Step | Hyp | Ref
| Expression |
1 | | limccl 24944 |
. . . 4
⊢ (𝐹 limℂ 𝐷) ⊆
ℂ |
2 | | mullimc.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐷)) |
3 | 1, 2 | sselid 3915 |
. . 3
⊢ (𝜑 → 𝑋 ∈ ℂ) |
4 | | limccl 24944 |
. . . 4
⊢ (𝐺 limℂ 𝐷) ⊆
ℂ |
5 | | mullimc.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ (𝐺 limℂ 𝐷)) |
6 | 4, 5 | sselid 3915 |
. . 3
⊢ (𝜑 → 𝑌 ∈ ℂ) |
7 | 3, 6 | mulcld 10926 |
. 2
⊢ (𝜑 → (𝑋 · 𝑌) ∈ ℂ) |
8 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → 𝑤 ∈
ℝ+) |
9 | 3 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → 𝑋 ∈
ℂ) |
10 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → 𝑌 ∈
ℂ) |
11 | | mulcn2 15233 |
. . . . 5
⊢ ((𝑤 ∈ ℝ+
∧ 𝑋 ∈ ℂ
∧ 𝑌 ∈ ℂ)
→ ∃𝑎 ∈
ℝ+ ∃𝑏 ∈ ℝ+ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ
(((abs‘(𝑐 −
𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) |
12 | 8, 9, 10, 11 | syl3anc 1369 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) →
∃𝑎 ∈
ℝ+ ∃𝑏 ∈ ℝ+ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ
(((abs‘(𝑐 −
𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) |
13 | | mullimc.b |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
14 | | mullimc.f |
. . . . . . . . . . . . . . . . 17
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
15 | 13, 14 | fmptd 6970 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
16 | 14, 13 | dmmptd 6562 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → dom 𝐹 = 𝐴) |
17 | | limcrcl 24943 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 ∈ (𝐹 limℂ 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ)) |
18 | 2, 17 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ)) |
19 | 18 | simp2d 1141 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → dom 𝐹 ⊆ ℂ) |
20 | 16, 19 | eqsstrrd 3956 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
21 | 18 | simp3d 1142 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐷 ∈ ℂ) |
22 | 15, 20, 21 | ellimc3 24948 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑋 ∈ (𝐹 limℂ 𝐷) ↔ (𝑋 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+
∃𝑒 ∈
ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎)))) |
23 | 2, 22 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑋 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+
∃𝑒 ∈
ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎))) |
24 | 23 | simprd 495 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑎 ∈ ℝ+ ∃𝑒 ∈ ℝ+
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎)) |
25 | 24 | r19.21bi 3132 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ ℝ+) →
∃𝑒 ∈
ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎)) |
26 | 25 | adantrr 713 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
→ ∃𝑒 ∈
ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎)) |
27 | | mullimc.c |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
28 | | mullimc.g |
. . . . . . . . . . . . . . . . 17
⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
29 | 27, 28 | fmptd 6970 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐺:𝐴⟶ℂ) |
30 | 29, 20, 21 | ellimc3 24948 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑌 ∈ (𝐺 limℂ 𝐷) ↔ (𝑌 ∈ ℂ ∧ ∀𝑏 ∈ ℝ+
∃𝑓 ∈
ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)))) |
31 | 5, 30 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑌 ∈ ℂ ∧ ∀𝑏 ∈ ℝ+
∃𝑓 ∈
ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) |
32 | 31 | simprd 495 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑏 ∈ ℝ+ ∃𝑓 ∈ ℝ+
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) |
33 | 32 | r19.21bi 3132 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ ℝ+) →
∃𝑓 ∈
ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) |
34 | 33 | adantrl 712 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
→ ∃𝑓 ∈
ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) |
35 | | reeanv 3292 |
. . . . . . . . . . 11
⊢
(∃𝑒 ∈
ℝ+ ∃𝑓 ∈ ℝ+ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) ↔ (∃𝑒 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∃𝑓 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) |
36 | 26, 34, 35 | sylanbrc 582 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
→ ∃𝑒 ∈
ℝ+ ∃𝑓 ∈ ℝ+ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) |
37 | | ifcl 4501 |
. . . . . . . . . . . . . 14
⊢ ((𝑒 ∈ ℝ+
∧ 𝑓 ∈
ℝ+) → if(𝑒 ≤ 𝑓, 𝑒, 𝑓) ∈
ℝ+) |
38 | 37 | 3ad2ant2 1132 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) → if(𝑒 ≤ 𝑓, 𝑒, 𝑓) ∈
