| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmima | Structured version Visualization version GIF version | ||
| Description: The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015.) (Proof shortened by AV, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| mhmima | ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubMnd‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6024 | . . 3 ⊢ (𝐹 “ 𝑋) ⊆ ran 𝐹 | |
| 2 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 3 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑁) = (Base‘𝑁) | |
| 4 | 2, 3 | mhmf 18699 | . . . . 5 ⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
| 6 | 5 | frnd 6664 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ran 𝐹 ⊆ (Base‘𝑁)) |
| 7 | 1, 6 | sstrid 3942 | . 2 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹 “ 𝑋) ⊆ (Base‘𝑁)) |
| 8 | eqid 2733 | . . . . 5 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 9 | eqid 2733 | . . . . 5 ⊢ (0g‘𝑁) = (0g‘𝑁) | |
| 10 | 8, 9 | mhm0 18704 | . . . 4 ⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → (𝐹‘(0g‘𝑀)) = (0g‘𝑁)) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹‘(0g‘𝑀)) = (0g‘𝑁)) |
| 12 | 5 | ffnd 6657 | . . . 4 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹 Fn (Base‘𝑀)) |
| 13 | 2 | submss 18719 | . . . . 5 ⊢ (𝑋 ∈ (SubMnd‘𝑀) → 𝑋 ⊆ (Base‘𝑀)) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝑋 ⊆ (Base‘𝑀)) |
| 15 | 8 | subm0cl 18721 | . . . . 5 ⊢ (𝑋 ∈ (SubMnd‘𝑀) → (0g‘𝑀) ∈ 𝑋) |
| 16 | 15 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (0g‘𝑀) ∈ 𝑋) |
| 17 | fnfvima 7173 | . . . 4 ⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑋) → (𝐹‘(0g‘𝑀)) ∈ (𝐹 “ 𝑋)) | |
| 18 | 12, 14, 16, 17 | syl3anc 1373 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹‘(0g‘𝑀)) ∈ (𝐹 “ 𝑋)) |
| 19 | 11, 18 | eqeltrrd 2834 | . 2 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (0g‘𝑁) ∈ (𝐹 “ 𝑋)) |
| 20 | simpl 482 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹 ∈ (𝑀 MndHom 𝑁)) | |
| 21 | eqidd 2734 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (+g‘𝑀) = (+g‘𝑀)) | |
| 22 | eqidd 2734 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (+g‘𝑁) = (+g‘𝑁)) | |
| 23 | eqid 2733 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 24 | 23 | submcl 18722 | . . . 4 ⊢ ((𝑋 ∈ (SubMnd‘𝑀) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) |
| 25 | 24 | 3adant1l 1177 | . . 3 ⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) |
| 26 | 20, 14, 21, 22, 25 | mhmimalem 18734 | . 2 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)) |
| 27 | mhmrcl2 18698 | . . . 4 ⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝑁 ∈ Mnd) | |
| 28 | 27 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝑁 ∈ Mnd) |
| 29 | eqid 2733 | . . . 4 ⊢ (+g‘𝑁) = (+g‘𝑁) | |
| 30 | 3, 9, 29 | issubm 18713 | . . 3 ⊢ (𝑁 ∈ Mnd → ((𝐹 “ 𝑋) ∈ (SubMnd‘𝑁) ↔ ((𝐹 “ 𝑋) ⊆ (Base‘𝑁) ∧ (0g‘𝑁) ∈ (𝐹 “ 𝑋) ∧ ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)))) |
| 31 | 28, 30 | syl 17 | . 2 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ((𝐹 “ 𝑋) ∈ (SubMnd‘𝑁) ↔ ((𝐹 “ 𝑋) ⊆ (Base‘𝑁) ∧ (0g‘𝑁) ∈ (𝐹 “ 𝑋) ∧ ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)))) |
| 32 | 7, 19, 26, 31 | mpbir3and 1343 | 1 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubMnd‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 ran crn 5620 “ cima 5622 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 0gc0g 17345 Mndcmnd 18644 MndHom cmhm 18691 SubMndcsubmnd 18692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 |
| This theorem is referenced by: rhmima 20521 |
| Copyright terms: Public domain | W3C validator |