| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmima | Structured version Visualization version GIF version | ||
| Description: The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015.) (Proof shortened by AV, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| mhmima | ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubMnd‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6042 | . . 3 ⊢ (𝐹 “ 𝑋) ⊆ ran 𝐹 | |
| 2 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑁) = (Base‘𝑁) | |
| 4 | 2, 3 | mhmf 18716 | . . . . 5 ⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
| 6 | 5 | frnd 6696 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ran 𝐹 ⊆ (Base‘𝑁)) |
| 7 | 1, 6 | sstrid 3958 | . 2 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹 “ 𝑋) ⊆ (Base‘𝑁)) |
| 8 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 9 | eqid 2729 | . . . . 5 ⊢ (0g‘𝑁) = (0g‘𝑁) | |
| 10 | 8, 9 | mhm0 18721 | . . . 4 ⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → (𝐹‘(0g‘𝑀)) = (0g‘𝑁)) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹‘(0g‘𝑀)) = (0g‘𝑁)) |
| 12 | 5 | ffnd 6689 | . . . 4 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹 Fn (Base‘𝑀)) |
| 13 | 2 | submss 18736 | . . . . 5 ⊢ (𝑋 ∈ (SubMnd‘𝑀) → 𝑋 ⊆ (Base‘𝑀)) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝑋 ⊆ (Base‘𝑀)) |
| 15 | 8 | subm0cl 18738 | . . . . 5 ⊢ (𝑋 ∈ (SubMnd‘𝑀) → (0g‘𝑀) ∈ 𝑋) |
| 16 | 15 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (0g‘𝑀) ∈ 𝑋) |
| 17 | fnfvima 7207 | . . . 4 ⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑋) → (𝐹‘(0g‘𝑀)) ∈ (𝐹 “ 𝑋)) | |
| 18 | 12, 14, 16, 17 | syl3anc 1373 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹‘(0g‘𝑀)) ∈ (𝐹 “ 𝑋)) |
| 19 | 11, 18 | eqeltrrd 2829 | . 2 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (0g‘𝑁) ∈ (𝐹 “ 𝑋)) |
| 20 | simpl 482 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹 ∈ (𝑀 MndHom 𝑁)) | |
| 21 | eqidd 2730 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (+g‘𝑀) = (+g‘𝑀)) | |
| 22 | eqidd 2730 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (+g‘𝑁) = (+g‘𝑁)) | |
| 23 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 24 | 23 | submcl 18739 | . . . 4 ⊢ ((𝑋 ∈ (SubMnd‘𝑀) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) |
| 25 | 24 | 3adant1l 1177 | . . 3 ⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) |
| 26 | 20, 14, 21, 22, 25 | mhmimalem 18751 | . 2 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)) |
| 27 | mhmrcl2 18715 | . . . 4 ⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝑁 ∈ Mnd) | |
| 28 | 27 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝑁 ∈ Mnd) |
| 29 | eqid 2729 | . . . 4 ⊢ (+g‘𝑁) = (+g‘𝑁) | |
| 30 | 3, 9, 29 | issubm 18730 | . . 3 ⊢ (𝑁 ∈ Mnd → ((𝐹 “ 𝑋) ∈ (SubMnd‘𝑁) ↔ ((𝐹 “ 𝑋) ⊆ (Base‘𝑁) ∧ (0g‘𝑁) ∈ (𝐹 “ 𝑋) ∧ ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)))) |
| 31 | 28, 30 | syl 17 | . 2 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ((𝐹 “ 𝑋) ∈ (SubMnd‘𝑁) ↔ ((𝐹 “ 𝑋) ⊆ (Base‘𝑁) ∧ (0g‘𝑁) ∈ (𝐹 “ 𝑋) ∧ ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)))) |
| 32 | 7, 19, 26, 31 | mpbir3and 1343 | 1 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubMnd‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 ran crn 5639 “ cima 5641 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Mndcmnd 18661 MndHom cmhm 18708 SubMndcsubmnd 18709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 |
| This theorem is referenced by: rhmima 20513 |
| Copyright terms: Public domain | W3C validator |