| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efgh | Structured version Visualization version GIF version | ||
| Description: The exponential function of a scaled complex number is a group homomorphism from the group of complex numbers under addition to the set of complex numbers under multiplication. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 11-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
| Ref | Expression |
|---|---|
| efgh.1 | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) |
| Ref | Expression |
|---|---|
| efgh | ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹‘𝐵) · (𝐹‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1197 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
| 2 | simp1r 1198 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝑋 ∈ (SubGrp‘ℂfld)) | |
| 3 | cnfldbas 21330 | . . . . . . . 8 ⊢ ℂ = (Base‘ℂfld) | |
| 4 | 3 | subgss 19114 | . . . . . . 7 ⊢ (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ) |
| 5 | 2, 4 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝑋 ⊆ ℂ) |
| 6 | simp2 1137 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
| 7 | 5, 6 | sseldd 3964 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐵 ∈ ℂ) |
| 8 | simp3 1138 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐶 ∈ 𝑋) | |
| 9 | 5, 8 | sseldd 3964 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → 𝐶 ∈ ℂ) |
| 10 | 1, 7, 9 | adddid 11267 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| 11 | 10 | fveq2d 6890 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) = (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶)))) |
| 12 | 1, 7 | mulcld 11263 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · 𝐵) ∈ ℂ) |
| 13 | 1, 9 | mulcld 11263 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐴 · 𝐶) ∈ ℂ) |
| 14 | efadd 16112 | . . . 4 ⊢ (((𝐴 · 𝐵) ∈ ℂ ∧ (𝐴 · 𝐶) ∈ ℂ) → (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶)))) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘((𝐴 · 𝐵) + (𝐴 · 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶)))) |
| 16 | 11, 15 | eqtrd 2769 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶)))) |
| 17 | efgh.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) | |
| 18 | oveq2 7421 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐴 · 𝑥) = (𝐴 · 𝑦)) | |
| 19 | 18 | fveq2d 6890 | . . . . 5 ⊢ (𝑥 = 𝑦 → (exp‘(𝐴 · 𝑥)) = (exp‘(𝐴 · 𝑦))) |
| 20 | 19 | cbvmptv 5235 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑥))) = (𝑦 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑦))) |
| 21 | 17, 20 | eqtri 2757 | . . 3 ⊢ 𝐹 = (𝑦 ∈ 𝑋 ↦ (exp‘(𝐴 · 𝑦))) |
| 22 | oveq2 7421 | . . . 4 ⊢ (𝑦 = (𝐵 + 𝐶) → (𝐴 · 𝑦) = (𝐴 · (𝐵 + 𝐶))) | |
| 23 | 22 | fveq2d 6890 | . . 3 ⊢ (𝑦 = (𝐵 + 𝐶) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (𝐵 + 𝐶)))) |
| 24 | cnfldadd 21332 | . . . . 5 ⊢ + = (+g‘ℂfld) | |
| 25 | 24 | subgcl 19123 | . . . 4 ⊢ ((𝑋 ∈ (SubGrp‘ℂfld) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵 + 𝐶) ∈ 𝑋) |
| 26 | 25 | 3adant1l 1176 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵 + 𝐶) ∈ 𝑋) |
| 27 | fvexd 6901 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · (𝐵 + 𝐶))) ∈ V) | |
| 28 | 21, 23, 26, 27 | fvmptd3 7019 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐵 + 𝐶)) = (exp‘(𝐴 · (𝐵 + 𝐶)))) |
| 29 | oveq2 7421 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵)) | |
| 30 | 29 | fveq2d 6890 | . . . 4 ⊢ (𝑦 = 𝐵 → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐵))) |
| 31 | fvexd 6901 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · 𝐵)) ∈ V) | |
| 32 | 21, 30, 6, 31 | fvmptd3 7019 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘𝐵) = (exp‘(𝐴 · 𝐵))) |
| 33 | oveq2 7421 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝐴 · 𝑦) = (𝐴 · 𝐶)) | |
| 34 | 33 | fveq2d 6890 | . . . 4 ⊢ (𝑦 = 𝐶 → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · 𝐶))) |
| 35 | fvexd 6901 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (exp‘(𝐴 · 𝐶)) ∈ V) | |
| 36 | 21, 34, 8, 35 | fvmptd3 7019 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘𝐶) = (exp‘(𝐴 · 𝐶))) |
| 37 | 32, 36 | oveq12d 7431 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐹‘𝐵) · (𝐹‘𝐶)) = ((exp‘(𝐴 · 𝐵)) · (exp‘(𝐴 · 𝐶)))) |
| 38 | 16, 28, 37 | 3eqtr4d 2779 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝑋 ∈ (SubGrp‘ℂfld)) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐹‘(𝐵 + 𝐶)) = ((𝐹‘𝐵) · (𝐹‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 ℂcc 11135 + caddc 11140 · cmul 11142 expce 16079 SubGrpcsubg 19107 ℂfldccnfld 21326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-addf 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-rp 13017 df-ico 13375 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-fac 14295 df-bc 14324 df-hash 14352 df-shft 15088 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-limsup 15489 df-clim 15506 df-rlim 15507 df-sum 15705 df-ef 16085 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-starv 17288 df-tset 17292 df-ple 17293 df-ds 17295 df-unif 17296 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-grp 18923 df-subg 19110 df-cnfld 21327 |
| This theorem is referenced by: efabl 26528 |
| Copyright terms: Public domain | W3C validator |