MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restnlly Structured version   Visualization version   GIF version

Theorem restnlly 22541
Description: If the property 𝐴 passes to open subspaces, then a space is n-locally 𝐴 iff it is locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypothesis
Ref Expression
restlly.1 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
Assertion
Ref Expression
restnlly (𝜑 → 𝑛-Locally 𝐴 = Locally 𝐴)
Distinct variable groups:   𝑥,𝑗,𝐴   𝜑,𝑗,𝑥

Proof of Theorem restnlly
Dummy variables 𝑘 𝑠 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 22532 . . . . . 6 (𝑘 ∈ 𝑛-Locally 𝐴𝑘 ∈ Top)
21adantl 481 . . . . 5 ((𝜑𝑘 ∈ 𝑛-Locally 𝐴) → 𝑘 ∈ Top)
3 nlly2i 22535 . . . . . . . . 9 ((𝑘 ∈ 𝑛-Locally 𝐴𝑦𝑘𝑢𝑦) → ∃𝑠 ∈ 𝒫 𝑦𝑥𝑘 (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))
433adant1l 1174 . . . . . . . 8 (((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) → ∃𝑠 ∈ 𝒫 𝑦𝑥𝑘 (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))
5 simprl 767 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥𝑘)
6 simprr2 1220 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥𝑠)
7 simplr 765 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑠 ∈ 𝒫 𝑦)
87elpwid 4541 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑠𝑦)
96, 8sstrd 3927 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥𝑦)
10 velpw 4535 . . . . . . . . . . . . . 14 (𝑥 ∈ 𝒫 𝑦𝑥𝑦)
119, 10sylibr 233 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥 ∈ 𝒫 𝑦)
125, 11elind 4124 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥 ∈ (𝑘 ∩ 𝒫 𝑦))
13 simprr1 1219 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑢𝑥)
14 simpll1 1210 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝜑𝑘 ∈ 𝑛-Locally 𝐴))
1514, 1simpl2im 503 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑘 ∈ Top)
16 restabs 22224 . . . . . . . . . . . . . 14 ((𝑘 ∈ Top ∧ 𝑥𝑠𝑠 ∈ 𝒫 𝑦) → ((𝑘t 𝑠) ↾t 𝑥) = (𝑘t 𝑥))
1715, 6, 7, 16syl3anc 1369 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → ((𝑘t 𝑠) ↾t 𝑥) = (𝑘t 𝑥))
18 df-ss 3900 . . . . . . . . . . . . . . . 16 (𝑥𝑠 ↔ (𝑥𝑠) = 𝑥)
196, 18sylib 217 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑥𝑠) = 𝑥)
20 elrestr 17056 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ Top ∧ 𝑠 ∈ 𝒫 𝑦𝑥𝑘) → (𝑥𝑠) ∈ (𝑘t 𝑠))
2115, 7, 5, 20syl3anc 1369 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑥𝑠) ∈ (𝑘t 𝑠))
2219, 21eqeltrrd 2840 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝑥 ∈ (𝑘t 𝑠))
23 eleq2 2827 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑘t 𝑠) → (𝑥𝑗𝑥 ∈ (𝑘t 𝑠)))
24 oveq1 7262 . . . . . . . . . . . . . . . . 17 (𝑗 = (𝑘t 𝑠) → (𝑗t 𝑥) = ((𝑘t 𝑠) ↾t 𝑥))
2524eleq1d 2823 . . . . . . . . . . . . . . . 16 (𝑗 = (𝑘t 𝑠) → ((𝑗t 𝑥) ∈ 𝐴 ↔ ((𝑘t 𝑠) ↾t 𝑥) ∈ 𝐴))
2623, 25imbi12d 344 . . . . . . . . . . . . . . 15 (𝑗 = (𝑘t 𝑠) → ((𝑥𝑗 → (𝑗t 𝑥) ∈ 𝐴) ↔ (𝑥 ∈ (𝑘t 𝑠) → ((𝑘t 𝑠) ↾t 𝑥) ∈ 𝐴)))
2714simpld 494 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → 𝜑)
28 restlly.1 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
2928expr 456 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝐴) → (𝑥𝑗 → (𝑗t 𝑥) ∈ 𝐴))
3029ralrimiva 3107 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑗𝐴 (𝑥𝑗 → (𝑗t 𝑥) ∈ 𝐴))
3127, 30syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → ∀𝑗𝐴 (𝑥𝑗 → (𝑗t 𝑥) ∈ 𝐴))
32 simprr3 1221 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑘t 𝑠) ∈ 𝐴)
3326, 31, 32rspcdva 3554 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑥 ∈ (𝑘t 𝑠) → ((𝑘t 𝑠) ↾t 𝑥) ∈ 𝐴))
3422, 33mpd 15 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → ((𝑘t 𝑠) ↾t 𝑥) ∈ 𝐴)
3517, 34eqeltrrd 2840 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑘t 𝑥) ∈ 𝐴)
3612, 13, 35jca32 515 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) ∧ (𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴))) → (𝑥 ∈ (𝑘 ∩ 𝒫 𝑦) ∧ (𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴)))
3736ex 412 . . . . . . . . . 10 ((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) → ((𝑥𝑘 ∧ (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴)) → (𝑥 ∈ (𝑘 ∩ 𝒫 𝑦) ∧ (𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴))))
3837reximdv2 3198 . . . . . . . . 9 ((((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) ∧ 𝑠 ∈ 𝒫 𝑦) → (∃𝑥𝑘 (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴)))
3938rexlimdva 3212 . . . . . . . 8 (((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) → (∃𝑠 ∈ 𝒫 𝑦𝑥𝑘 (𝑢𝑥𝑥𝑠 ∧ (𝑘t 𝑠) ∈ 𝐴) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴)))
404, 39mpd 15 . . . . . . 7 (((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ 𝑦𝑘𝑢𝑦) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴))
41403expb 1118 . . . . . 6 (((𝜑𝑘 ∈ 𝑛-Locally 𝐴) ∧ (𝑦𝑘𝑢𝑦)) → ∃𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴))
4241ralrimivva 3114 . . . . 5 ((𝜑𝑘 ∈ 𝑛-Locally 𝐴) → ∀𝑦𝑘𝑢𝑦𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴))
43 islly 22527 . . . . 5 (𝑘 ∈ Locally 𝐴 ↔ (𝑘 ∈ Top ∧ ∀𝑦𝑘𝑢𝑦𝑥 ∈ (𝑘 ∩ 𝒫 𝑦)(𝑢𝑥 ∧ (𝑘t 𝑥) ∈ 𝐴)))
442, 42, 43sylanbrc 582 . . . 4 ((𝜑𝑘 ∈ 𝑛-Locally 𝐴) → 𝑘 ∈ Locally 𝐴)
4544ex 412 . . 3 (𝜑 → (𝑘 ∈ 𝑛-Locally 𝐴𝑘 ∈ Locally 𝐴))
4645ssrdv 3923 . 2 (𝜑 → 𝑛-Locally 𝐴 ⊆ Locally 𝐴)
47 llyssnlly 22537 . . 3 Locally 𝐴 ⊆ 𝑛-Locally 𝐴
4847a1i 11 . 2 (𝜑 → Locally 𝐴 ⊆ 𝑛-Locally 𝐴)
4946, 48eqssd 3934 1 (𝜑 → 𝑛-Locally 𝐴 = Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cin 3882  wss 3883  𝒫 cpw 4530  (class class class)co 7255  t crest 17048  Topctop 21950  Locally clly 22523  𝑛-Locally cnlly 22524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-rest 17050  df-top 21951  df-nei 22157  df-lly 22525  df-nlly 22526
This theorem is referenced by:  loclly  22546  hausnlly  22552
  Copyright terms: Public domain W3C validator