Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mullimcf Structured version   Visualization version   GIF version

Theorem mullimcf 45011
Description: Limit of the multiplication of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
mullimcf.f (𝜑𝐹:𝐴⟶ℂ)
mullimcf.g (𝜑𝐺:𝐴⟶ℂ)
mullimcf.h 𝐻 = (𝑥𝐴 ↦ ((𝐹𝑥) · (𝐺𝑥)))
mullimcf.b (𝜑𝐵 ∈ (𝐹 lim 𝐷))
mullimcf.c (𝜑𝐶 ∈ (𝐺 lim 𝐷))
Assertion
Ref Expression
mullimcf (𝜑 → (𝐵 · 𝐶) ∈ (𝐻 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐻(𝑥)

Proof of Theorem mullimcf
Dummy variables 𝑎 𝑏 𝑒 𝑓 𝑦 𝑧 𝑤 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 25817 . . . 4 (𝐹 lim 𝐷) ⊆ ℂ
2 mullimcf.b . . . 4 (𝜑𝐵 ∈ (𝐹 lim 𝐷))
31, 2sselid 3978 . . 3 (𝜑𝐵 ∈ ℂ)
4 limccl 25817 . . . 4 (𝐺 lim 𝐷) ⊆ ℂ
5 mullimcf.c . . . 4 (𝜑𝐶 ∈ (𝐺 lim 𝐷))
64, 5sselid 3978 . . 3 (𝜑𝐶 ∈ ℂ)
73, 6mulcld 11265 . 2 (𝜑 → (𝐵 · 𝐶) ∈ ℂ)
8 simpr 484 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
93adantr 480 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝐵 ∈ ℂ)
106adantr 480 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝐶 ∈ ℂ)
11 mulcn2 15573 . . . . 5 ((𝑤 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤))
128, 9, 10, 11syl3anc 1369 . . . 4 ((𝜑𝑤 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤))
13 mullimcf.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐴⟶ℂ)
1413fdmd 6733 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = 𝐴)
15 limcrcl 25816 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
162, 15syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
1716simp2d 1141 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 ⊆ ℂ)
1814, 17eqsstrrd 4019 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ⊆ ℂ)
1916simp3d 1142 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℂ)
2013, 18, 19ellimc3 25821 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ∈ (𝐹 lim 𝐷) ↔ (𝐵 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))))
212, 20mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)))
2221simprd 495 . . . . . . . . . . . . 13 (𝜑 → ∀𝑎 ∈ ℝ+𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))
2322r19.21bi 3245 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ ℝ+) → ∃𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))
2423adantrr 716 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))
25 mullimcf.g . . . . . . . . . . . . . . . 16 (𝜑𝐺:𝐴⟶ℂ)
2625, 18, 19ellimc3 25821 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 ∈ (𝐺 lim 𝐷) ↔ (𝐶 ∈ ℂ ∧ ∀𝑏 ∈ ℝ+𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))))
275, 26mpbid 231 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑏 ∈ ℝ+𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
2827simprd 495 . . . . . . . . . . . . 13 (𝜑 → ∀𝑏 ∈ ℝ+𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
2928r19.21bi 3245 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ ℝ+) → ∃𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
3029adantrl 715 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
31 reeanv 3223 . . . . . . . . . . 11 (∃𝑒 ∈ ℝ+𝑓 ∈ ℝ+ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ↔ (∃𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∃𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
3224, 30, 31sylanbrc 582 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑒 ∈ ℝ+𝑓 ∈ ℝ+ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
33 ifcl 4574 . . . . . . . . . . . . . 14 ((𝑒 ∈ ℝ+𝑓 ∈ ℝ+) → if(𝑒𝑓, 𝑒, 𝑓) ∈ ℝ+)
34333ad2ant2 1132 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → if(𝑒𝑓, 𝑒, 𝑓) ∈ ℝ+)
35 nfv 1910 . . . . . . . . . . . . . . 15 𝑧(𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+))
36 nfv 1910 . . . . . . . . . . . . . . 15 𝑧(𝑒 ∈ ℝ+𝑓 ∈ ℝ+)
37 nfra1 3278 . . . . . . . . . . . . . . . 16 𝑧𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)
38 nfra1 3278 . . . . . . . . . . . . . . . 16 𝑧𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)
3937, 38nfan 1895 . . . . . . . . . . . . . . 15 𝑧(∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
4035, 36, 39nf3an 1897 . . . . . . . . . . . . . 14 𝑧((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
41 simp11l 1282 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝜑)
42 simp1rl 1236 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → 𝑎 ∈ ℝ+)
43423ad2ant1 1131 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑎 ∈ ℝ+)
4441, 43jca 511 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝜑𝑎 ∈ ℝ+))