ℝ+) |
39 | | nfv 1918 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑧(𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈
ℝ+)) |
40 | | nfv 1918 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑧(𝑒 ∈ ℝ+
∧ 𝑓 ∈
ℝ+) |
41 | | nfra1 3142 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑧∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) |
42 | | nfra1 3142 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑧∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏) |
43 | 41, 42 | nfan 1903 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑧(∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) |
44 | 39, 40, 43 | nf3an 1905 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑧((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) |
45 | | simp11l 1282 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → 𝜑) |
46 | | simp1rl 1236 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) → 𝑎 ∈ ℝ+) |
47 | 46 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → 𝑎 ∈ ℝ+) |
48 | 45, 47 | jca 511 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → (𝜑 ∧ 𝑎 ∈
ℝ+)) |
49 | | simp12 1202 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → (𝑒 ∈ ℝ+ ∧ 𝑓 ∈
ℝ+)) |
50 | | simp13l 1286 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎)) |
51 | 48, 49, 50 | jca31 514 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+
∧ 𝑓 ∈
ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎))) |
52 | | simp1r 1196 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑎 ∈ ℝ+)
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎)) |
53 | | simp2 1135 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑎 ∈ ℝ+)
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → 𝑧 ∈ 𝐴) |
54 | | simp3l 1199 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑎 ∈ ℝ+)
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → 𝑧 ≠ 𝐷) |
55 | | simplll 771 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+
∧ 𝑓 ∈
ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎)) → 𝜑) |
56 | 55 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑎 ∈ ℝ+)
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → 𝜑) |
57 | | simp1lr 1235 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑎 ∈ ℝ+)
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → (𝑒 ∈ ℝ+ ∧ 𝑓 ∈
ℝ+)) |
58 | | simp3r 1200 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑎 ∈ ℝ+)
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) |
59 | | simp1l 1195 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ 𝑓 ∈ ℝ+))
∧ 𝑧 ∈ 𝐴 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) → 𝜑) |
60 | | simp2 1135 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ 𝑓 ∈ ℝ+))
∧ 𝑧 ∈ 𝐴 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) → 𝑧 ∈ 𝐴) |
61 | 20 | sselda 3917 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ ℂ) |
62 | 59, 60, 61 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ 𝑓 ∈ ℝ+))
∧ 𝑧 ∈ 𝐴 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) → 𝑧 ∈ ℂ) |
63 | 59, 21 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ 𝑓 ∈ ℝ+))
∧ 𝑧 ∈ 𝐴 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) → 𝐷 ∈ ℂ) |
64 | 62, 63 | subcld 11262 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ 𝑓 ∈ ℝ+))
∧ 𝑧 ∈ 𝐴 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) → (𝑧 − 𝐷) ∈ ℂ) |
65 | 64 | abscld 15076 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ 𝑓 ∈ ℝ+))
∧ 𝑧 ∈ 𝐴 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) → (abs‘(𝑧 − 𝐷)) ∈ ℝ) |
66 | | rpre 12667 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑒 ∈ ℝ+
→ 𝑒 ∈
ℝ) |
67 | 66 | ad2antrl 724 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ 𝑓 ∈ ℝ+))
→ 𝑒 ∈
ℝ) |
68 | 67 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ 𝑓 ∈ ℝ+))
∧ 𝑧 ∈ 𝐴 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) → 𝑒 ∈ ℝ) |
69 | | rpre 12667 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 ∈ ℝ+
→ 𝑓 ∈
ℝ) |
70 | 69 | ad2antll 725 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ 𝑓 ∈ ℝ+))
→ 𝑓 ∈
ℝ) |
71 | 70 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ 𝑓 ∈ ℝ+))
∧ 𝑧 ∈ 𝐴 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) → 𝑓 ∈ ℝ) |
72 | 68, 71 | ifcld 4502 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ 𝑓 ∈ ℝ+))
∧ 𝑧 ∈ 𝐴 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) → if(𝑒 ≤ 𝑓, 𝑒, 𝑓) ∈ ℝ) |
