| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nllytop 23481 | . . . . . 6
⊢ (𝑘 ∈ 𝑛-Locally 𝐴 → 𝑘 ∈ Top) | 
| 2 | 1 | adantl 481 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) → 𝑘 ∈ Top) | 
| 3 |  | nlly2i 23484 | . . . . . . . . 9
⊢ ((𝑘 ∈ 𝑛-Locally 𝐴 ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) → ∃𝑠 ∈ 𝒫 𝑦∃𝑥 ∈ 𝑘 (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴)) | 
| 4 | 3 | 3adant1l 1177 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) → ∃𝑠 ∈ 𝒫 𝑦∃𝑥 ∈ 𝑘 (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴)) | 
| 5 |  | simprl 771 | . . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑥 ∈ 𝑘) | 
| 6 |  | simprr2 1223 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑥 ⊆ 𝑠) | 
| 7 |  | simplr 769 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑠 ∈ 𝒫 𝑦) | 
| 8 | 7 | elpwid 4609 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑠 ⊆ 𝑦) | 
| 9 | 6, 8 | sstrd 3994 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑥 ⊆ 𝑦) | 
| 10 |  | velpw 4605 | . . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝒫 𝑦 ↔ 𝑥 ⊆ 𝑦) | 
| 11 | 9, 10 | sylibr 234 | . . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑥 ∈ 𝒫 𝑦) | 
| 12 | 5, 11 | elind 4200 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)) | 
| 13 |  | simprr1 1222 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑢 ∈ 𝑥) | 
| 14 |  | simpll1 1213 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → (𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴)) | 
| 15 | 14, 1 | simpl2im 503 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑘 ∈ Top) | 
| 16 |  | restabs 23173 | . . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ Top ∧ 𝑥 ⊆ 𝑠 ∧ 𝑠 ∈ 𝒫 𝑦) → ((𝑘 ↾t 𝑠) ↾t 𝑥) = (𝑘 ↾t 𝑥)) | 
| 17 | 15, 6, 7, 16 | syl3anc 1373 | . . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → ((𝑘 ↾t 𝑠) ↾t 𝑥) = (𝑘 ↾t 𝑥)) | 
| 18 |  | dfss2 3969 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 ⊆ 𝑠 ↔ (𝑥 ∩ 𝑠) = 𝑥) | 
| 19 | 6, 18 | sylib 218 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → (𝑥 ∩ 𝑠) = 𝑥) | 
| 20 |  | elrestr 17473 | . . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ Top ∧ 𝑠 ∈ 𝒫 𝑦 ∧ 𝑥 ∈ 𝑘) → (𝑥 ∩ 𝑠) ∈ (𝑘 ↾t 𝑠)) | 
| 21 | 15, 7, 5, 20 | syl3anc 1373 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → (𝑥 ∩ 𝑠) ∈ (𝑘 ↾t 𝑠)) | 
| 22 | 19, 21 | eqeltrrd 2842 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑥 ∈ (𝑘 ↾t 𝑠)) | 
| 23 |  | eleq2 2830 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑘 ↾t 𝑠) → (𝑥 ∈ 𝑗 ↔ 𝑥 ∈ (𝑘 ↾t 𝑠))) | 
| 24 |  | oveq1 7438 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 = (𝑘 ↾t 𝑠) → (𝑗 ↾t 𝑥) = ((𝑘 ↾t 𝑠) ↾t 𝑥)) | 
| 25 | 24 | eleq1d 2826 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑘 ↾t 𝑠) → ((𝑗 ↾t 𝑥) ∈ 𝐴 ↔ ((𝑘 ↾t 𝑠) ↾t 𝑥) ∈ 𝐴)) | 