45 simp12 1202 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑒 ∈ ℝ+𝑓 ∈ ℝ+))
46 simp13l 1286 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))
4744, 45, 46jca31 514 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)))
48 simp1r 1196 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))
49 simp2 1135 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑧𝐴)
50 simp3l 1199 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑧𝐷)
51 simplll 774 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) → 𝜑)
52513ad2ant1 1131 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝜑)
53 simp1lr 1235 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑒 ∈ ℝ+𝑓 ∈ ℝ+))
54 simp3r 1200 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))
55 simp1l 1195 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝜑)
56 simp2 1135 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝑧𝐴)
5718sselda 3980 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧𝐴) → 𝑧 ∈ ℂ)
5855, 56, 57syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝑧 ∈ ℂ)
5955, 19syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝐷 ∈ ℂ)
6058, 59subcld 11602 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (𝑧𝐷) ∈ ℂ)
6160abscld 15416 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (abs‘(𝑧𝐷)) ∈ ℝ)
62 rpre 13015 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 ∈ ℝ+𝑒 ∈ ℝ)
6362ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) → 𝑒 ∈ ℝ)
64633ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝑒 ∈ ℝ)
65 rpre 13015 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 ∈ ℝ+𝑓 ∈ ℝ)
6665ad2antll 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) → 𝑓 ∈ ℝ)
67663ad2ant1 1131 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝑓 ∈ ℝ)
6864, 67ifcld 4575 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → if(𝑒𝑓, 𝑒, 𝑓) ∈ ℝ)
69 simp3 1136 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))
70 min1 13201 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → if(𝑒𝑓, 𝑒, 𝑓) ≤ 𝑒)
7164, 67, 70syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → if(𝑒𝑓, 𝑒, 𝑓) ≤ 𝑒)
7261, 68, 64, 69, 71ltletrd 11405 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (abs‘(𝑧𝐷)) < 𝑒)
7352, 53, 49, 54, 72syl211anc 1374 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘(𝑧𝐷)) < 𝑒)
7450, 73jca 511 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒))
75 rsp 3241 . . . . . . . . . . . . . . . . . 18 (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)))
7648, 49, 74, 75syl3c 66 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)
7747, 76syld3an1 1408 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎)
78 simp1l 1195 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → 𝜑)
7978, 42jca 511 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → (𝜑𝑎 ∈ ℝ+))
80 simp2 1135 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → (𝑒 ∈ ℝ+𝑓 ∈ ℝ+))
81 simp3r 1200 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
8279, 80, 81jca31 514 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → (((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
83 simp1r 1196 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
84 simp2 1135 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑧𝐴)
85 simp3l 1199 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑧𝐷)
86 simplll 774 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) → 𝜑)
87863ad2ant1 1131 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝜑)
88 simp1lr 1235 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑒 ∈ ℝ+𝑓 ∈ ℝ+))
89 simp3r 1200 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))
90 min2 13202 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → if(𝑒𝑓, 𝑒, 𝑓) ≤ 𝑓)
9164, 67, 90syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → if(𝑒𝑓, 𝑒, 𝑓) ≤ 𝑓)
9261, 68, 67, 69, 91ltletrd 11405 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (abs‘(𝑧𝐷)) < 𝑓)
9387, 88, 84, 89, 92syl211anc 1374 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘(𝑧𝐷)) < 𝑓)
9485, 93jca 511 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓))
95 rsp 3241 . . . . . . . . . . . . . . . . . 18 (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
9683, 84, 94, 95syl3c 66 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)
9782, 96syl3an1 1161 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)
9877, 97jca 511 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
