MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgh Structured version   Visualization version   GIF version

Theorem efgh 24725
Description: The exponential function of a scaled complex number is a group homomorphism from the group of complex numbers under addition to the set of complex numbers under multiplication. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 11-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
Hypothesis
Ref Expression
efgh.1 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
Assertion
Ref Expression
efgh (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹𝐵) · (𝐹𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem efgh
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1l 1211 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐴 ∈ ℂ)
2 simp1r 1212 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝑋 ∈ (SubGrp‘ℂfld))
3 cnfldbas 20146 . . . . . . . 8 ℂ = (Base‘ℂfld)
43subgss 17979 . . . . . . 7 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ)
52, 4syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝑋 ⊆ ℂ)
6 simp2 1128 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐵𝑋)
75, 6sseldd 3822 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐵 ∈ ℂ)
8 simp3 1129 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐶𝑋)
95, 8sseldd 3822 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐶 ∈ ℂ)
101, 7, 9adddid 10401 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
1110fveq2d 6450 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) = (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))))
121, 7mulcld 10397 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐴 · 𝐵) ∈ ℂ)
131, 9mulcld 10397 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐴 · 𝐶) ∈ ℂ)
14 efadd 15226 . . . 4 (((𝐴 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐶) ∈ ℂ) → (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
1512, 13, 14syl2anc 579 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
1611, 15eqtrd 2814 . 2 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
17 efgh.1 . . . 4 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
18 oveq2 6930 . . . . . 6 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
1918fveq2d 6450 . . . . 5 (𝑥 = 𝑦 → (exp‘(𝐴 · 𝑥)) = (exp‘(𝐴 · 𝑦)))
2019cbvmptv 4985 . . . 4 (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥))) = (𝑦𝑋 ↦ (exp‘(𝐴 · 𝑦)))
2117, 20eqtri 2802 . . 3 𝐹 = (𝑦𝑋 ↦ (exp‘(𝐴 · 𝑦)))
22 oveq2 6930 . . . 4 (𝑦 = (𝐵 + 𝐶) → (𝐴 · 𝑦) = (𝐴 · (𝐵 + 𝐶)))
2322fveq2d 6450 . . 3 (𝑦 = (𝐵 + 𝐶) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (𝐵 + 𝐶))))
24 cnfldadd 20147 . . . . 5 + = (+g‘ℂfld)
2524subgcl 17988 . . . 4 ((𝑋 ∈ (SubGrp‘ℂfld) ∧ 𝐵𝑋𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
26253adant1l 1178 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
27 fvexd 6461 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) ∈ V)
2821, 23, 26, 27fvmptd3 6564 . 2 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹‘(𝐵 + 𝐶)) = (exp‘(𝐴 · (𝐵 + 𝐶))))
29 oveq2 6930 . . . . 5 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
3029fveq2d 6450 . . . 4 (𝑦 = 𝐵 → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐵)))
31 fvexd 6461 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · 𝐵)) ∈ V)
3221, 30, 6, 31fvmptd3 6564 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹𝐵) = (exp‘(𝐴 · 𝐵)))
33 oveq2 6930 . . . . 5 (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶))
3433fveq2d 6450 . . . 4 (𝑦 = 𝐶 → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐶)))
35 fvexd 6461 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · 𝐶)) ∈ V)
3621, 34, 8, 35fvmptd3 6564 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹𝐶) = (exp‘(𝐴 · 𝐶)))
3732, 36oveq12d 6940 . 2 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → ((𝐹𝐵) · (𝐹𝐶)) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
3816, 28, 373eqtr4d 2824 1 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹𝐵) · (𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  Vcvv 3398  wss 3792  cmpt 4965  cfv 6135  (class class class)co 6922  cc 10270   + caddc 10275   · cmul 10277  expce 15194  SubGrpcsubg 17972  fldccnfld 20142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-rp 12138  df-ico 12493  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-fac 13379  df-bc 13408  df-hash 13436  df-shft 14214  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825  df-ef 15200  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-subg 17975  df-cnfld 20143
This theorem is referenced by:  efabl  24734
  Copyright terms: Public domain W3C validator