Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mullimcf Structured version   Visualization version   GIF version

Theorem mullimcf 43164
Description: Limit of the multiplication of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
mullimcf.f (𝜑𝐹:𝐴⟶ℂ)
mullimcf.g (𝜑𝐺:𝐴⟶ℂ)
mullimcf.h 𝐻 = (𝑥𝐴 ↦ ((𝐹𝑥) · (𝐺𝑥)))
mullimcf.b (𝜑𝐵 ∈ (𝐹 lim 𝐷))
mullimcf.c (𝜑𝐶 ∈ (𝐺 lim 𝐷))
Assertion
Ref Expression
mullimcf (𝜑 → (𝐵 · 𝐶) ∈ (𝐻 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐻(𝑥)

Proof of Theorem mullimcf
Dummy variables 𝑎 𝑏 𝑒 𝑓 𝑦 𝑧 𝑤 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25039 . . . 4 (𝐹 lim 𝐷) ⊆ ℂ
2 mullimcf.b . . . 4 (𝜑𝐵 ∈ (𝐹 lim 𝐷))
31, 2sselid 3919 . . 3 (𝜑𝐵 ∈ ℂ)
4 limccl 25039 . . . 4 (𝐺 lim 𝐷) ⊆ ℂ
5 mullimcf.c . . . 4 (𝜑𝐶 ∈ (𝐺 lim 𝐷))
64, 5sselid 3919 . . 3 (𝜑𝐶 ∈ ℂ)
73, 6mulcld 10995 . 2 (𝜑 → (𝐵 · 𝐶) ∈ ℂ)
8 simpr 485 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
93adantr 481 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝐵 ∈ ℂ)
106adantr 481 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝐶 ∈ ℂ)
11 mulcn2 15305 . . . . 5 ((𝑤 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤))
128, 9, 10, 11syl3anc 1370 . . . 4 ((𝜑𝑤 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤))
13 mullimcf.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐴⟶ℂ)
1413fdmd 6611 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = 𝐴)
15 limcrcl 25038 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
162, 15syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
1716simp2d 1142 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 ⊆ ℂ)
1814, 17eqsstrrd 3960 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ⊆ ℂ)
1916simp3d 1143 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℂ)
2013, 18, 19ellimc3 25043 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ∈ (𝐹 lim 𝐷) ↔ (𝐵 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))))
212, 20mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)))
2221simprd 496 . . . . . . . . . . . . 13 (𝜑 → ∀𝑎 ∈ ℝ+𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))
2322r19.21bi 3134 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ ℝ+) → ∃𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))
2423adantrr 714 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))
25 mullimcf.g . . . . . . . . . . . . . . . 16 (𝜑𝐺:𝐴⟶ℂ)
2625, 18, 19ellimc3 25043 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 ∈ (𝐺 lim 𝐷) ↔ (𝐶 ∈ ℂ ∧ ∀𝑏 ∈ ℝ+𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))))
275, 26mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑏 ∈ ℝ+𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
2827simprd 496 . . . . . . . . . . . . 13 (𝜑 → ∀𝑏 ∈ ℝ+𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
2928r19.21bi 3134 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ ℝ+) → ∃𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
3029adantrl 713 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
31 reeanv 3294 . . . . . . . . . . 11 (∃𝑒 ∈ ℝ+𝑓 ∈ ℝ+ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ↔ (∃𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∃𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
3224, 30, 31sylanbrc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑒 ∈ ℝ+𝑓 ∈ ℝ+ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
33 ifcl 4504 . . . . . . . . . . . . . 14 ((𝑒 ∈ ℝ+𝑓 ∈ ℝ+) → if(𝑒𝑓, 𝑒, 𝑓) ∈ ℝ+)
34333ad2ant2 1133 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → if(𝑒𝑓, 𝑒, 𝑓) ∈ ℝ+)
35 nfv 1917 . . . . . . . . . . . . . . 15 𝑧(𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+))
36 nfv 1917 . . . . . . . . . . . . . . 15 𝑧(𝑒 ∈ ℝ+𝑓 ∈ ℝ+)
37 nfra1 3144 . . . . . . . . . . . . . . . 16 𝑧𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)
38 nfra1 3144 . . . . . . . . . . . . . . . 16 𝑧𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)
3937, 38nfan 1902 . . . . . . . . . . . . . . 15 𝑧(∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
4035, 36, 39nf3an 1904 . . . . . . . . . . . . . 14 𝑧((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
41 simp11l 1283 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝜑)
42 simp1rl 1237 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → 𝑎 ∈ ℝ+)
43423ad2ant1 1132 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑎 ∈ ℝ+)
4441, 43jca 512 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝜑𝑎 ∈ ℝ+))
45 simp12 1203 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑒 ∈ ℝ+𝑓 ∈ ℝ+))
46 simp13l 1287 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))
4744, 45, 46jca31 515 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)))
48 simp1r 1197 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))
49 simp2 1136 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑧𝐴)
50 simp3l 1200 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑧𝐷)
51 simplll 772 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) → 𝜑)
52513ad2ant1 1132 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝜑)
53 simp1lr 1236 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑒 ∈ ℝ+𝑓 ∈ ℝ+))
54 simp3r 1201 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))
55 simp1l 1196 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝜑)
56 simp2 1136 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝑧𝐴)
5718sselda 3921 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧𝐴) → 𝑧 ∈ ℂ)
5855, 56, 57syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝑧 ∈ ℂ)
5955, 19syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝐷 ∈ ℂ)
6058, 59subcld 11332 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (𝑧𝐷) ∈ ℂ)
6160abscld 15148 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (abs‘(𝑧𝐷)) ∈ ℝ)
62 rpre 12738 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 ∈ ℝ+𝑒 ∈ ℝ)
6362ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) → 𝑒 ∈ ℝ)
64633ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝑒 ∈ ℝ)
65 rpre 12738 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 ∈ ℝ+𝑓 ∈ ℝ)
6665ad2antll 726 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) → 𝑓 ∈ ℝ)
67663ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝑓 ∈ ℝ)
6864, 67ifcld 4505 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → if(𝑒𝑓, 𝑒, 𝑓) ∈ ℝ)
69 simp3 1137 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))
70 min1 12923 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → if(𝑒𝑓, 𝑒, 𝑓) ≤ 𝑒)
7164, 67, 70syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → if(𝑒𝑓, 𝑒, 𝑓) ≤ 𝑒)
7261, 68, 64, 69, 71ltletrd 11135 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (abs‘(𝑧𝐷)) < 𝑒)
7352, 53, 49, 54, 72syl211anc 1375 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘(𝑧𝐷)) < 𝑒)
7450, 73jca 512 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒))
75 rsp 3131 . . . . . . . . . . . . . . . . . 18 (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)))
7648, 49, 74, 75syl3c 66 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)
7747, 76syld3an1 1409 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)
78 simp1l 1196 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → 𝜑)
7978, 42jca 512 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → (𝜑𝑎 ∈ ℝ+))
80 simp2 1136 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → (𝑒 ∈ ℝ+𝑓 ∈ ℝ+))
81 simp3r 1201 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
8279, 80, 81jca31 515 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → (((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
83 simp1r 1197 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
84 simp2 1136 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑧𝐴)
85 simp3l 1200 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑧𝐷)
86 simplll 772 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) → 𝜑)
87863ad2ant1 1132 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝜑)
88 simp1lr 1236 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑒 ∈ ℝ+𝑓 ∈ ℝ+))
89 simp3r 1201 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))
90 min2 12924 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → if(𝑒𝑓, 𝑒, 𝑓) ≤ 𝑓)
9164, 67, 90syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → if(𝑒𝑓, 𝑒, 𝑓) ≤ 𝑓)
9261, 68, 67, 69, 91ltletrd 11135 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (abs‘(𝑧𝐷)) < 𝑓)
9387, 88, 84, 89, 92syl211anc 1375 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘(𝑧𝐷)) < 𝑓)
9485, 93jca 512 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓))
95 rsp 3131 . . . . . . . . . . . . . . . . . 18 (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
9683, 84, 94, 95syl3c 66 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)
9782, 96syl3an1 1162 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)
9877, 97jca 512 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
99983exp 1118 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))))
10040, 99ralrimi 3141 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
101 brimralrspcev 5135 . . . . . . . . . . . . 13 ((if(𝑒𝑓, 𝑒, 𝑓) ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
10234, 100, 101syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
1031023exp 1118 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ((𝑒 ∈ ℝ+𝑓 ∈ ℝ+) → ((∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))))
104103rexlimdvv 3222 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (∃𝑒 ∈ ℝ+𝑓 ∈ ℝ+ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))))
10532, 104mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
106105adantlr 712 . . . . . . . 8 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
1071063adant3 1131 . . . . . . 7 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
108 nfv 1917 . . . . . . . . . . 11 𝑧(((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+)
109 nfra1 3144 . . . . . . . . . . 11 𝑧𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
110108, 109nfan 1902 . . . . . . . . . 10 𝑧((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
111 simp1l 1196 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) → 𝜑)
112111ad2antrr 723 . . . . . . . . . . . . . 14 (((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → 𝜑)
1131123ad2ant1 1132 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → 𝜑)
114 simp2 1136 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → 𝑧𝐴)
115 mullimcf.h . . . . . . . . . . . . . . 15 𝐻 = (𝑥𝐴 ↦ ((𝐹𝑥) · (𝐺𝑥)))
116 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
117 fveq2 6774 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
118116, 117oveq12d 7293 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝐹𝑥) · (𝐺𝑥)) = ((𝐹𝑧) · (𝐺𝑧)))
119 simpr 485 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐴) → 𝑧𝐴)
12013ffvelrnda 6961 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
12125ffvelrnda 6961 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝐴) → (𝐺𝑧) ∈ ℂ)
122120, 121mulcld 10995 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐴) → ((𝐹𝑧) · (𝐺𝑧)) ∈ ℂ)
123115, 118, 119, 122fvmptd3 6898 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → (𝐻𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
124123fvoveq1d 7297 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) = (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))))
125113, 114, 124syl2anc 584 . . . . . . . . . . . 12 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) = (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))))
126120, 121jca 512 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → ((𝐹𝑧) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ))
127113, 114, 126syl2anc 584 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → ((𝐹𝑧) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ))
128 simpll3 1213 . . . . . . . . . . . . . 14 (((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤))
1291283ad2ant1 1132 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤))
130 rsp 3131 . . . . . . . . . . . . . . 15 (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))))
1311303imp 1110 . . . . . . . . . . . . . 14 ((∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
1321313adant1l 1175 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
133 fvoveq1 7298 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑧) → (abs‘(𝑐𝐵)) = (abs‘((𝐹𝑧) − 𝐵)))
134133breq1d 5084 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑧) → ((abs‘(𝑐𝐵)) < 𝑎 ↔ (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))
135134anbi1d 630 . . . . . . . . . . . . . . 15 (𝑐 = (𝐹𝑧) → (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) ↔ ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏)))
136 oveq1 7282 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑧) → (𝑐 · 𝑑) = ((𝐹𝑧) · 𝑑))
137136fvoveq1d 7297 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑧) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) = (abs‘(((𝐹𝑧) · 𝑑) − (𝐵 · 𝐶))))
138137breq1d 5084 . . . . . . . . . . . . . . 15 (𝑐 = (𝐹𝑧) → ((abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤 ↔ (abs‘(((𝐹𝑧) · 𝑑) − (𝐵 · 𝐶))) < 𝑤))
139135, 138imbi12d 345 . . . . . . . . . . . . . 14 (𝑐 = (𝐹𝑧) → ((((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤) ↔ (((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘(((𝐹𝑧) · 𝑑) − (𝐵 · 𝐶))) < 𝑤)))
140 fvoveq1 7298 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝐺𝑧) → (abs‘(𝑑𝐶)) = (abs‘((𝐺𝑧) − 𝐶)))
141140breq1d 5084 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐺𝑧) → ((abs‘(𝑑𝐶)) < 𝑏 ↔ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
142141anbi2d 629 . . . . . . . . . . . . . . 15 (𝑑 = (𝐺𝑧) → (((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) ↔ ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
143 oveq2 7283 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝐺𝑧) → ((𝐹𝑧) · 𝑑) = ((𝐹𝑧) · (𝐺𝑧)))
144143fvoveq1d 7297 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐺𝑧) → (abs‘(((𝐹𝑧) · 𝑑) − (𝐵 · 𝐶))) = (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))))
145144breq1d 5084 . . . . . . . . . . . . . . 15 (𝑑 = (𝐺𝑧) → ((abs‘(((𝐹𝑧) · 𝑑) − (𝐵 · 𝐶))) < 𝑤 ↔ (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))) < 𝑤))
146142, 145imbi12d 345 . . . . . . . . . . . . . 14 (𝑑 = (𝐺𝑧) → ((((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘(((𝐹𝑧) · 𝑑) − (𝐵 · 𝐶))) < 𝑤) ↔ (((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏) → (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))) < 𝑤)))
147139, 146rspc2v 3570 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ) → (∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤) → (((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏) → (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))) < 𝑤)))
148127, 129, 132, 147syl3c 66 . . . . . . . . . . . 12 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))) < 𝑤)
149125, 148eqbrtrd 5096 . . . . . . . . . . 11 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤)
1501493exp 1118 . . . . . . . . . 10 (((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤)))
151110, 150ralrimi 3141 . . . . . . . . 9 (((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤))
152151ex 413 . . . . . . . 8 ((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) → (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤)))
153152reximdva 3203 . . . . . . 7 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) → (∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤)))
154107, 153mpd 15 . . . . . 6 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤))
1551543exp 1118 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤))))
156155rexlimdvv 3222 . . . 4 ((𝜑𝑤 ∈ ℝ+) → (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤)))
15712, 156mpd 15 . . 3 ((𝜑𝑤 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤))
158157ralrimiva 3103 . 2 (𝜑 → ∀𝑤 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤))
15913ffvelrnda 6961 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
16025ffvelrnda 6961 . . . . 5 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ ℂ)
161159, 160mulcld 10995 . . . 4 ((𝜑𝑥𝐴) → ((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
162161, 115fmptd 6988 . . 3 (𝜑𝐻:𝐴⟶ℂ)
163162, 18, 19ellimc3 25043 . 2 (𝜑 → ((𝐵 · 𝐶) ∈ (𝐻 lim 𝐷) ↔ ((𝐵 · 𝐶) ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤))))
1647, 158, 163mpbir2and 710 1 (𝜑 → (𝐵 · 𝐶) ∈ (𝐻 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  wss 3887  ifcif 4459   class class class wbr 5074  cmpt 5157  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870   · cmul 10876   < clt 11009  cle 11010  cmin 11205  +crp 12730  abscabs 14945   lim climc 25026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cnp 22379  df-xms 23473  df-ms 23474  df-limc 25030
This theorem is referenced by:  fourierdlem101  43748  fourierdlem111  43758
  Copyright terms: Public domain W3C validator