Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrsmulgzz Structured version   Visualization version   GIF version

Theorem xrsmulgzz 31869
Description: The "multiple" function in the extended real numbers structure. (Contributed by Thierry Arnoux, 14-Jun-2017.)
Assertion
Ref Expression
xrsmulgzz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ*) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵))

Proof of Theorem xrsmulgzz
Dummy variables 𝑛 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7364 . . . 4 (𝑛 = 0 → (𝑛(.g‘ℝ*𝑠)𝐵) = (0(.g‘ℝ*𝑠)𝐵))
2 oveq1 7364 . . . 4 (𝑛 = 0 → (𝑛 ·e 𝐵) = (0 ·e 𝐵))
31, 2eqeq12d 2752 . . 3 (𝑛 = 0 → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ (0(.g‘ℝ*𝑠)𝐵) = (0 ·e 𝐵)))
4 oveq1 7364 . . . 4 (𝑛 = 𝑚 → (𝑛(.g‘ℝ*𝑠)𝐵) = (𝑚(.g‘ℝ*𝑠)𝐵))
5 oveq1 7364 . . . 4 (𝑛 = 𝑚 → (𝑛 ·e 𝐵) = (𝑚 ·e 𝐵))
64, 5eqeq12d 2752 . . 3 (𝑛 = 𝑚 → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)))
7 oveq1 7364 . . . 4 (𝑛 = (𝑚 + 1) → (𝑛(.g‘ℝ*𝑠)𝐵) = ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵))
8 oveq1 7364 . . . 4 (𝑛 = (𝑚 + 1) → (𝑛 ·e 𝐵) = ((𝑚 + 1) ·e 𝐵))
97, 8eqeq12d 2752 . . 3 (𝑛 = (𝑚 + 1) → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚 + 1) ·e 𝐵)))
10 oveq1 7364 . . . 4 (𝑛 = -𝑚 → (𝑛(.g‘ℝ*𝑠)𝐵) = (-𝑚(.g‘ℝ*𝑠)𝐵))
11 oveq1 7364 . . . 4 (𝑛 = -𝑚 → (𝑛 ·e 𝐵) = (-𝑚 ·e 𝐵))
1210, 11eqeq12d 2752 . . 3 (𝑛 = -𝑚 → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ (-𝑚(.g‘ℝ*𝑠)𝐵) = (-𝑚 ·e 𝐵)))
13 oveq1 7364 . . . 4 (𝑛 = 𝐴 → (𝑛(.g‘ℝ*𝑠)𝐵) = (𝐴(.g‘ℝ*𝑠)𝐵))
14 oveq1 7364 . . . 4 (𝑛 = 𝐴 → (𝑛 ·e 𝐵) = (𝐴 ·e 𝐵))
1513, 14eqeq12d 2752 . . 3 (𝑛 = 𝐴 → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵)))
16 xrsbas 20813 . . . . 5 * = (Base‘ℝ*𝑠)
17 xrs0 31866 . . . . 5 0 = (0g‘ℝ*𝑠)
18 eqid 2736 . . . . 5 (.g‘ℝ*𝑠) = (.g‘ℝ*𝑠)
1916, 17, 18mulg0 18879 . . . 4 (𝐵 ∈ ℝ* → (0(.g‘ℝ*𝑠)𝐵) = 0)
20 xmul02 13187 . . . 4 (𝐵 ∈ ℝ* → (0 ·e 𝐵) = 0)
2119, 20eqtr4d 2779 . . 3 (𝐵 ∈ ℝ* → (0(.g‘ℝ*𝑠)𝐵) = (0 ·e 𝐵))
22 simpr 485 . . . . . 6 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵))
2322oveq1d 7372 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵) = ((𝑚 ·e 𝐵) +𝑒 𝐵))
24 simpr 485 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
25 simpll 765 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 ∈ ℕ) → 𝐵 ∈ ℝ*)
26 xrsadd 20814 . . . . . . . . 9 +𝑒 = (+g‘ℝ*𝑠)
2716, 18, 26mulgnnp1 18884 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ*) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
2824, 25, 27syl2anc 584 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
29 simpr 485 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 = 0) → 𝑚 = 0)
30 simpll 765 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 = 0) → 𝐵 ∈ ℝ*)
31 xaddid2 13161 . . . . . . . . . 10 (𝐵 ∈ ℝ* → (0 +𝑒 𝐵) = 𝐵)
3231adantl 482 . . . . . . . . 9 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (0 +𝑒 𝐵) = 𝐵)
33 simpl 483 . . . . . . . . . . . 12 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → 𝑚 = 0)
3433oveq1d 7372 . . . . . . . . . . 11 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (𝑚(.g‘ℝ*𝑠)𝐵) = (0(.g‘ℝ*𝑠)𝐵))
3519adantl 482 . . . . . . . . . . 11 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (0(.g‘ℝ*𝑠)𝐵) = 0)
3634, 35eqtrd 2776 . . . . . . . . . 10 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (𝑚(.g‘ℝ*𝑠)𝐵) = 0)
3736oveq1d 7372 . . . . . . . . 9 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵) = (0 +𝑒 𝐵))
