![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhmima | Structured version Visualization version GIF version |
Description: The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015.) (Proof shortened by AV, 8-Mar-2025.) |
Ref | Expression |
---|---|
mhmima | ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubMnd‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn 6068 | . . 3 ⊢ (𝐹 “ 𝑋) ⊆ ran 𝐹 | |
2 | eqid 2732 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
3 | eqid 2732 | . . . . . 6 ⊢ (Base‘𝑁) = (Base‘𝑁) | |
4 | 2, 3 | mhmf 18673 | . . . . 5 ⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
5 | 4 | adantr 481 | . . . 4 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
6 | 5 | frnd 6722 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ran 𝐹 ⊆ (Base‘𝑁)) |
7 | 1, 6 | sstrid 3992 | . 2 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹 “ 𝑋) ⊆ (Base‘𝑁)) |
8 | eqid 2732 | . . . . 5 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
9 | eqid 2732 | . . . . 5 ⊢ (0g‘𝑁) = (0g‘𝑁) | |
10 | 8, 9 | mhm0 18676 | . . . 4 ⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → (𝐹‘(0g‘𝑀)) = (0g‘𝑁)) |
11 | 10 | adantr 481 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹‘(0g‘𝑀)) = (0g‘𝑁)) |
12 | 5 | ffnd 6715 | . . . 4 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹 Fn (Base‘𝑀)) |
13 | 2 | submss 18686 | . . . . 5 ⊢ (𝑋 ∈ (SubMnd‘𝑀) → 𝑋 ⊆ (Base‘𝑀)) |
14 | 13 | adantl 482 | . . . 4 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝑋 ⊆ (Base‘𝑀)) |
15 | 8 | subm0cl 18688 | . . . . 5 ⊢ (𝑋 ∈ (SubMnd‘𝑀) → (0g‘𝑀) ∈ 𝑋) |
16 | 15 | adantl 482 | . . . 4 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (0g‘𝑀) ∈ 𝑋) |
17 | fnfvima 7231 | . . . 4 ⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑋) → (𝐹‘(0g‘𝑀)) ∈ (𝐹 “ 𝑋)) | |
18 | 12, 14, 16, 17 | syl3anc 1371 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹‘(0g‘𝑀)) ∈ (𝐹 “ 𝑋)) |
19 | 11, 18 | eqeltrrd 2834 | . 2 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (0g‘𝑁) ∈ (𝐹 “ 𝑋)) |
20 | simpl 483 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝐹 ∈ (𝑀 MndHom 𝑁)) | |
21 | eqidd 2733 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (+g‘𝑀) = (+g‘𝑀)) | |
22 | eqidd 2733 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (+g‘𝑁) = (+g‘𝑁)) | |
23 | eqid 2732 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
24 | 23 | submcl 18689 | . . . 4 ⊢ ((𝑋 ∈ (SubMnd‘𝑀) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) |
25 | 24 | 3adant1l 1176 | . . 3 ⊢ (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧(+g‘𝑀)𝑥) ∈ 𝑋) |
26 | 20, 14, 21, 22, 25 | mhmimalem 18701 | . 2 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)) |
27 | mhmrcl2 18672 | . . . 4 ⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝑁 ∈ Mnd) | |
28 | 27 | adantr 481 | . . 3 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → 𝑁 ∈ Mnd) |
29 | eqid 2732 | . . . 4 ⊢ (+g‘𝑁) = (+g‘𝑁) | |
30 | 3, 9, 29 | issubm 18680 | . . 3 ⊢ (𝑁 ∈ Mnd → ((𝐹 “ 𝑋) ∈ (SubMnd‘𝑁) ↔ ((𝐹 “ 𝑋) ⊆ (Base‘𝑁) ∧ (0g‘𝑁) ∈ (𝐹 “ 𝑋) ∧ ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)))) |
31 | 28, 30 | syl 17 | . 2 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → ((𝐹 “ 𝑋) ∈ (SubMnd‘𝑁) ↔ ((𝐹 “ 𝑋) ⊆ (Base‘𝑁) ∧ (0g‘𝑁) ∈ (𝐹 “ 𝑋) ∧ ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)))) |
32 | 7, 19, 26, 31 | mpbir3and 1342 | 1 ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubMnd‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ⊆ wss 3947 ran crn 5676 “ cima 5678 Fn wfn 6535 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 0gc0g 17381 Mndcmnd 18621 MndHom cmhm 18665 SubMndcsubmnd 18666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 |
This theorem is referenced by: rhmima 20388 |
Copyright terms: Public domain | W3C validator |