MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgh Structured version   Visualization version   GIF version

Theorem efgh 25695
Description: The exponential function of a scaled complex number is a group homomorphism from the group of complex numbers under addition to the set of complex numbers under multiplication. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 11-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
Hypothesis
Ref Expression
efgh.1 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
Assertion
Ref Expression
efgh (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹𝐵) · (𝐹𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem efgh
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1l 1196 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐴 ∈ ℂ)
2 simp1r 1197 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝑋 ∈ (SubGrp‘ℂfld))
3 cnfldbas 20599 . . . . . . . 8 ℂ = (Base‘ℂfld)
43subgss 18754 . . . . . . 7 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ)
52, 4syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝑋 ⊆ ℂ)
6 simp2 1136 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐵𝑋)
75, 6sseldd 3927 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐵 ∈ ℂ)
8 simp3 1137 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐶𝑋)
95, 8sseldd 3927 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐶 ∈ ℂ)
101, 7, 9adddid 11000 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
1110fveq2d 6775 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) = (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))))
121, 7mulcld 10996 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐴 · 𝐵) ∈ ℂ)
131, 9mulcld 10996 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐴 · 𝐶) ∈ ℂ)
14 efadd 15801 . . . 4 (((𝐴 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐶) ∈ ℂ) → (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
1512, 13, 14syl2anc 584 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
1611, 15eqtrd 2780 . 2 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
17 efgh.1 . . . 4 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
18 oveq2 7279 . . . . . 6 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
1918fveq2d 6775 . . . . 5 (𝑥 = 𝑦 → (exp‘(𝐴 · 𝑥)) = (exp‘(𝐴 · 𝑦)))
2019cbvmptv 5192 . . . 4 (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥))) = (𝑦𝑋 ↦ (exp‘(𝐴 · 𝑦)))
2117, 20eqtri 2768 . . 3 𝐹 = (𝑦𝑋 ↦ (exp‘(𝐴 · 𝑦)))
22 oveq2 7279 . . . 4 (𝑦 = (𝐵 + 𝐶) → (𝐴 · 𝑦) = (𝐴 · (𝐵 + 𝐶)))
2322fveq2d 6775 . . 3 (𝑦 = (𝐵 + 𝐶) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (𝐵 + 𝐶))))
24 cnfldadd 20600 . . . . 5 + = (+g‘ℂfld)
2524subgcl 18763 . . . 4 ((𝑋 ∈ (SubGrp‘ℂfld) ∧ 𝐵𝑋𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
26253adant1l 1175 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
27 fvexd 6786 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) ∈ V)
2821, 23, 26, 27fvmptd3 6895 . 2 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹‘(𝐵 + 𝐶)) = (exp‘(𝐴 · (𝐵 + 𝐶))))
29 oveq2 7279 . . . . 5 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
3029fveq2d 6775 . . . 4 (𝑦 = 𝐵 → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐵)))
31 fvexd 6786 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · 𝐵)) ∈ V)
3221, 30, 6, 31fvmptd3 6895 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹𝐵) = (exp‘(𝐴 · 𝐵)))
33 oveq2 7279 . . . . 5 (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶))
3433fveq2d 6775 . . . 4 (𝑦 = 𝐶 → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐶)))
35 fvexd 6786 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · 𝐶)) ∈ V)
3621, 34, 8, 35fvmptd3 6895 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹𝐶) = (exp‘(𝐴 · 𝐶)))
3732, 36oveq12d 7289 . 2 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → ((𝐹𝐵) · (𝐹𝐶)) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
3816, 28, 373eqtr4d 2790 1 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹𝐵) · (𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  Vcvv 3431  wss 3892  cmpt 5162  cfv 6432  (class class class)co 7271  cc 10870   + caddc 10875   · cmul 10877  expce 15769  SubGrpcsubg 18747  fldccnfld 20595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-rp 12730  df-ico 13084  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-fac 13986  df-bc 14015  df-hash 14043  df-shft 14776  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-sum 15396  df-ef 15775  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-subg 18750  df-cnfld 20596
This theorem is referenced by:  efabl  25704
  Copyright terms: Public domain W3C validator