Step | Hyp | Ref
| Expression |
1 | | imassrn 6068 |
. . 3
β’ (πΉ β π) β ran πΉ |
2 | | eqid 2732 |
. . . . . 6
β’
(Baseβπ) =
(Baseβπ) |
3 | | eqid 2732 |
. . . . . 6
β’
(Baseβπ) =
(Baseβπ) |
4 | 2, 3 | mhmf 18673 |
. . . . 5
β’ (πΉ β (π MndHom π) β πΉ:(Baseβπ)βΆ(Baseβπ)) |
5 | 4 | adantr 481 |
. . . 4
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β πΉ:(Baseβπ)βΆ(Baseβπ)) |
6 | 5 | frnd 6722 |
. . 3
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β ran πΉ β (Baseβπ)) |
7 | 1, 6 | sstrid 3992 |
. 2
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (πΉ β π) β (Baseβπ)) |
8 | | eqid 2732 |
. . . . 5
β’
(0gβπ) = (0gβπ) |
9 | | eqid 2732 |
. . . . 5
β’
(0gβπ) = (0gβπ) |
10 | 8, 9 | mhm0 18676 |
. . . 4
β’ (πΉ β (π MndHom π) β (πΉβ(0gβπ)) = (0gβπ)) |
11 | 10 | adantr 481 |
. . 3
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (πΉβ(0gβπ)) = (0gβπ)) |
12 | 5 | ffnd 6715 |
. . . 4
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β πΉ Fn (Baseβπ)) |
13 | 2 | submss 18686 |
. . . . 5
β’ (π β (SubMndβπ) β π β (Baseβπ)) |
14 | 13 | adantl 482 |
. . . 4
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β π β (Baseβπ)) |
15 | 8 | subm0cl 18688 |
. . . . 5
β’ (π β (SubMndβπ) β
(0gβπ)
β π) |
16 | 15 | adantl 482 |
. . . 4
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (0gβπ) β π) |
17 | | fnfvima 7231 |
. . . 4
β’ ((πΉ Fn (Baseβπ) β§ π β (Baseβπ) β§ (0gβπ) β π) β (πΉβ(0gβπ)) β (πΉ β π)) |
18 | 12, 14, 16, 17 | syl3anc 1371 |
. . 3
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (πΉβ(0gβπ)) β (πΉ β π)) |
19 | 11, 18 | eqeltrrd 2834 |
. 2
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (0gβπ) β (πΉ β π)) |
20 | | simpl 483 |
. . 3
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β πΉ β (π MndHom π)) |
21 | | eqidd 2733 |
. . 3
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (+gβπ) = (+gβπ)) |
22 | | eqidd 2733 |
. . 3
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (+gβπ) = (+gβπ)) |
23 | | eqid 2732 |
. . . . 5
β’
(+gβπ) = (+gβπ) |
24 | 23 | submcl 18689 |
. . . 4
β’ ((π β (SubMndβπ) β§ π§ β π β§ π₯ β π) β (π§(+gβπ)π₯) β π) |
25 | 24 | 3adant1l 1176 |
. . 3
β’ (((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β§ π§ β π β§ π₯ β π) β (π§(+gβπ)π₯) β π) |
26 | 20, 14, 21, 22, 25 | mhmimalem 18701 |
. 2
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β βπ₯ β (πΉ β π)βπ¦ β (πΉ β π)(π₯(+gβπ)π¦) β (πΉ β π)) |
27 | | mhmrcl2 18672 |
. . . 4
β’ (πΉ β (π MndHom π) β π β Mnd) |
28 | 27 | adantr 481 |
. . 3
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β π β Mnd) |
29 | | eqid 2732 |
. . . 4
β’
(+gβπ) = (+gβπ) |
30 | 3, 9, 29 | issubm 18680 |
. . 3
β’ (π β Mnd β ((πΉ β π) β (SubMndβπ) β ((πΉ β π) β (Baseβπ) β§ (0gβπ) β (πΉ β π) β§ βπ₯ β (πΉ β π)βπ¦ β (πΉ β π)(π₯(+gβπ)π¦) β (πΉ β π)))) |
31 | 28, 30 | syl 17 |
. 2
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β ((πΉ β π) β (SubMndβπ) β ((πΉ β π) β (Baseβπ) β§ (0gβπ) β (πΉ β π) β§ βπ₯ β (πΉ β π)βπ¦ β (πΉ β π)(π₯(+gβπ)π¦) β (πΉ β π)))) |
32 | 7, 19, 26, 31 | mpbir3and 1342 |
1
β’ ((πΉ β (π MndHom π) β§ π β (SubMndβπ)) β (πΉ β π) β (SubMndβπ)) |