Step | Hyp | Ref
| Expression |
1 | | nllytop 22532 |
. . . . . 6
⊢ (𝑘 ∈ 𝑛-Locally 𝐴 → 𝑘 ∈ Top) |
2 | 1 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) → 𝑘 ∈ Top) |
3 | | nlly2i 22535 |
. . . . . . . . 9
⊢ ((𝑘 ∈ 𝑛-Locally 𝐴 ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) → ∃𝑠 ∈ 𝒫 𝑦∃𝑥 ∈ 𝑘 (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴)) |
4 | 3 | 3adant1l 1174 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) → ∃𝑠 ∈ 𝒫 𝑦∃𝑥 ∈ 𝑘 (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴)) |
5 | | simprl 767 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑥 ∈ 𝑘) |
6 | | simprr2 1220 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑥 ⊆ 𝑠) |
7 | | simplr 765 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑠 ∈ 𝒫 𝑦) |
8 | 7 | elpwid 4541 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑠 ⊆ 𝑦) |
9 | 6, 8 | sstrd 3927 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑥 ⊆ 𝑦) |
10 | | velpw 4535 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝒫 𝑦 ↔ 𝑥 ⊆ 𝑦) |
11 | 9, 10 | sylibr 233 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑥 ∈ 𝒫 𝑦) |
12 | 5, 11 | elind 4124 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)) |
13 | | simprr1 1219 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑢 ∈ 𝑥) |
14 | | simpll1 1210 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → (𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴)) |
15 | 14, 1 | simpl2im 503 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑘 ∈ Top) |
16 | | restabs 22224 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ Top ∧ 𝑥 ⊆ 𝑠 ∧ 𝑠 ∈ 𝒫 𝑦) → ((𝑘 ↾t 𝑠) ↾t 𝑥) = (𝑘 ↾t 𝑥)) |
17 | 15, 6, 7, 16 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → ((𝑘 ↾t 𝑠) ↾t 𝑥) = (𝑘 ↾t 𝑥)) |
18 | | df-ss 3900 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ⊆ 𝑠 ↔ (𝑥 ∩ 𝑠) = 𝑥) |
19 | 6, 18 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → (𝑥 ∩ 𝑠) = 𝑥) |
20 | | elrestr 17056 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ Top ∧ 𝑠 ∈ 𝒫 𝑦 ∧ 𝑥 ∈ 𝑘) → (𝑥 ∩ 𝑠) ∈ (𝑘 ↾t 𝑠)) |
21 | 15, 7, 5, 20 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → (𝑥 ∩ 𝑠) ∈ (𝑘 ↾t 𝑠)) |
22 | 19, 21 | eqeltrrd 2840 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝑥 ∈ (𝑘 ↾t 𝑠)) |
23 | | eleq2 2827 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑘 ↾t 𝑠) → (𝑥 ∈ 𝑗 ↔ 𝑥 ∈ (𝑘 ↾t 𝑠))) |
24 | | oveq1 7262 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = (𝑘 ↾t 𝑠) → (𝑗 ↾t 𝑥) = ((𝑘 ↾t 𝑠) ↾t 𝑥)) |
25 | 24 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑘 ↾t 𝑠) → ((𝑗 ↾t 𝑥) ∈ 𝐴 ↔ ((𝑘 ↾t 𝑠) ↾t 𝑥) ∈ 𝐴)) |
26 | 23, 25 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑘 ↾t 𝑠) → ((𝑥 ∈ 𝑗 → (𝑗 ↾t 𝑥) ∈ 𝐴) ↔ (𝑥 ∈ (𝑘 ↾t 𝑠) → ((𝑘 ↾t 𝑠) ↾t 𝑥) ∈ 𝐴))) |
27 | 14 | simpld 494 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → 𝜑) |
28 | | restlly.1 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ 𝐴) |
29 | 28 | expr 456 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝑥 ∈ 𝑗 → (𝑗 ↾t 𝑥) ∈ 𝐴)) |
30 | 29 | ralrimiva 3107 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 (𝑥 ∈ 𝑗 → (𝑗 ↾t 𝑥) ∈ 𝐴)) |
31 | 27, 30 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → ∀𝑗 ∈ 𝐴 (𝑥 ∈ 𝑗 → (𝑗 ↾t 𝑥) ∈ 𝐴)) |
32 | | simprr3 1221 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → (𝑘 ↾t 𝑠) ∈ 𝐴) |
33 | 26, 31, 32 | rspcdva 3554 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → (𝑥 ∈ (𝑘 ↾t 𝑠) → ((𝑘 ↾t 𝑠) ↾t 𝑥) ∈ 𝐴)) |
34 | 22, 33 | mpd 15 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → ((𝑘 ↾t 𝑠) ↾t 𝑥) ∈ 𝐴) |
35 | 17, 34 | eqeltrrd 2840 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → (𝑘 ↾t 𝑥) ∈ 𝐴) |
36 | 12, 13, 35 | jca32 515 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴))) → (𝑥 ∈ (𝑘 ∩ 𝒫 𝑦) ∧ (𝑢 ∈ 𝑥 ∧ (𝑘 ↾t 𝑥) ∈ 𝐴))) |
37 | 36 | ex 412 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) → ((𝑥 ∈ 𝑘 ∧ (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴)) → (𝑥 ∈ (𝑘 ∩ 𝒫 𝑦) ∧ (𝑢 ∈ 𝑥 ∧ (𝑘 ↾t 𝑥) ∈ 𝐴)))) |
38 | 37 | reximdv2 3198 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) → (∃𝑥 ∈ 𝑘 (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢 ∈ 𝑥 ∧ (𝑘 ↾t 𝑥) ∈ 𝐴))) |
39 | 38 | rexlimdva 3212 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) → (∃𝑠 ∈ 𝒫 𝑦∃𝑥 ∈ 𝑘 (𝑢 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ∧ (𝑘 ↾t 𝑠) ∈ 𝐴) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢 ∈ 𝑥 ∧ (𝑘 ↾t 𝑥) ∈ 𝐴))) |
40 | 4, 39 | mpd 15 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢 ∈ 𝑥 ∧ (𝑘 ↾t 𝑥) ∈ 𝐴)) |
41 | 40 | 3expb 1118 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) ∧ (𝑦 ∈ 𝑘 ∧ 𝑢 ∈ 𝑦)) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢 ∈ 𝑥 ∧ (𝑘 ↾t 𝑥) ∈ 𝐴)) |
42 | 41 | ralrimivva 3114 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) → ∀𝑦 ∈ 𝑘 ∀𝑢 ∈ 𝑦 ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢 ∈ 𝑥 ∧ (𝑘 ↾t 𝑥) ∈ 𝐴)) |
43 | | islly 22527 |
. . . . 5
⊢ (𝑘 ∈ Locally 𝐴 ↔ (𝑘 ∈ Top ∧ ∀𝑦 ∈ 𝑘 ∀𝑢 ∈ 𝑦 ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢 ∈ 𝑥 ∧ (𝑘 ↾t 𝑥) ∈ 𝐴))) |
44 | 2, 42, 43 | sylanbrc 582 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑛-Locally 𝐴) → 𝑘 ∈ Locally 𝐴) |
45 | 44 | ex 412 |
. . 3
⊢ (𝜑 → (𝑘 ∈ 𝑛-Locally 𝐴 → 𝑘 ∈ Locally 𝐴)) |
46 | 45 | ssrdv 3923 |
. 2
⊢ (𝜑 → 𝑛-Locally 𝐴 ⊆ Locally 𝐴) |
47 | | llyssnlly 22537 |
. . 3
⊢ Locally
𝐴 ⊆ 𝑛-Locally
𝐴 |
48 | 47 | a1i 11 |
. 2
⊢ (𝜑 → Locally 𝐴 ⊆ 𝑛-Locally 𝐴) |
49 | 46, 48 | eqssd 3934 |
1
⊢ (𝜑 → 𝑛-Locally 𝐴 = Locally 𝐴) |