MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgh Structured version   Visualization version   GIF version

Theorem efgh 25602
Description: The exponential function of a scaled complex number is a group homomorphism from the group of complex numbers under addition to the set of complex numbers under multiplication. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 11-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
Hypothesis
Ref Expression
efgh.1 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
Assertion
Ref Expression
efgh (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹𝐵) · (𝐹𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem efgh
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1l 1195 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐴 ∈ ℂ)
2 simp1r 1196 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝑋 ∈ (SubGrp‘ℂfld))
3 cnfldbas 20514 . . . . . . . 8 ℂ = (Base‘ℂfld)
43subgss 18671 . . . . . . 7 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ)
52, 4syl 17 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝑋 ⊆ ℂ)
6 simp2 1135 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐵𝑋)
75, 6sseldd 3918 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐵 ∈ ℂ)
8 simp3 1136 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐶𝑋)
95, 8sseldd 3918 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → 𝐶 ∈ ℂ)
101, 7, 9adddid 10930 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
1110fveq2d 6760 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) = (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))))
121, 7mulcld 10926 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐴 · 𝐵) ∈ ℂ)
131, 9mulcld 10926 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐴 · 𝐶) ∈ ℂ)
14 efadd 15731 . . . 4 (((𝐴 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐶) ∈ ℂ) → (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
1512, 13, 14syl2anc 583 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
1611, 15eqtrd 2778 . 2 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
17 efgh.1 . . . 4 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
18 oveq2 7263 . . . . . 6 (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦))
1918fveq2d 6760 . . . . 5 (𝑥 = 𝑦 → (exp‘(𝐴 · 𝑥)) = (exp‘(𝐴 · 𝑦)))
2019cbvmptv 5183 . . . 4 (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥))) = (𝑦𝑋 ↦ (exp‘(𝐴 · 𝑦)))
2117, 20eqtri 2766 . . 3 𝐹 = (𝑦𝑋 ↦ (exp‘(𝐴 · 𝑦)))
22 oveq2 7263 . . . 4 (𝑦 = (𝐵 + 𝐶) → (𝐴 · 𝑦) = (𝐴 · (𝐵 + 𝐶)))
2322fveq2d 6760 . . 3 (𝑦 = (𝐵 + 𝐶) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (𝐵 + 𝐶))))
24 cnfldadd 20515 . . . . 5 + = (+g‘ℂfld)
2524subgcl 18680 . . . 4 ((𝑋 ∈ (SubGrp‘ℂfld) ∧ 𝐵𝑋𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
26253adant1l 1174 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐵 + 𝐶) ∈ 𝑋)
27 fvexd 6771 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) ∈ V)
2821, 23, 26, 27fvmptd3 6880 . 2 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹‘(𝐵 + 𝐶)) = (exp‘(𝐴 · (𝐵 + 𝐶))))
29 oveq2 7263 . . . . 5 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
3029fveq2d 6760 . . . 4 (𝑦 = 𝐵 → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐵)))
31 fvexd 6771 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · 𝐵)) ∈ V)
3221, 30, 6, 31fvmptd3 6880 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹𝐵) = (exp‘(𝐴 · 𝐵)))
33 oveq2 7263 . . . . 5 (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶))
3433fveq2d 6760 . . . 4 (𝑦 = 𝐶 → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐶)))
35 fvexd 6771 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (exp‘(𝐴 · 𝐶)) ∈ V)
3621, 34, 8, 35fvmptd3 6880 . . 3 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹𝐶) = (exp‘(𝐴 · 𝐶)))
3732, 36oveq12d 7273 . 2 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → ((𝐹𝐵) · (𝐹𝐶)) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶))))
3816, 28, 373eqtr4d 2788 1 (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵𝑋𝐶𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹𝐵) · (𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800   + caddc 10805   · cmul 10807  expce 15699  SubGrpcsubg 18664  fldccnfld 20510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-subg 18667  df-cnfld 20511
This theorem is referenced by:  efabl  25611
  Copyright terms: Public domain W3C validator