Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efgh | Structured version Visualization version GIF version |
Description: The exponential function of a scaled complex number is a group homomorphism from the group of complex numbers under addition to the set of complex numbers under multiplication. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 11-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
Ref | Expression |
---|---|
efgh.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) |
Ref | Expression |
---|---|
efgh | ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹‘𝐵) · (𝐹‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1195 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
2 | simp1r 1196 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝑋 ∈ (SubGrp‘ℂfld)) | |
3 | cnfldbas 20514 | . . . . . . . 8 ⊢ ℂ = (Base‘ℂfld) | |
4 | 3 | subgss 18671 | . . . . . . 7 ⊢ (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ) |
5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝑋 ⊆ ℂ) |
6 | simp2 1135 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
7 | 5, 6 | sseldd 3918 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐵 ∈ ℂ) |
8 | simp3 1136 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐶 ∈ 𝑋) | |
9 | 5, 8 | sseldd 3918 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐶 ∈ ℂ) |
10 | 1, 7, 9 | adddid 10930 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
11 | 10 | fveq2d 6760 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) = (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶)))) |
12 | 1, 7 | mulcld 10926 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · 𝐵) ∈ ℂ) |
13 | 1, 9 | mulcld 10926 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · 𝐶) ∈ ℂ) |
14 | efadd 15731 | . . . 4 ⊢ (((𝐴 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐶) ∈ ℂ) → (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶)))) | |
15 | 12, 13, 14 | syl2anc 583 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶)))) |
16 | 11, 15 | eqtrd 2778 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶)))) |
17 | efgh.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) | |
18 | oveq2 7263 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦)) | |
19 | 18 | fveq2d 6760 | . . . . 5 ⊢ (𝑥 = 𝑦 → (exp‘(𝐴 · 𝑥)) = (exp‘(𝐴 · 𝑦))) |
20 | 19 | cbvmptv 5183 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) = (𝑦 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑦))) |
21 | 17, 20 | eqtri 2766 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑦))) |
22 | oveq2 7263 | . . . 4 ⊢ (𝑦 = (𝐵 + 𝐶) → (𝐴 · 𝑦) = (𝐴 · (𝐵 + 𝐶))) | |
23 | 22 | fveq2d 6760 | . . 3 ⊢ (𝑦 = (𝐵 + 𝐶) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (𝐵 + 𝐶)))) |
24 | cnfldadd 20515 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
25 | 24 | subgcl 18680 | . . . 4 ⊢ ((𝑋 ∈ (SubGrp‘ℂfld) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵 + 𝐶) ∈ 𝑋) |
26 | 25 | 3adant1l 1174 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵 + 𝐶) ∈ 𝑋) |
27 | fvexd 6771 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) ∈ V) | |
28 | 21, 23, 26, 27 | fvmptd3 6880 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐵 + 𝐶)) = (exp‘(𝐴 · (𝐵 + 𝐶)))) |
29 | oveq2 7263 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵)) | |
30 | 29 | fveq2d 6760 | . . . 4 ⊢ (𝑦 = 𝐵 → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐵))) |
31 | fvexd 6771 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · 𝐵)) ∈ V) | |
32 | 21, 30, 6, 31 | fvmptd3 6880 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘𝐵) = (exp‘(𝐴 · 𝐵))) |
33 | oveq2 7263 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶)) | |
34 | 33 | fveq2d 6760 | . . . 4 ⊢ (𝑦 = 𝐶 → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐶))) |
35 | fvexd 6771 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · 𝐶)) ∈ V) | |
36 | 21, 34, 8, 35 | fvmptd3 6880 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘𝐶) = (exp‘(𝐴 · 𝐶))) |
37 | 32, 36 | oveq12d 7273 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐹‘𝐵) · (𝐹‘𝐶)) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶)))) |
38 | 16, 28, 37 | 3eqtr4d 2788 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹‘𝐵) · (𝐹‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 + caddc 10805 · cmul 10807 expce 15699 SubGrpcsubg 18664 ℂfldccnfld 20510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-ico 13014 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-subg 18667 df-cnfld 20511 |
This theorem is referenced by: efabl 25611 |
Copyright terms: Public domain | W3C validator |