MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmima Structured version   Visualization version   GIF version

Theorem mhmima 18803
Description: The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015.) (Proof shortened by AV, 8-Mar-2025.)
Assertion
Ref Expression
mhmima ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹𝑋) ∈ (SubMnd‘𝑁))

Proof of Theorem mhmima
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 6058 . . 3 (𝐹𝑋) ⊆ ran 𝐹
2 eqid 2735 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2735 . . . . . 6 (Base‘𝑁) = (Base‘𝑁)
42, 3mhmf 18767 . . . . 5 (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
54adantr 480 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
65frnd 6714 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ran 𝐹 ⊆ (Base‘𝑁))
71, 6sstrid 3970 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹𝑋) ⊆ (Base‘𝑁))
8 eqid 2735 . . . . 5 (0g𝑀) = (0g𝑀)
9 eqid 2735 . . . . 5 (0g𝑁) = (0g𝑁)
108, 9mhm0 18772 . . . 4 (𝐹 ∈ (𝑀 MndHom 𝑁) → (𝐹‘(0g𝑀)) = (0g𝑁))
1110adantr 480 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹‘(0g𝑀)) = (0g𝑁))
125ffnd 6707 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹 Fn (Base‘𝑀))
132submss 18787 . . . . 5 (𝑋 ∈ (SubMnd‘𝑀) → 𝑋 ⊆ (Base‘𝑀))
1413adantl 481 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝑋 ⊆ (Base‘𝑀))
158subm0cl 18789 . . . . 5 (𝑋 ∈ (SubMnd‘𝑀) → (0g𝑀) ∈ 𝑋)
1615adantl 481 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (0g𝑀) ∈ 𝑋)
17 fnfvima 7225 . . . 4 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑋) → (𝐹‘(0g𝑀)) ∈ (𝐹𝑋))
1812, 14, 16, 17syl3anc 1373 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹‘(0g𝑀)) ∈ (𝐹𝑋))
1911, 18eqeltrrd 2835 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (0g𝑁) ∈ (𝐹𝑋))
20 simpl 482 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹 ∈ (𝑀 MndHom 𝑁))
21 eqidd 2736 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (+g𝑀) = (+g𝑀))
22 eqidd 2736 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (+g𝑁) = (+g𝑁))
23 eqid 2735 . . . . 5 (+g𝑀) = (+g𝑀)
2423submcl 18790 . . . 4 ((𝑋 ∈ (SubMnd‘𝑀) ∧ 𝑧𝑋𝑥𝑋) → (𝑧(+g𝑀)𝑥) ∈ 𝑋)
25243adant1l 1177 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ 𝑧𝑋𝑥𝑋) → (𝑧(+g𝑀)𝑥) ∈ 𝑋)
2620, 14, 21, 22, 25mhmimalem 18802 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋))
27 mhmrcl2 18766 . . . 4 (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝑁 ∈ Mnd)
2827adantr 480 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝑁 ∈ Mnd)
29 eqid 2735 . . . 4 (+g𝑁) = (+g𝑁)
303, 9, 29issubm 18781 . . 3 (𝑁 ∈ Mnd → ((𝐹𝑋) ∈ (SubMnd‘𝑁) ↔ ((𝐹𝑋) ⊆ (Base‘𝑁) ∧ (0g𝑁) ∈ (𝐹𝑋) ∧ ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋))))
3128, 30syl 17 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ((𝐹𝑋) ∈ (SubMnd‘𝑁) ↔ ((𝐹𝑋) ⊆ (Base‘𝑁) ∧ (0g𝑁) ∈ (𝐹𝑋) ∧ ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥(+g𝑁)𝑦) ∈ (𝐹𝑋))))
327, 19, 26, 31mpbir3and 1343 1 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹𝑋) ∈ (SubMnd‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wss 3926  ran crn 5655  cima 5657   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  0gc0g 17453  Mndcmnd 18712   MndHom cmhm 18759  SubMndcsubmnd 18760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762
This theorem is referenced by:  rhmima  20564
  Copyright terms: Public domain W3C validator