73 | | simp3 1136 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ 𝑓 ∈ ℝ+))
∧ 𝑧 ∈ 𝐴 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) → (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) |
74 | | min1 12852 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → if(𝑒 ≤ 𝑓, 𝑒, 𝑓) ≤ 𝑒) |
75 | 68, 71, 74 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ 𝑓 ∈ ℝ+))
∧ 𝑧 ∈ 𝐴 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) → if(𝑒 ≤ 𝑓, 𝑒, 𝑓) ≤ 𝑒) |
76 | 65, 72, 68, 73, 75 | ltletrd 11065 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ 𝑓 ∈ ℝ+))
∧ 𝑧 ∈ 𝐴 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) → (abs‘(𝑧 − 𝐷)) < 𝑒) |
77 | 56, 57, 53, 58, 76 | syl211anc 1374 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑎 ∈ ℝ+)
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → (abs‘(𝑧 − 𝐷)) < 𝑒) |
78 | 54, 77 | jca 511 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑎 ∈ ℝ+)
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒)) |
79 | | rsp 3129 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑧 ∈
𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) → (𝑧 ∈ 𝐴 → ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎))) |
80 | 52, 53, 78, 79 | syl3c 66 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑎 ∈ ℝ+)
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) |
81 | 51, 80 | syld3an1 1408 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) |
82 | | simp1l 1195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) → 𝜑) |
83 | 82, 46 | jca 511 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) → (𝜑 ∧ 𝑎 ∈
ℝ+)) |
84 | | simp2 1135 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) → (𝑒 ∈ ℝ+ ∧ 𝑓 ∈
ℝ+)) |
85 | | simp3r 1200 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) → ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) |
86 | 83, 84, 85 | jca31 514 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) → (((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+
∧ 𝑓 ∈
ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) |
87 | | simp1r 1196 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑎 ∈ ℝ+)
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) |
88 | | simp2 1135 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑎 ∈ ℝ+)
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → 𝑧 ∈ 𝐴) |
89 | | simp3l 1199 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑎 ∈ ℝ+)
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → 𝑧 ≠ 𝐷) |
90 | | simplll 771 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+
∧ 𝑓 ∈
ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) → 𝜑) |
91 | 90 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑎 ∈ ℝ+)
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → 𝜑) |
92 | | simp1lr 1235 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑎 ∈ ℝ+)
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → (𝑒 ∈ ℝ+ ∧ 𝑓 ∈
ℝ+)) |
93 | | simp3r 1200 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑎 ∈ ℝ+)
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) |
94 | | min2 12853 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → if(𝑒 ≤ 𝑓, 𝑒, 𝑓) ≤ 𝑓) |
95 | 68, 71, 94 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ 𝑓 ∈ ℝ+))
∧ 𝑧 ∈ 𝐴 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) → if(𝑒 ≤ 𝑓, 𝑒, 𝑓) ≤ 𝑓) |
96 | 65, 72, 71, 73, 95 | ltletrd 11065 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑒 ∈ ℝ+ ∧ 𝑓 ∈ ℝ+))
∧ 𝑧 ∈ 𝐴 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) → (abs‘(𝑧 − 𝐷)) < 𝑓) |
97 | 91, 92, 88, 93, 96 | syl211anc 1374 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑎 ∈ ℝ+)
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → (abs‘(𝑧 − 𝐷)) < 𝑓) |
98 | 89, 97 | jca 511 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑎 ∈ ℝ+)
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓)) |
99 | | rsp 3129 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑧 ∈
𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏) → (𝑧 ∈ 𝐴 → ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) |
100 | 87, 88, 98, 99 | syl3c 66 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑎 ∈ ℝ+)
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+)) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏) |
101 | 86, 100 | syl3an1 1161 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏) |
102 | 81, 101 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓))) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) |
103 | 102 | 3exp 1117 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) → (𝑧 ∈ 𝐴 → ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)))) |
104 | 44, 103 | ralrimi 3139 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) → ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) |
105 | | brimralrspcev 5131 |
. . . . . . . . . . . . 13
⊢
((if(𝑒 ≤ 𝑓, 𝑒, 𝑓) ∈ ℝ+ ∧
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < if(𝑒 ≤ 𝑓, 𝑒, 𝑓)) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) |
106 | 38, 104, 105 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
∧ (𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) ∧ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) |
107 | 106 | 3exp 1117 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
→ ((𝑒 ∈
ℝ+ ∧ 𝑓
∈ ℝ+) → ((∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))))) |
108 | 107 | rexlimdvv 3221 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
→ (∃𝑒 ∈
ℝ+ ∃𝑓 ∈ ℝ+ (∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑒) → (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑓) → (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)))) |
109 | 36, 108 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+))
→ ∃𝑦 ∈
ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) |
110 | 109 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+)) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) |
111 | 110 | 3adant3 1130 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) |
112 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧(((𝜑 ∧ 𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) |
113 | | nfra1 3142 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) |
114 | 112, 113 | nfan 1903 |
. . . . . . . . . 10
⊢
Ⅎ𝑧((((𝜑 ∧ 𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) |
115 | | simp1l 1195 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) → 𝜑) |
116 | 115 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑤 ∈ ℝ+)
∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) → 𝜑) |
117 | 116 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑤 ∈ ℝ+)
∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦)) → 𝜑) |
118 | | simp2 1135 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑤 ∈ ℝ+)
∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦)) → 𝑧 ∈ 𝐴) |
119 | | nfv 1918 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(𝜑 ∧ 𝑧 ∈ 𝐴) |
120 | | mullimc.h |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ (𝐵 · 𝐶)) |
121 | | nfmpt1 5178 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ (𝐵 · 𝐶)) |
122 | 120, 121 | nfcxfr 2904 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥𝐻 |
123 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥𝑧 |
124 | 122, 123 | nffv 6766 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥(𝐻‘𝑧) |
125 | | nfmpt1 5178 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
126 | 14, 125 | nfcxfr 2904 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥𝐹 |
127 | 126, 123 | nffv 6766 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥(𝐹‘𝑧) |
128 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥
· |
129 | | nfmpt1 5178 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐶) |
130 | 28, 129 | nfcxfr 2904 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥𝐺 |
131 | 130, 123 | nffv 6766 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥(𝐺‘𝑧) |
132 | 127, 128,
131 | nfov 7285 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥((𝐹‘𝑧) · (𝐺‘𝑧)) |
133 | 124, 132 | nfeq 2919 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(𝐻‘𝑧) = ((𝐹‘𝑧) · (𝐺‘𝑧)) |
134 | 119, 133 | nfim 1900 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐻‘𝑧) = ((𝐹‘𝑧) · (𝐺‘𝑧))) |
135 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
136 | 135 | anbi2d 628 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑧 ∈ 𝐴))) |
137 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → (𝐻‘𝑥) = (𝐻‘𝑧)) |
138 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
139 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑧 → (𝐺‘𝑥) = (𝐺‘𝑧)) |
140 | 138, 139 | oveq12d 7273 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) · (𝐺‘𝑥)) = ((𝐹‘𝑧) · (𝐺‘𝑧))) |
141 | 137, 140 | eqeq12d 2754 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → ((𝐻‘𝑥) = ((𝐹‘𝑥) · (𝐺‘𝑥)) ↔ (𝐻‘𝑧) = ((𝐹‘𝑧) · (𝐺‘𝑧)))) |