| 26 | 23, 25 | imbi12d 344 | . . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑘 ↾t 𝑠) → ((𝑥 ∈ 𝑗 → (𝑗 ↾t 𝑥) ∈ 𝐴) ↔ (𝑥 ∈ (𝑘 ↾t 𝑠) → ((𝑘 ↾t 𝑠) ↾t 𝑥) ∈ 𝐴))) | 
| 27 | 14 | simpld 494 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝜑) | 
| 28 |  | restlly.1 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) | 
| 29 | 28 | expr 456 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝑥 ∈ 𝑗 → (𝑗 ↾t 𝑥) ∈ 𝐴)) | 
| 30 | 29 | ralrimiva 3146 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 (𝑥 ∈ 𝑗 → (𝑗 ↾t 𝑥) ∈ 𝐴)) | 
| 31 | 27, 30 | syl 17 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → ∀𝑗 ∈ 𝐴 (𝑥 ∈ 𝑗 → (𝑗 ↾t 𝑥) ∈ 𝐴)) | 
| 32 |  | simprr3 1224 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → (𝑘 ↾t 𝑠) ∈ 𝐴) | 
| 33 | 26, 31, 32 | rspcdva 3623 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → (𝑥 ∈ (𝑘 ↾t 𝑠) → ((𝑘 ↾t 𝑠) ↾t 𝑥) ∈ 𝐴)) | 
| 34 | 22, 33 | mpd 15 | . . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → ((𝑘 ↾t 𝑠) ↾t 𝑥) ∈ 𝐴) | 
| 35 | 17, 34 | eqeltrrd 2842 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → (𝑘 ↾t 𝑥) ∈ 𝐴) | 
| 36 | 12, 13, 35 | jca32 515 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → (𝑥 ∈ (𝑘 ∩ 𝒫 𝑦) ∧ (𝑢 ∈ 𝑥 ∧ (𝑘 ↾t 𝑥) ∈ 𝐴))) | 
| 37 | 36 | ex 412 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) → ((𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴)) → (𝑥 ∈ (𝑘 ∩ 𝒫 𝑦) ∧ (𝑢 ∈ 𝑥 ∧ (𝑘 ↾t 𝑥) ∈ 𝐴)))) | 
| 38 | 37 | reximdv2 3164 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) → (∃𝑥 ∈ 𝑘 (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢 ∈ 𝑥 ∧ (𝑘 ↾t 𝑥) ∈ 𝐴))) | 
| 39 | 38 | rexlimdva 3155 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) → (∃𝑠 ∈ 𝒫 𝑦∃𝑥 ∈ 𝑘 (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢 ∈ 𝑥 ∧ (𝑘 ↾t 𝑥) ∈ 𝐴))) | 
| 40 | 4, 39 | mpd 15 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢 ∈ 𝑥 ∧ (𝑘 ↾t 𝑥) ∈ 𝐴)) | 
| 41 | 40 | 3expb 1121 | . . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ (𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦)) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢 ∈ 𝑥 ∧ (𝑘 ↾t 𝑥) ∈ 𝐴)) | 
| 42 | 41 | ralrimivva 3202 | . . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) → ∀𝑦 ∈ 𝑘 ∀𝑢 ∈ 𝑦 ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢 ∈ 𝑥 ∧ (𝑘 ↾t 𝑥) ∈ 𝐴)) | 
| 43 |  | islly 23476 | . . . . 5
⊢ (𝑘 ∈ Locally 𝐴 ↔ (𝑘 ∈ Top ∧ ∀𝑦 ∈ 𝑘 ∀𝑢 ∈ 𝑦 ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢 ∈ 𝑥 ∧ (𝑘 ↾t 𝑥) ∈ 𝐴))) | 
| 44 | 2, 42, 43 | sylanbrc 583 | . . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) → 𝑘 ∈ Locally 𝐴) | 
| 45 | 44 | ex 412 | . . 3
⊢ (𝜑 → (𝑘 ∈ 𝑛-Locally 𝐴 → 𝑘 ∈ Locally 𝐴)) | 
| 46 | 45 | ssrdv 3989 | . 2
⊢ (𝜑 → 𝑛-Locally 𝐴 ⊆ Locally 𝐴) | 
| 47 |  | llyssnlly 23486 | . . 3
⊢ Locally
𝐴 ⊆ 𝑛-Locally
𝐴 | 
| 48 | 47 | a1i 11 | . 2
⊢ (𝜑 → Locally 𝐴 ⊆ 𝑛-Locally 𝐴) | 
| 49 | 46, 48 | eqssd 4001 | 1
⊢ (𝜑 → 𝑛-Locally 𝐴 = Locally 𝐴) |