99983exp 1117 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))))
10040, 99ralrimi 3251 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
101 brimralrspcev 5209 . . . . . . . . . . . . 13 ((if(𝑒𝑓, 𝑒, 𝑓) ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
10234, 100, 101syl2anc 583 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
1031023exp 1117 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ((𝑒 ∈ ℝ+𝑓 ∈ ℝ+) → ((∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))))
104103rexlimdvv 3207 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (∃𝑒 ∈ ℝ+𝑓 ∈ ℝ+ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝐵)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))))
10532, 104mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
106105adantlr 714 . . . . . . . 8 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
1071063adant3 1130 . . . . . . 7 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
108 nfv 1910 . . . . . . . . . . 11 𝑧(((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+)
109 nfra1 3278 . . . . . . . . . . 11 𝑧𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
110108, 109nfan 1895 . . . . . . . . . 10 𝑧((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
111 simp1l 1195 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) → 𝜑)
112111ad2antrr 725 . . . . . . . . . . . . . 14 (((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → 𝜑)
1131123ad2ant1 1131 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → 𝜑)
114 simp2 1135 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → 𝑧𝐴)
115 mullimcf.h . . . . . . . . . . . . . . 15 𝐻 = (𝑥𝐴 ↦ ((𝐹𝑥) · (𝐺𝑥)))
116 fveq2 6897 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
117 fveq2 6897 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
118116, 117oveq12d 7438 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝐹𝑥) · (𝐺𝑥)) = ((𝐹𝑧) · (𝐺𝑧)))
119 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐴) → 𝑧𝐴)
12013ffvelcdmda 7094 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
12125ffvelcdmda 7094 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝐴) → (𝐺𝑧) ∈ ℂ)
122120, 121mulcld 11265 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐴) → ((𝐹𝑧) · (𝐺𝑧)) ∈ ℂ)
123115, 118, 119, 122fvmptd3 7028 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → (𝐻𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
124123fvoveq1d 7442 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) = (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))))
125113, 114, 124syl2anc 583 . . . . . . . . . . . 12 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) = (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))))
126120, 121jca 511 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → ((𝐹𝑧) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ))
127113, 114, 126syl2anc 583 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → ((𝐹𝑧) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ))
128 simpll3 1212 . . . . . . . . . . . . . 14 (((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤))
1291283ad2ant1 1131 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤))
130 rsp 3241 . . . . . . . . . . . . . . 15 (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))))
1311303imp 1109 . . . . . . . . . . . . . 14 ((∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
1321313adant1l 1174 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
133 fvoveq1 7443 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑧) → (abs‘(𝑐𝐵)) = (abs‘((𝐹𝑧) − 𝐵)))
134133breq1d 5158 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑧) → ((abs‘(𝑐𝐵)) < 𝑎 ↔ (abs‘((𝐹𝑧) − 𝐵)) < 𝑎))
135134anbi1d 630 . . . . . . . . . . . . . . 15 (𝑐 = (𝐹𝑧) → (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) ↔ ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏)))
136 oveq1 7427 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑧) → (𝑐 · 𝑑) = ((𝐹𝑧) · 𝑑))
137136fvoveq1d 7442 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑧) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) = (abs‘(((𝐹𝑧) · 𝑑) − (𝐵 · 𝐶))))
138137breq1d 5158 . . . . . . . . . . . . . . 15 (𝑐 = (𝐹𝑧) → ((abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤 ↔ (abs‘(((𝐹𝑧) · 𝑑) − (𝐵 · 𝐶))) < 𝑤))
139135, 138imbi12d 344 . . . . . . . . . . . . . 14 (𝑐 = (𝐹𝑧) → ((((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤) ↔ (((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘(((𝐹𝑧) · 𝑑) − (𝐵 · 𝐶))) < 𝑤)))
140 fvoveq1 7443 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝐺𝑧) → (abs‘(𝑑𝐶)) = (abs‘((𝐺𝑧) − 𝐶)))
141140breq1d 5158 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐺𝑧) → ((abs‘(𝑑𝐶)) < 𝑏 ↔ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))
142141anbi2d 629 . . . . . . . . . . . . . . 15 (𝑑 = (𝐺𝑧) → (((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) ↔ ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)))
143 oveq2 7428 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝐺𝑧) → ((𝐹𝑧) · 𝑑) = ((𝐹𝑧) · (𝐺𝑧)))
144143fvoveq1d 7442 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐺𝑧) → (abs‘(((𝐹𝑧) · 𝑑) − (𝐵 · 𝐶))) = (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))))
145144breq1d 5158 . . . . . . . . . . . . . . 15 (𝑑 = (𝐺𝑧) → ((abs‘(((𝐹𝑧) · 𝑑) − (𝐵 · 𝐶))) < 𝑤 ↔ (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))) < 𝑤))
146142, 145imbi12d 344 . . . . . . . . . . . . . 14 (𝑑 = (𝐺𝑧) → ((((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘(((𝐹𝑧) · 𝑑) − (𝐵 · 𝐶))) < 𝑤) ↔ (((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏) → (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))) < 𝑤)))
147139, 146rspc2v 3620 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ) → (∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤) → (((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏) → (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))) < 𝑤)))
148127, 129, 132, 147syl3c 66 . . . . . . . . . . . 12 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝐵 · 𝐶))) < 𝑤)
149125, 148eqbrtrd 5170 . . . . . . . . . . 11 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤)
1501493exp 1117 . . . . . . . . . 10 (((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤)))
151110, 150ralrimi 3251 . . . . . . . . 9 (((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤))
152151ex 412 . . . . . . . 8 ((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) → (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤)))
153152reximdva 3165 . . . . . . 7 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) → (∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝐵)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝐶)) < 𝑏)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤)))
154107, 153mpd 15 . . . . . 6 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤))
1551543exp 1117 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤))))
156155rexlimdvv 3207 . . . 4 ((𝜑𝑤 ∈ ℝ+) → (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝐵)) < 𝑎 ∧ (abs‘(𝑑𝐶)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝐵 · 𝐶))) < 𝑤) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤)))
15712, 156mpd 15 . . 3 ((𝜑𝑤 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤))
158157ralrimiva 3143 . 2 (𝜑 → ∀𝑤 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤))
15913ffvelcdmda 7094 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
16025ffvelcdmda 7094 . . . . 5 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ ℂ)
161159, 160mulcld 11265 . . . 4 ((𝜑𝑥𝐴) → ((𝐹𝑥) · (𝐺𝑥)) ∈ ℂ)
162161, 115fmptd 7124 . . 3 (𝜑𝐻:𝐴⟶ℂ)
163162, 18, 19ellimc3 25821 . 2 (𝜑 → ((𝐵 · 𝐶) ∈ (𝐻 lim 𝐷) ↔ ((𝐵 · 𝐶) ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝐵 · 𝐶))) < 𝑤))))
1647, 158, 163mpbir2and 712 1 (𝜑 → (𝐵 · 𝐶) ∈ (𝐻 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937  wral 3058  wrex 3067  wss 3947  ifcif 4529   class class class wbr 5148  cmpt 5231  dom cdm 5678  wf 6544  cfv 6548  (class class class)co 7420  cc 11137  cr 11138   · cmul 11144   < clt 11279  cle 11280  cmin 11475  +crp 13007  abscabs 15214   lim climc 25804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9435  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-dec 12709  df-uz 12854  df-q 12964  df-rp 13008  df-xneg 13125  df-xadd 13126  df-xmul 13127  df-fz 13518  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-struct 17116  df-slot 17151  df-ndx 17163  df-base 17181  df-plusg 17246  df-mulr 17247  df-starv 17248  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-rest 17404  df-topn 17405  df-topgen 17425  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22862  df-cnp 23145  df-xms 24239  df-ms 24240  df-limc 25808
This theorem is referenced by:  fourierdlem101  45595  fourierdlem111  45605
  Copyright terms: Public domain W3C validator