142 | 136, 141 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) = ((𝐹‘𝑥) · (𝐺‘𝑥))) ↔ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐻‘𝑧) = ((𝐹‘𝑧) · (𝐺‘𝑧))))) |
143 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
144 | 13, 27 | mulcld 10926 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 · 𝐶) ∈ ℂ) |
145 | 120 | fvmpt2 6868 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝐴 ∧ (𝐵 · 𝐶) ∈ ℂ) → (𝐻‘𝑥) = (𝐵 · 𝐶)) |
146 | 143, 144,
145 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) = (𝐵 · 𝐶)) |
147 | 14 | fvmpt2 6868 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℂ) → (𝐹‘𝑥) = 𝐵) |
148 | 143, 13, 147 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
149 | 148 | eqcomd 2744 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = (𝐹‘𝑥)) |
150 | 28 | fvmpt2 6868 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ ℂ) → (𝐺‘𝑥) = 𝐶) |
151 | 143, 27, 150 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = 𝐶) |
152 | 151 | eqcomd 2744 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 = (𝐺‘𝑥)) |
153 | 149, 152 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 · 𝐶) = ((𝐹‘𝑥) · (𝐺‘𝑥))) |
154 | 146, 153 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) = ((𝐹‘𝑥) · (𝐺‘𝑥))) |
155 | 134, 142,
154 | chvarfv 2236 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐻‘𝑧) = ((𝐹‘𝑧) · (𝐺‘𝑧))) |
156 | 155 | fvoveq1d 7277 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (abs‘((𝐻‘𝑧) − (𝑋 · 𝑌))) = (abs‘(((𝐹‘𝑧) · (𝐺‘𝑧)) − (𝑋 · 𝑌)))) |
157 | 117, 118,
156 | syl2anc 583 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑤 ∈ ℝ+)
∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦)) → (abs‘((𝐻‘𝑧) − (𝑋 · 𝑌))) = (abs‘(((𝐹‘𝑧) · (𝐺‘𝑧)) − (𝑋 · 𝑌)))) |
158 | 15 | ffvelrnda 6943 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ ℂ) |
159 | 29 | ffvelrnda 6943 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐺‘𝑧) ∈ ℂ) |
160 | 158, 159 | jca 511 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ((𝐹‘𝑧) ∈ ℂ ∧ (𝐺‘𝑧) ∈ ℂ)) |
161 | 117, 118,
160 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑤 ∈ ℝ+)
∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦)) → ((𝐹‘𝑧) ∈ ℂ ∧ (𝐺‘𝑧) ∈ ℂ)) |
162 | | simpll3 1212 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑤 ∈ ℝ+)
∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) → ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) |
163 | 162 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑤 ∈ ℝ+)
∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦)) → ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) |
164 | | rsp 3129 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑧 ∈
𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) → (𝑧 ∈ 𝐴 → ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)))) |
165 | 164 | 3imp 1109 |
. . . . . . . . . . . . . 14
⊢
((∀𝑧 ∈
𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦)) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) |
166 | 165 | 3adant1l 1174 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑤 ∈ ℝ+)
∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦)) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) |
167 | | fvoveq1 7278 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (𝐹‘𝑧) → (abs‘(𝑐 − 𝑋)) = (abs‘((𝐹‘𝑧) − 𝑋))) |
168 | 167 | breq1d 5080 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝐹‘𝑧) → ((abs‘(𝑐 − 𝑋)) < 𝑎 ↔ (abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎)) |
169 | 168 | anbi1d 629 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = (𝐹‘𝑧) → (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) ↔ ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏))) |
170 | | oveq1 7262 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 = (𝐹‘𝑧) → (𝑐 · 𝑑) = ((𝐹‘𝑧) · 𝑑)) |
171 | 170 | fvoveq1d 7277 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = (𝐹‘𝑧) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) = (abs‘(((𝐹‘𝑧) · 𝑑) − (𝑋 · 𝑌)))) |
172 | 171 | breq1d 5080 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = (𝐹‘𝑧) → ((abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤 ↔ (abs‘(((𝐹‘𝑧) · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) |
173 | 169, 172 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = (𝐹‘𝑧) → ((((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤) ↔ (((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘(((𝐹‘𝑧) · 𝑑) − (𝑋 · 𝑌))) < 𝑤))) |
