubRng‘𝑁))

Proof of Theorem rhmimasubrng
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmghm 20401 . . 3 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
2 subrngsubg 20467 . . 3 (𝑋 ∈ (SubRng‘𝑀) → 𝑋 ∈ (SubGrp‘𝑀))
3 ghmima 19149 . . 3 ((𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝑋 ∈ (SubGrp‘𝑀)) → (𝐹𝑋) ∈ (SubGrp‘𝑁))
41, 2, 3syl2an 596 . 2 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → (𝐹𝑋) ∈ (SubGrp‘𝑁))
5 eqid 2731 . . . 4 (mulGrp‘𝑀) = (mulGrp‘𝑀)
6 eqid 2731 . . . 4 (mulGrp‘𝑁) = (mulGrp‘𝑁)
75, 6rhmmhm 20397 . . 3 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)))
8 simpl 482 . . . . 5 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → 𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)))
9 eqid 2731 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
105, 9mgpbas 20063 . . . . . . . 8 (Base‘𝑀) = (Base‘(mulGrp‘𝑀))
1110eqcomi 2740 . . . . . . 7 (Base‘(mulGrp‘𝑀)) = (Base‘𝑀)
1211subrngss 20463 . . . . . 6 (𝑋 ∈ (SubRng‘𝑀) → 𝑋 ⊆ (Base‘(mulGrp‘𝑀)))
1312adantl 481 . . . . 5 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → 𝑋 ⊆ (Base‘(mulGrp‘𝑀)))
14 eqidd 2732 . . . . 5 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → (+g‘(mulGrp‘𝑀)) = (+g‘(mulGrp‘𝑀)))
15 eqidd 2732 . . . . 5 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → (+g‘(mulGrp‘𝑁)) = (+g‘(mulGrp‘𝑁)))
16 eqid 2731 . . . . . . . . 9 (.r𝑀) = (.r𝑀)
175, 16mgpplusg 20062 . . . . . . . 8 (.r𝑀) = (+g‘(mulGrp‘𝑀))
1817eqcomi 2740 . . . . . . 7 (+g‘(mulGrp‘𝑀)) = (.r𝑀)
1918subrngmcl 20472 . . . . . 6 ((𝑋 ∈ (SubRng‘𝑀) ∧ 𝑧𝑋𝑥𝑋) → (𝑧(+g‘(mulGrp‘𝑀))𝑥) ∈ 𝑋)
20193adant1l 1177 . . . . 5 (((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) ∧ 𝑧𝑋𝑥𝑋) → (𝑧(+g‘(mulGrp‘𝑀))𝑥) ∈ 𝑋)
218, 13, 14, 15, 20mhmimalem 18732 . . . 4 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g‘(mulGrp‘𝑁))𝑦) ∈ (𝐹𝑋))
22 eqid 2731 . . . . . . . . 9 (.r𝑁) = (.r𝑁)
236, 22mgpplusg 20062 . . . . . . . 8 (.r𝑁) = (+g‘(mulGrp‘𝑁))
2423eqcomi 2740 . . . . . . 7 (+g‘(mulGrp‘𝑁)) = (.r𝑁)
2524oveqi 7359 . . . . . 6 (𝑥(+g‘(mulGrp‘𝑁))𝑦) = (𝑥(.r𝑁)𝑦)
2625eleq1i 2822 . . . . 5 ((𝑥(+g‘(mulGrp‘𝑁))𝑦) ∈ (𝐹𝑋) ↔ (𝑥(.r𝑁)𝑦) ∈ (𝐹𝑋))
27262ralbii 3107 . . . 4 (∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g‘(mulGrp‘𝑁))𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(.r𝑁)𝑦) ∈ (𝐹𝑋))
2821, 27sylib 218 . . 3 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(.r𝑁)𝑦) ∈ (𝐹𝑋))
297, 28sylan 580 . 2 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(.r𝑁)𝑦) ∈ (𝐹𝑋))
30 rhmrcl2 20395 . . . . 5 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝑁 ∈ Ring)
31 ringrng 20203 . . . . 5 (𝑁 ∈ Ring → 𝑁 ∈ Rng)
3230, 31syl 17 . . . 4 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝑁 ∈ Rng)
3332adantr 480 . . 3 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → 𝑁 ∈ Rng)
34 eqid 2731 . . . 4 (Base‘𝑁) = (Base‘𝑁)
3534, 22issubrng2 20473 . . 3 (𝑁 ∈ Rng → ((𝐹𝑋) ∈ (SubRng‘𝑁) ↔ ((𝐹𝑋) ∈ (SubGrp‘𝑁) ∧ ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(.r𝑁)𝑦) ∈ (𝐹𝑋))))
3633, 35syl 17 . 2 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → ((𝐹𝑋) ∈ (SubRng‘𝑁) ↔ ((𝐹𝑋) ∈ (SubGrp‘𝑁) ∧ ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(.r𝑁)𝑦) ∈ (𝐹𝑋))))
374, 29, 36mpbir2and 713 1 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → (𝐹𝑋) ∈ (SubRng‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wral 3047  wss 3897  cima 5617  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  .rcmulr 17162   MndHom cmhm 18689  SubGrpcsubg 19033   GrpHom cghm 19124  mulGrpcmgp 20058  Rngcrng 20070  Ringcrg 20151   RingHom crh 20387  SubRngcsubrng 20460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-subg 19036  df-ghm 19125  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-rhm 20390  df-subrng 20461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator