Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mullimcf Structured version   Visualization version   GIF version

Theorem mullimcf 45628
Description: Limit of the multiplication of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
mullimcf.f (𝜑𝐹:𝐴⟶ℂ)
mullimcf.g (𝜑𝐺:𝐴⟶ℂ)
mullimcf.h 𝐻 = (𝑥𝐴 ↦ ((𝐹𝑥) · (𝐺𝑥)))
mullimcf.b (𝜑𝐵 ∈ (𝐹 lim 𝐷))
mullimcf.c (𝜑𝐶 ∈ (𝐺 lim 𝐷))
Assertion
Ref Expression
mullimcf (𝜑 → (𝐵 · 𝐶) ∈ (𝐻 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐻(𝑥)

Proof of Theorem mullimcf
Dummy variables 𝑎 𝑏 𝑒 𝑓 𝑦 𝑧 𝑤 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25783 . . . 4 (𝐹 lim 𝐷) ⊆ ℂ
2 mullimcf.b . . . 4 (𝜑𝐵 ∈ (𝐹 lim 𝐷))
31, 2sselid 3947 . . 3 (𝜑𝐵 ∈ ℂ)
4 limccl 25783 . . . 4 (𝐺 lim 𝐷) ⊆ ℂ
5 mullimcf.c . . . 4 (𝜑𝐶 ∈ (𝐺 lim 𝐷))
64, 5sselid 3947 . . 3 (𝜑𝐶 ∈ ℂ)
73, 6mulcld 11201 . 2 (𝜑 → (𝐵 · 𝐶) ∈ ℂ)
8 simpr 484 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
93adantr 480 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝐵 ∈ ℂ)
106adantr 480 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝐶 ∈ ℂ)
11 mulcn2 15569 . . . . 5 ((𝑤 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤))
128, 9, 10, 11syl3anc 1373 . . . 4 ((𝜑𝑤 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤))
13 mullimcf.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐴⟶ℂ)
1413fdmd 6701 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = 𝐴)
15 limcrcl 25782 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
162, 15syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
1716simp2d 1143 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 ⊆ ℂ)
1814, 17eqsstrrd 3985 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ⊆ ℂ)
1916simp3d 1144 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℂ)
2013, 18, 19ellimc3 25787 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ∈ (𝐹 lim 𝐷) ↔ (𝐵 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))))
212, 20mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)))
2221simprd 495 . . . . . . . . . . . . 13 (𝜑 → ∀𝑎 ∈ ℝ+𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))
2322r19.21bi 3230 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ ℝ+) → ∃𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))
2423adantrr 717 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))
25 mullimcf.g . . . . . . . . . . . . . . . 16 (𝜑𝐺:𝐴⟶ℂ)
2625, 18, 19ellimc3 25787 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 ∈ (𝐺 lim 𝐷) ↔ (𝐶 ∈ ℂ ∧ ∀𝑏 ∈ ℝ+𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))))
275, 26mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑏 ∈ ℝ+𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
2827simprd 495 . . . . . . . . . . . . 13 (𝜑 → ∀𝑏 ∈ ℝ+𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
2928r19.21bi 3230 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ ℝ+) → ∃𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
3029adantrl 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
31 reeanv 3210 . . . . . . . . . . 11 (∃𝑒 ∈ ℝ+𝑓 ∈ ℝ+ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ↔ (∃𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∃𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
3224, 30, 31sylanbrc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑒 ∈ ℝ+𝑓 ∈ ℝ+ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
33 ifcl 4537 . . . . . . . . . . . . . 14 ((𝑒 ∈ ℝ+𝑓 ∈ ℝ+) → if(𝑒𝑓, 𝑒, 𝑓) ∈ ℝ+)
34333ad2ant2 1134 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → if(𝑒𝑓, 𝑒, 𝑓) ∈ ℝ+)
35 nfv 1914 . . . . . . . . . . . . . . 15 𝑧(𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+))
36 nfv 1914 . . . . . . . . . . . . . . 15 𝑧(𝑒 ∈ ℝ+𝑓 ∈ ℝ+)
37 nfra1 3262 . . . . . . . . . . . . . . . 16 𝑧𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)
38 nfra1 3262 . . . . . . . . . . . . . . . 16 𝑧𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)
3937, 38nfan 1899 . . . . . . . . . . . . . . 15 𝑧(∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
4035, 36, 39nf3an 1901 . . . . . . . . . . . . . 14 𝑧((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
41 simp11l 1285 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝜑)
42 simp1rl 1239 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → 𝑎 ∈ ℝ+)
43423ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑎 ∈ ℝ+)
4441, 43jca 511 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝜑𝑎 ∈ ℝ+))
45 simp12 1205 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑒 ∈ ℝ+𝑓 ∈ ℝ+))
46 simp13l 1289 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))
4744, 45, 46jca31 514 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)))
48 simp1r 1199 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))
49 simp2 1137 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑧𝐴)
50 simp3l 1202 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑧𝐷)
51 simplll 774 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) → 𝜑)
52513ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝜑)
53 simp1lr 1238 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑒 ∈ ℝ+𝑓 ∈ ℝ+))
54 simp3r 1203 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))
55 simp1l 1198 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝜑)
56 simp2 1137 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝑧𝐴)
5718sselda 3949 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧𝐴) → 𝑧 ∈ ℂ)
5855, 56, 57syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝑧 ∈ ℂ)
5955, 19syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝐷 ∈ ℂ)
6058, 59subcld 11540 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (𝑧𝐷) ∈ ℂ)
6160abscld 15412 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (abs‘(𝑧𝐷)) ∈ ℝ)
62 rpre 12967 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 ∈ ℝ+𝑒 ∈ ℝ)
6362ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) → 𝑒 ∈ ℝ)
64633ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝑒 ∈ ℝ)
65 rpre 12967 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 ∈ ℝ+𝑓 ∈ ℝ)
6665ad2antll 729 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) → 𝑓 ∈ ℝ)
67663ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝑓 ∈ ℝ)
6864, 67ifcld 4538 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → if(𝑒𝑓, 𝑒, 𝑓) ∈ ℝ)
69 simp3 1138 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))
70 min1 13156 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → if(𝑒𝑓, 𝑒, 𝑓) ≤ 𝑒)
7164, 67, 70syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → if(𝑒𝑓, 𝑒, 𝑓) ≤ 𝑒)
7261, 68, 64, 69, 71ltletrd 11341 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (abs‘(𝑧𝐷)) < 𝑒)
7352, 53, 49, 54, 72syl211anc 1378 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘(𝑧𝐷)) < 𝑒)
7450, 73jca 511 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒))
75 rsp 3226 . . . . . . . . . . . . . . . . . 18 (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)))
7648, 49, 74, 75syl3c 66 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)
7747, 76syld3an1 1412 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)
78 simp1l 1198 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → 𝜑)
7978, 42jca 511 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → (𝜑𝑎 ∈ ℝ+))
80 simp2 1137 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → (𝑒 ∈ ℝ+𝑓 ∈ ℝ+))
81 simp3r 1203 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
8279, 80, 81jca31 514 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → (((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
83 simp1r 1199 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
84 simp2 1137 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑧𝐴)
85 simp3l 1202 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑧𝐷)
86 simplll 774 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) → 𝜑)
87863ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝜑)
88 simp1lr 1238 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑒 ∈ ℝ+𝑓 ∈ ℝ+))
89 simp3r 1203 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))
90 min2 13157 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → if(𝑒𝑓, 𝑒, 𝑓) ≤ 𝑓)
9164, 67, 90syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → if(𝑒𝑓, 𝑒, 𝑓) ≤ 𝑓)
9261, 68, 67, 69, 91ltletrd 11341 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (abs‘(𝑧𝐷)) < 𝑓)
9387, 88, 84, 89, 92syl211anc 1378 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘(𝑧𝐷)) < 𝑓)
9485, 93jca 511 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓))
95 rsp 3226 . . . . . . . . . . . . . . . . . 18 (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
9683, 84, 94, 95syl3c 66 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)
9782, 96syl3an1 1163 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)
9877, 97jca 511 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
99983exp 1119 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))))
10040, 99ralrimi 3236 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
101 brimralrspcev 5171 . . . . . . . . . . . . 13 ((if(𝑒𝑓, 𝑒, 𝑓) ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
10234, 100, 101syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
1031023exp 1119 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ((𝑒 ∈ ℝ+𝑓 ∈ ℝ+) → ((∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))))
104103rexlimdvv 3194 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (∃𝑒 ∈ ℝ+𝑓 ∈ ℝ+ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))))
10532, 104mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
106105adantlr 715 . . . . . . . 8 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
1071063adant3 1132 . . . . . . 7 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
108 nfv 1914 . . . . . . . . . . 11 𝑧(((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+)
109 nfra1 3262 . . . . . . . . . . 11 𝑧𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
110108, 109nfan 1899 . . . . . . . . . 10 𝑧((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
111 simp1l 1198 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) → 𝜑)
112111ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → 𝜑)
1131123ad2ant1 1133 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → 𝜑)
114 simp2 1137 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → 𝑧𝐴)
115 mullimcf.h . . . . . . . . . . . . . . 15 𝐻 = (𝑥𝐴 ↦ ((𝐹𝑥) · (𝐺𝑥)))
116 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
117 fveq2 6861 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
118116, 117oveq12d 7408 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝐹𝑥) · (𝐺𝑥)) = ((𝐹𝑧) · (𝐺𝑧)))
119 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐴) → 𝑧𝐴)
12013ffvelcdmda 7059 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
12125ffvelcdmda 7059 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝐴) → (𝐺𝑧) ∈ ℂ)
122120, 121mulcld 11201 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐴) → ((𝐹𝑧) · (𝐺𝑧)) ∈ ℂ)
123115, 118, 119, 122fvmptd3 6994 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → (𝐻𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
124123fvoveq1d 7412 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) = (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))))
125113, 114, 124syl2anc 584 . . . . . . . . . . . 12 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) = (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))))
126120, 121jca 511 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → ((𝐹𝑧) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ))
127113, 114, 126syl2anc 584 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → ((𝐹𝑧) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ))
128 simpll3 1215 . . . . . . . . . . . . . 14 (((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤))
1291283ad2ant1 1133 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤))
130 rsp 3226 . . . . . . . . . . . . . . 15 (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))))
1311303imp 1110 . . . . . . . . . . . . . 14 ((∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
1321313adant1l 1177 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
133 fvoveq1 7413 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑧) → (abs‘(𝑐𝐵)) = (abs‘((𝐹𝑧) − 𝐵)))
134133breq1d 5120 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑧) → ((abs‘(𝑐𝐵)) < 𝑎 ↔ (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))
135134anbi1d 631 . . . . . . . . . . . . . . 15 (𝑐 = (𝐹𝑧) → (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) ↔ ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏)))
136 oveq1 7397 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑧) → (𝑐 · 𝑑) = ((𝐹𝑧) · 𝑑))
137136fvoveq1d 7412 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑧) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) = (abs‘(((𝐹𝑧) · 𝑑) − (𝐵 · 𝐶))))
138137breq1d 5120 . . . . . . . . . . . . . . 15 (𝑐 = (𝐹𝑧) → ((abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤 ↔ (abs‘(((𝐹𝑧) · 𝑑) − (𝐵 · 𝐶))) < 𝑤))
139135, 138imbi12d 344 . . . . . . . . . . . . . 14 (𝑐 = (𝐹𝑧) → ((((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤) ↔ (((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘(((𝐹𝑧) · 𝑑) − (𝐵 · 𝐶))) < 𝑤)))
140 fvoveq1 7413 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝐺𝑧) → (abs‘(𝑑𝐶)) = (abs‘((𝐺𝑧) − 𝐶)))
141140breq1d 5120 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐺𝑧) → ((abs‘(𝑑𝐶)) < 𝑏 ↔ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
142141anbi2d 630 . . . . . . . . . . . . . . 15 (𝑑 = (𝐺𝑧) → (((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) ↔ ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
143 oveq2 7398 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝐺𝑧) → ((𝐹𝑧) · 𝑑) = ((𝐹𝑧) · (𝐺𝑧)))
144143fvoveq1d 7412 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐺𝑧) → (abs‘(((𝐹𝑧) · 𝑑) − (𝐵 · 𝐶))) = (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))))
145144breq1d 5120 . . . . . . . . . . . . . . 15 (𝑑 = (𝐺𝑧) → ((abs‘(((𝐹𝑧) · 𝑑) − (𝐵 · 𝐶))) < 𝑤 ↔ (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))) < 𝑤))
146142, 145imbi12d 344 . . . . . . . . . . . . . 14 (𝑑 = (𝐺𝑧) → ((((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘(((𝐹𝑧) · 𝑑) − (𝐵 · 𝐶))) < 𝑤) ↔ (((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏) → (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))) < 𝑤)))
147139, 146rspc2v 3602 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ) → (∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤) → (((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏) → (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))) < 𝑤)))
148127, 129, 132, 147syl3c 66 . . . . . . . . . . . 12 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))) < 𝑤)
149125, 148eqbrtrd 5132 . . . . . . . . . . 11 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤)
1501493exp 1119 . . . . . . . . . 10 (((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤)))
151110, 150ralrimi 3236 . . . . . . . . 9 (((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤))
152151ex 412 . . . . . . . 8 ((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) → (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤)))
153152reximdva 3147 . . . . . . 7 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) → (∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤)))
154107, 153mpd 15 . . . . . 6 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤))
1551543exp 1119 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤))))
156155rexlimdvv 3194 . . . 4 ((𝜑𝑤 ∈ ℝ+) → (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤)))
15712, 156mpd 15 . . 3 ((𝜑𝑤 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤))
158157ralrimiva 3126 . 2 (𝜑 → ∀𝑤 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤))
15913ffvelcdmda 7059 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
16025ffvelcdmda 7059 . . . . 5 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ ℂ)
161159, 160mulcld 11201 . . . 4 ((𝜑𝑥𝐴) → ((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
162161, 115fmptd 7089 . . 3 (𝜑𝐻:𝐴⟶ℂ)
163162, 18, 19ellimc3 25787 . 2 (𝜑 → ((𝐵 · 𝐶) ∈ (𝐻 lim 𝐷) ↔ ((𝐵 · 𝐶) ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤))))
1647, 158, 163mpbir2and 713 1 (𝜑 → (𝐵 · 𝐶) ∈ (𝐻 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  wss 3917  ifcif 4491   class class class wbr 5110  cmpt 5191  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074   · cmul 11080   < clt 11215  cle 11216  cmin 11412  +crp 12958  abscabs 15207   lim climc 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cnp 23122  df-xms 24215  df-ms 24216  df-limc 25774
This theorem is referenced by:  fourierdlem101  46212  fourierdlem111  46222
  Copyright terms: Public domain W3C validator