174 | | fvoveq1 7278 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = (𝐺‘𝑧) → (abs‘(𝑑 − 𝑌)) = (abs‘((𝐺‘𝑧) − 𝑌))) |
175 | 174 | breq1d 5080 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = (𝐺‘𝑧) → ((abs‘(𝑑 − 𝑌)) < 𝑏 ↔ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) |
176 | 175 | anbi2d 628 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = (𝐺‘𝑧) → (((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) ↔ ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) |
177 | | oveq2 7263 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 = (𝐺‘𝑧) → ((𝐹‘𝑧) · 𝑑) = ((𝐹‘𝑧) · (𝐺‘𝑧))) |
178 | 177 | fvoveq1d 7277 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = (𝐺‘𝑧) → (abs‘(((𝐹‘𝑧) · 𝑑) − (𝑋 · 𝑌))) = (abs‘(((𝐹‘𝑧) · (𝐺‘𝑧)) − (𝑋 · 𝑌)))) |
179 | 178 | breq1d 5080 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = (𝐺‘𝑧) → ((abs‘(((𝐹‘𝑧) · 𝑑) − (𝑋 · 𝑌))) < 𝑤 ↔ (abs‘(((𝐹‘𝑧) · (𝐺‘𝑧)) − (𝑋 · 𝑌))) < 𝑤)) |
180 | 176, 179 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = (𝐺‘𝑧) → ((((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘(((𝐹‘𝑧) · 𝑑) − (𝑋 · 𝑌))) < 𝑤) ↔ (((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏) → (abs‘(((𝐹‘𝑧) · (𝐺‘𝑧)) − (𝑋 · 𝑌))) < 𝑤))) |
181 | 173, 180 | rspc2v 3562 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑧) ∈ ℂ ∧ (𝐺‘𝑧) ∈ ℂ) → (∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ
(((abs‘(𝑐 −
𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤) → (((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏) → (abs‘(((𝐹‘𝑧) · (𝐺‘𝑧)) − (𝑋 · 𝑌))) < 𝑤))) |
182 | 161, 163,
166, 181 | syl3c 66 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑤 ∈ ℝ+)
∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦)) → (abs‘(((𝐹‘𝑧) · (𝐺‘𝑧)) − (𝑋 · 𝑌))) < 𝑤) |
183 | 157, 182 | eqbrtrd 5092 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑤 ∈ ℝ+)
∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧 ∈ 𝐴 ∧ (𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦)) → (abs‘((𝐻‘𝑧) − (𝑋 · 𝑌))) < 𝑤) |
184 | 183 | 3exp 1117 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑤 ∈ ℝ+)
∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) → (𝑧 ∈ 𝐴 → ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → (abs‘((𝐻‘𝑧) − (𝑋 · 𝑌))) < 𝑤))) |
185 | 114, 184 | ralrimi 3139 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑤 ∈ ℝ+)
∧ (𝑎 ∈
ℝ+ ∧ 𝑏
∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏))) → ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → (abs‘((𝐻‘𝑧) − (𝑋 · 𝑌))) < 𝑤)) |
186 | 185 | ex 412 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) →
(∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) → ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → (abs‘((𝐻‘𝑧) − (𝑋 · 𝑌))) < 𝑤))) |
187 | 186 | reximdva 3202 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) → (∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → ((abs‘((𝐹‘𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺‘𝑧) − 𝑌)) < 𝑏)) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → (abs‘((𝐻‘𝑧) − (𝑋 · 𝑌))) < 𝑤))) |
188 | 111, 187 | mpd 15 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → (abs‘((𝐻‘𝑧) − (𝑋 · 𝑌))) < 𝑤)) |
189 | 188 | 3exp 1117 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) → ((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) → (∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐 − 𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → (abs‘((𝐻‘𝑧) − (𝑋 · 𝑌))) < 𝑤)))) |
190 | 189 | rexlimdvv 3221 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) →
(∃𝑎 ∈
ℝ+ ∃𝑏 ∈ ℝ+ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ
(((abs‘(𝑐 −
𝑋)) < 𝑎 ∧ (abs‘(𝑑 − 𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤) → ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → (abs‘((𝐻‘𝑧) − (𝑋 · 𝑌))) < 𝑤))) |
191 | 12, 190 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ+) →
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → (abs‘((𝐻‘𝑧) − (𝑋 · 𝑌))) < 𝑤)) |
192 | 191 | ralrimiva 3107 |
. 2
⊢ (𝜑 → ∀𝑤 ∈ ℝ+ ∃𝑦 ∈ ℝ+
∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → (abs‘((𝐻‘𝑧) − (𝑋 · 𝑌))) < 𝑤)) |
193 | 144, 120 | fmptd 6970 |
. . 3
⊢ (𝜑 → 𝐻:𝐴⟶ℂ) |
194 | 193, 20, 21 | ellimc3 24948 |
. 2
⊢ (𝜑 → ((𝑋 · 𝑌) ∈ (𝐻 limℂ 𝐷) ↔ ((𝑋 · 𝑌) ∈ ℂ ∧ ∀𝑤 ∈ ℝ+
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 ≠ 𝐷 ∧ (abs‘(𝑧 − 𝐷)) < 𝑦) → (abs‘((𝐻‘𝑧) − (𝑋 · 𝑌))) < 𝑤)))) |
195 | 7, 192, 194 | mpbir2and 709 |
1
⊢ (𝜑 → (𝑋 · 𝑌) ∈ (𝐻 limℂ 𝐷)) |