MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmimasubrng Structured version   Visualization version   GIF version

Theorem rhmimasubrng 20592
Description: The homomorphic image of a subring is a subring. (Contributed by AV, 16-Feb-2025.)
Assertion
Ref Expression
rhmimasubrng ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → (𝐹𝑋) ∈ (SubRng‘𝑁))

Proof of Theorem rhmimasubrng
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rhmghm 20510 . . 3 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
2 subrngsubg 20578 . . 3 (𝑋 ∈ (SubRng‘𝑀) → 𝑋 ∈ (SubGrp‘𝑀))
3 ghmima 19277 . . 3 ((𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝑋 ∈ (SubGrp‘𝑀)) → (𝐹𝑋) ∈ (SubGrp‘𝑁))
41, 2, 3syl2an 595 . 2 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → (𝐹𝑋) ∈ (SubGrp‘𝑁))
5 eqid 2740 . . . 4 (mulGrp‘𝑀) = (mulGrp‘𝑀)
6 eqid 2740 . . . 4 (mulGrp‘𝑁) = (mulGrp‘𝑁)
75, 6rhmmhm 20505 . . 3 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)))
8 simpl 482 . . . . 5 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → 𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)))
9 eqid 2740 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
105, 9mgpbas 20167 . . . . . . . 8 (Base‘𝑀) = (Base‘(mulGrp‘𝑀))
1110eqcomi 2749 . . . . . . 7 (Base‘(mulGrp‘𝑀)) = (Base‘𝑀)
1211subrngss 20574 . . . . . 6 (𝑋 ∈ (SubRng‘𝑀) → 𝑋 ⊆ (Base‘(mulGrp‘𝑀)))
1312adantl 481 . . . . 5 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → 𝑋 ⊆ (Base‘(mulGrp‘𝑀)))
14 eqidd 2741 . . . . 5 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → (+g‘(mulGrp‘𝑀)) = (+g‘(mulGrp‘𝑀)))
15 eqidd 2741 . . . . 5 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → (+g‘(mulGrp‘𝑁)) = (+g‘(mulGrp‘𝑁)))
16 eqid 2740 . . . . . . . . 9 (.r𝑀) = (.r𝑀)
175, 16mgpplusg 20165 . . . . . . . 8 (.r𝑀) = (+g‘(mulGrp‘𝑀))
1817eqcomi 2749 . . . . . . 7 (+g‘(mulGrp‘𝑀)) = (.r𝑀)
1918subrngmcl 20583 . . . . . 6 ((𝑋 ∈ (SubRng‘𝑀) ∧ 𝑧𝑋𝑥𝑋) → (𝑧(+g‘(mulGrp‘𝑀))𝑥) ∈ 𝑋)
20193adant1l 1176 . . . . 5 (((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) ∧ 𝑧𝑋𝑥𝑋) → (𝑧(+g‘(mulGrp‘𝑀))𝑥) ∈ 𝑋)
218, 13, 14, 15, 20mhmimalem 18859 . . . 4 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g‘(mulGrp‘𝑁))𝑦) ∈ (𝐹𝑋))
22 eqid 2740 . . . . . . . . 9 (.r𝑁) = (.r𝑁)
236, 22mgpplusg 20165 . . . . . . . 8 (.r𝑁) = (+g‘(mulGrp‘𝑁))
2423eqcomi 2749 . . . . . . 7 (+g‘(mulGrp‘𝑁)) = (.r𝑁)
2524oveqi 7461 . . . . . 6 (𝑥(+g‘(mulGrp‘𝑁))𝑦) = (𝑥(.r𝑁)𝑦)
2625eleq1i 2835 . . . . 5 ((𝑥(+g‘(mulGrp‘𝑁))𝑦) ∈ (𝐹𝑋) ↔ (𝑥(.r𝑁)𝑦) ∈ (𝐹𝑋))
27262ralbii 3134 . . . 4 (∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g‘(mulGrp‘𝑁))𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(.r𝑁)𝑦) ∈ (𝐹𝑋))
2821, 27sylib 218 . . 3 ((𝐹 ∈ ((mulGrp‘𝑀) MndHom (mulGrp‘𝑁)) ∧ 𝑋 ∈ (SubRng‘𝑀)) → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(.r𝑁)𝑦) ∈ (𝐹𝑋))
297, 28sylan 579 . 2 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(.r𝑁)𝑦) ∈ (𝐹𝑋))
30 rhmrcl2 20503 . . . . 5 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝑁 ∈ Ring)
31 ringrng 20308 . . . . 5 (𝑁 ∈ Ring → 𝑁 ∈ Rng)
3230, 31syl 17 . . . 4 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝑁 ∈ Rng)
3332adantr 480 . . 3 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → 𝑁 ∈ Rng)
34 eqid 2740 . . . 4 (Base‘𝑁) = (Base‘𝑁)
3534, 22issubrng2 20584 . . 3 (𝑁 ∈ Rng → ((𝐹𝑋) ∈ (SubRng‘𝑁) ↔ ((𝐹𝑋) ∈ (SubGrp‘𝑁) ∧ ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(.r𝑁)𝑦) ∈ (𝐹𝑋))))
3633, 35syl 17 . 2 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → ((𝐹𝑋) ∈ (SubRng‘𝑁) ↔ ((𝐹𝑋) ∈ (SubGrp‘𝑁) ∧ ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(.r𝑁)𝑦) ∈ (𝐹𝑋))))
374, 29, 36mpbir2and 712 1 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → (𝐹𝑋) ∈ (SubRng‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3067  wss 3976  cima 5703  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312   MndHom cmhm 18816  SubGrpcsubg 19160   GrpHom cghm 19252  mulGrpcmgp 20161  Rngcrng 20179  Ringcrg 20260   RingHom crh 20495  SubRngcsubrng 20571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-subg 19163  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-rhm 20498  df-subrng 20572
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator