Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efgh | Structured version Visualization version GIF version |
Description: The exponential function of a scaled complex number is a group homomorphism from the group of complex numbers under addition to the set of complex numbers under multiplication. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 11-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
Ref | Expression |
---|---|
efgh.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) |
Ref | Expression |
---|---|
efgh | ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹‘𝐵) · (𝐹‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1196 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
2 | simp1r 1197 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝑋 ∈ (SubGrp‘ℂfld)) | |
3 | cnfldbas 20601 | . . . . . . . 8 ⊢ ℂ = (Base‘ℂfld) | |
4 | 3 | subgss 18756 | . . . . . . 7 ⊢ (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ) |
5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝑋 ⊆ ℂ) |
6 | simp2 1136 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
7 | 5, 6 | sseldd 3922 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐵 ∈ ℂ) |
8 | simp3 1137 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐶 ∈ 𝑋) | |
9 | 5, 8 | sseldd 3922 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐶 ∈ ℂ) |
10 | 1, 7, 9 | adddid 10999 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
11 | 10 | fveq2d 6778 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) = (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶)))) |
12 | 1, 7 | mulcld 10995 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · 𝐵) ∈ ℂ) |
13 | 1, 9 | mulcld 10995 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · 𝐶) ∈ ℂ) |
14 | efadd 15803 | . . . 4 ⊢ (((𝐴 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐶) ∈ ℂ) → (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶)))) | |
15 | 12, 13, 14 | syl2anc 584 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶)))) |
16 | 11, 15 | eqtrd 2778 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶)))) |
17 | efgh.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) | |
18 | oveq2 7283 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦)) | |
19 | 18 | fveq2d 6778 | . . . . 5 ⊢ (𝑥 = 𝑦 → (exp‘(𝐴 · 𝑥)) = (exp‘(𝐴 · 𝑦))) |
20 | 19 | cbvmptv 5187 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) = (𝑦 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑦))) |
21 | 17, 20 | eqtri 2766 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑦))) |
22 | oveq2 7283 | . . . 4 ⊢ (𝑦 = (𝐵 + 𝐶) → (𝐴 · 𝑦) = (𝐴 · (𝐵 + 𝐶))) | |
23 | 22 | fveq2d 6778 | . . 3 ⊢ (𝑦 = (𝐵 + 𝐶) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (𝐵 + 𝐶)))) |
24 | cnfldadd 20602 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
25 | 24 | subgcl 18765 | . . . 4 ⊢ ((𝑋 ∈ (SubGrp‘ℂfld) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵 + 𝐶) ∈ 𝑋) |
26 | 25 | 3adant1l 1175 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵 + 𝐶) ∈ 𝑋) |
27 | fvexd 6789 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) ∈ V) | |
28 | 21, 23, 26, 27 | fvmptd3 6898 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐵 + 𝐶)) = (exp‘(𝐴 · (𝐵 + 𝐶)))) |
29 | oveq2 7283 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵)) | |
30 | 29 | fveq2d 6778 | . . . 4 ⊢ (𝑦 = 𝐵 → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐵))) |
31 | fvexd 6789 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · 𝐵)) ∈ V) | |
32 | 21, 30, 6, 31 | fvmptd3 6898 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘𝐵) = (exp‘(𝐴 · 𝐵))) |
33 | oveq2 7283 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶)) | |
34 | 33 | fveq2d 6778 | . . . 4 ⊢ (𝑦 = 𝐶 → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐶))) |
35 | fvexd 6789 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · 𝐶)) ∈ V) | |
36 | 21, 34, 8, 35 | fvmptd3 6898 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘𝐶) = (exp‘(𝐴 · 𝐶))) |
37 | 32, 36 | oveq12d 7293 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐹‘𝐵) · (𝐹‘𝐶)) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶)))) |
38 | 16, 28, 37 | 3eqtr4d 2788 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹‘𝐵) · (𝐹‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 + caddc 10874 · cmul 10876 expce 15771 SubGrpcsubg 18749 ℂfldccnfld 20597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-ico 13085 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-shft 14778 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-ef 15777 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-subg 18752 df-cnfld 20598 |
This theorem is referenced by: efabl 25706 |
Copyright terms: Public domain | W3C validator |