| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmima | Structured version Visualization version GIF version | ||
| Description: The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015.) (Proof shortened by AV, 8-Mar-2025.) |
| Ref | Expression |
|---|---|
| mhmima | ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubMnd‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn 6045 | . . 3 ⊢ (𝐹 “ 𝑋) ⊆ ran 𝐹 | |
| 2 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 3 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑁) = (Base‘𝑁) | |
| 4 | 2, 3 | mhmf 18723 | . . . . 5 ⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
| 6 | 5 | frnd 6699 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ran 𝐹 ⊆ (Base‘𝑁)) |
| 7 | 1, 6 | sstrid 3961 | . 2 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹 “ 𝑋) ⊆ (Base‘𝑁)) |
| 8 | eqid 2730 | . . . . 5 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 9 | eqid 2730 | . . . . 5 ⊢ (0g‘𝑁) = (0g‘𝑁) | |
| 10 | 8, 9 | mhm0 18728 | . . . 4 ⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → (𝐹‘(0g‘𝑀)) = (0g‘𝑁)) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹‘(0g‘𝑀)) = (0g‘𝑁)) |
| 12 | 5 | ffnd 6692 | . . . 4 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹 Fn (Base‘𝑀)) |
| 13 | 2 | submss 18743 | . . . . 5 ⊢ (𝑋 ∈ (SubMnd‘𝑀) → 𝑋 ⊆ (Base‘𝑀)) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝑋 ⊆ (Base‘𝑀)) |
| 15 | 8 | subm0cl 18745 | . . . . 5 ⊢ (𝑋 ∈ (SubMnd‘𝑀) → (0g‘𝑀) ∈ 𝑋) |
| 16 | 15 | adantl 481 | . . . 4 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (0g‘𝑀) ∈ 𝑋) |
| 17 | fnfvima 7210 | . . . 4 ⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑋) → (𝐹‘(0g‘𝑀)) ∈ (𝐹 “ 𝑋)) | |
| 18 | 12, 14, 16, 17 | syl3anc 1373 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹‘(0g‘𝑀)) ∈ (𝐹 “ 𝑋)) |
| 19 | 11, 18 | eqeltrrd 2830 | . 2 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (0g‘𝑁) ∈ (𝐹 “ 𝑋)) |
| 20 | simpl 482 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹 ∈ (𝑀 MndHom 𝑁)) | |
| 21 | eqidd 2731 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (+g‘𝑀) = (+g‘𝑀)) | |
| 22 | eqidd 2731 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (+g‘𝑁) = (+g‘𝑁)) | |
| 23 | eqid 2730 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 24 | 23 | submcl 18746 | . . . 4 ⊢ ((𝑋 ∈ (SubMnd‘𝑀) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) |
| 25 | 24 | 3adant1l 1177 | . . 3 ⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) |
| 26 | 20, 14, 21, 22, 25 | mhmimalem 18758 | . 2 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)) |
| 27 | mhmrcl2 18722 | . . . 4 ⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝑁 ∈ Mnd) | |
| 28 | 27 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝑁 ∈ Mnd) |
| 29 | eqid 2730 | . . . 4 ⊢ (+g‘𝑁) = (+g‘𝑁) | |
| 30 | 3, 9, 29 | issubm 18737 | . . 3 ⊢ (𝑁 ∈ Mnd → ((𝐹 “ 𝑋) ∈ (SubMnd‘𝑁) ↔ ((𝐹 “ 𝑋) ⊆ (Base‘𝑁) ∧ (0g‘𝑁) ∈ (𝐹 “ 𝑋) ∧ ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)))) |
| 31 | 28, 30 | syl 17 | . 2 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ((𝐹 “ 𝑋) ∈ (SubMnd‘𝑁) ↔ ((𝐹 “ 𝑋) ⊆ (Base‘𝑁) ∧ (0g‘𝑁) ∈ (𝐹 “ 𝑋) ∧ ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)))) |
| 32 | 7, 19, 26, 31 | mpbir3and 1343 | 1 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubMnd‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ran crn 5642 “ cima 5644 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Mndcmnd 18668 MndHom cmhm 18715 SubMndcsubmnd 18716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 |
| This theorem is referenced by: rhmima 20520 |
| Copyright terms: Public domain | W3C validator |