MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restnlly Structured version   Visualization version   GIF version

Theorem restnlly 22986
Description: If the property 𝐴 passes to open subspaces, then a space is n-locally 𝐴 iff it is locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypothesis
Ref Expression
restlly.1 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
Assertion
Ref Expression
restnlly (𝜑 → 𝑛-Locally 𝐴 = Locally 𝐴)
Distinct variable groups:   𝑥,𝑗,𝐴   𝜑,𝑗,𝑥

Proof of Theorem restnlly
Dummy variables 𝑘 𝑠 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 22977 . . . . . 6 (𝑘 ∈ 𝑛-Locally 𝐴𝑘 ∈ Top)
21adantl 483 . . . . 5 ((𝜑𝑘 ∈ 𝑛-Locally 𝐴) → 𝑘 ∈ Top)
3 nlly2i 22980 . . . . . . . . 9 ((𝑘 ∈ 𝑛-Locally 𝐴𝑦𝑘𝑢𝑦) → ∃𝑠 ∈ 𝒫 𝑦𝑥𝑘 (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))
433adant1l 1177 . . . . . . . 8 (((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) → ∃𝑠 ∈ 𝒫 𝑦𝑥𝑘 (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))
5 simprl 770 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥𝑘)
6 simprr2 1223 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥𝑠)
7 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑠 ∈ 𝒫 𝑦)
87elpwid 4612 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑠𝑦)
96, 8sstrd 3993 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥𝑦)
10 velpw 4608 . . . . . . . . . . . . . 14 (𝑥 ∈ 𝒫 𝑦𝑥𝑦)
119, 10sylibr 233 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥 ∈ 𝒫 𝑦)
125, 11elind 4195 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥 ∈ (𝑘 ∩ 𝒫 𝑦))
13 simprr1 1222 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑢𝑥)
14 simpll1 1213 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝜑𝑘 ∈ 𝑛-Locally 𝐴))
1514, 1simpl2im 505 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑘 ∈ Top)
16 restabs 22669 . . . . . . . . . . . . . 14 ((𝑘 ∈ Top ∧ 𝑥𝑠𝑠 ∈ 𝒫 𝑦) → ((𝑘t 𝑠) ↾t 𝑥) = (𝑘t 𝑥))
1715, 6, 7, 16syl3anc 1372 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → ((𝑘t 𝑠) ↾t 𝑥) = (𝑘t 𝑥))
18 df-ss 3966 . . . . . . . . . . . . . . . 16 (𝑥𝑠 ↔ (𝑥𝑠) = 𝑥)
196, 18sylib 217 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑥𝑠) = 𝑥)
20 elrestr 17374 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ Top ∧ 𝑠 ∈ 𝒫 𝑦𝑥𝑘) → (𝑥𝑠) ∈ (𝑘t 𝑠))
2115, 7, 5, 20syl3anc 1372 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑥𝑠) ∈ (𝑘t 𝑠))
2219, 21eqeltrrd 2835 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥 ∈ (𝑘t 𝑠))
23 eleq2 2823 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑘t 𝑠) → (𝑥𝑗𝑥 ∈ (𝑘t 𝑠)))
24 oveq1 7416 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑘t 𝑠) → (𝑗t 𝑥) = ((𝑘t 𝑠) ↾t 𝑥))
2524eleq1d 2819 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑘t 𝑠) → ((𝑗t 𝑥) ∈ 𝐴 ↔ ((𝑘t 𝑠) ↾t 𝑥) ∈ 𝐴))
2623, 25imbi12d 345 . . . . . . . . . . . . . . 15 (𝑗 = (𝑘t 𝑠) → ((𝑥𝑗 → (𝑗t 𝑥) ∈ 𝐴) ↔ (𝑥 ∈ (𝑘t 𝑠) → ((𝑘t 𝑠) ↾t 𝑥) ∈ 𝐴)))
2714simpld 496 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝜑)
28 restlly.1 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
2928expr 458 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → (𝑥𝑗 → (𝑗t 𝑥) ∈ 𝐴))
3029ralrimiva 3147 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑗𝐴 (𝑥𝑗 → (𝑗t 𝑥) ∈ 𝐴))
3127, 30syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → ∀𝑗𝐴 (𝑥𝑗 → (𝑗t 𝑥) ∈ 𝐴))
32 simprr3 1224 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑘t 𝑠) ∈ 𝐴)
3326, 31, 32rspcdva 3614 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑥 ∈ (𝑘t 𝑠) → ((𝑘t 𝑠) ↾t 𝑥) ∈ 𝐴))
3422, 33mpd 15 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → ((𝑘t 𝑠) ↾t 𝑥) ∈ 𝐴)
3517, 34eqeltrrd 2835 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑘t 𝑥) ∈ 𝐴)
3612, 13, 35jca32 517 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑥 ∈ (𝑘 ∩ 𝒫 𝑦) ∧ (𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴)))
3736ex 414 . . . . . . . . . 10 ((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) → ((𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴)) → (𝑥 ∈ (𝑘 ∩ 𝒫 𝑦) ∧ (𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴))))
3837reximdv2 3165 . . . . . . . . 9 ((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) → (∃𝑥𝑘 (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴)))
3938rexlimdva 3156 . . . . . . . 8 (((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) → (∃𝑠 ∈ 𝒫 𝑦𝑥𝑘 (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴)))
404, 39mpd 15 . . . . . . 7 (((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴))
41403expb 1121 . . . . . 6 (((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ (𝑦𝑘𝑢𝑦)) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴))
4241ralrimivva 3201 . . . . 5 ((𝜑𝑘 ∈ 𝑛-Locally 𝐴) → ∀𝑦𝑘𝑢𝑦𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴))
43 islly 22972 . . . . 5 (𝑘 ∈ Locally 𝐴 ↔ (𝑘 ∈ Top ∧ ∀𝑦𝑘𝑢𝑦𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴)))
442, 42, 43sylanbrc 584 . . . 4 ((𝜑𝑘 ∈ 𝑛-Locally 𝐴) → 𝑘 ∈ Locally 𝐴)
4544ex 414 . . 3 (𝜑 → (𝑘 ∈ 𝑛-Locally 𝐴𝑘 ∈ Locally 𝐴))
4645ssrdv 3989 . 2 (𝜑 → 𝑛-Locally 𝐴 ⊆ Locally 𝐴)
47 llyssnlly 22982 . . 3 Locally 𝐴 ⊆ 𝑛-Locally 𝐴
4847a1i 11 . 2 (𝜑 → Locally 𝐴 ⊆ 𝑛-Locally 𝐴)
4946, 48eqssd 4000 1 (𝜑 → 𝑛-Locally 𝐴 = Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071  cin 3948  wss 3949  𝒫 cpw 4603  (class class class)co 7409  t crest 17366  Topctop 22395  Locally clly 22968  𝑛-Locally cnlly 22969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-rest 17368  df-top 22396  df-nei 22602  df-lly 22970  df-nlly 22971
This theorem is referenced by:  loclly  22991  hausnlly  22997
  Copyright terms: Public domain W3C validator