3833oveq1d 7372 . . . . . . . . . . . 12 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (𝑚 + 1) = (0 + 1))
39 0p1e1 12275 . . . . . . . . . . . 12 (0 + 1) = 1
4038, 39eqtrdi 2792 . . . . . . . . . . 11 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (𝑚 + 1) = 1)
4140oveq1d 7372 . . . . . . . . . 10 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = (1(.g‘ℝ*𝑠)𝐵))
4216, 18mulg1 18883 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (1(.g‘ℝ*𝑠)𝐵) = 𝐵)
4342adantl 482 . . . . . . . . . 10 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (1(.g‘ℝ*𝑠)𝐵) = 𝐵)
4441, 43eqtrd 2776 . . . . . . . . 9 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = 𝐵)
4532, 37, 443eqtr4rd 2787 . . . . . . . 8 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
4629, 30, 45syl2anc 584 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 = 0) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
47 simpr 485 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
48 elnn0 12415 . . . . . . . 8 (𝑚 ∈ ℕ0 ↔ (𝑚 ∈ ℕ ∨ 𝑚 = 0))
4947, 48sylib 217 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) → (𝑚 ∈ ℕ ∨ 𝑚 = 0))
5028, 46, 49mpjaodan 957 . . . . . 6 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
5150adantr 481 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
52 nn0ssre 12417 . . . . . . . . 9 0 ⊆ ℝ
53 ressxr 11199 . . . . . . . . 9 ℝ ⊆ ℝ*
5452, 53sstri 3953 . . . . . . . 8 0 ⊆ ℝ*
5547adantr 481 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 𝑚 ∈ ℕ0)
5654, 55sselid 3942 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 𝑚 ∈ ℝ*)
57 nn0ge0 12438 . . . . . . . 8 (𝑚 ∈ ℕ0 → 0 ≤ 𝑚)
5857ad2antlr 725 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 0 ≤ 𝑚)
59 1xr 11214 . . . . . . . 8 1 ∈ ℝ*
6059a1i 11 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 1 ∈ ℝ*)
61 0le1 11678 . . . . . . . 8 0 ≤ 1
6261a1i 11 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 0 ≤ 1)
63 simpll 765 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 𝐵 ∈ ℝ*)
64 xadddi2r 13217 . . . . . . 7 (((𝑚 ∈ ℝ* ∧ 0 ≤ 𝑚) ∧ (1 ∈ ℝ* ∧ 0 ≤ 1) ∧ 𝐵 ∈ ℝ*) → ((𝑚 +𝑒 1) ·e 𝐵) = ((𝑚 ·e 𝐵) +𝑒 (1 ·e 𝐵)))
6556, 58, 60, 62, 63, 64syl221anc 1381 . . . . . 6 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 +𝑒 1) ·e 𝐵) = ((𝑚 ·e 𝐵) +𝑒 (1 ·e 𝐵)))
6652, 55sselid 3942 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 𝑚 ∈ ℝ)
67 1re 11155 . . . . . . . . 9 1 ∈ ℝ
6867a1i 11 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 1 ∈ ℝ)
69 rexadd 13151 . . . . . . . 8 ((𝑚 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑚 +𝑒 1) = (𝑚 + 1))
7066, 68, 69syl2anc 584 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (𝑚 +𝑒 1) = (𝑚 + 1))
7170oveq1d 7372 . . . . . 6 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 +𝑒 1) ·e 𝐵) = ((𝑚 + 1) ·e 𝐵))
72 xmulid2 13199 . . . . . . . 8 (𝐵 ∈ ℝ* → (1 ·e 𝐵) = 𝐵)
7363, 72syl 17 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (1 ·e 𝐵) = 𝐵)
7473oveq2d 7373 . . . . . 6 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 ·e 𝐵) +𝑒 (1 ·e 𝐵)) = ((𝑚 ·e 𝐵) +𝑒 𝐵))
7565, 71, 743eqtr3d 2784 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 + 1) ·e 𝐵) = ((𝑚 ·e 𝐵) +𝑒 𝐵))
7623, 51, 753eqtr4d 2786 . . . 4 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚 + 1) ·e 𝐵))
7776exp31 420 . . 3 (𝐵 ∈ ℝ* → (𝑚 ∈ ℕ0 → ((𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚 + 1) ·e 𝐵))))
78 xnegeq 13126 . . . . . 6 ((𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵) → -𝑒(𝑚(.g‘ℝ*𝑠)𝐵) = -𝑒(𝑚 ·e 𝐵))
7978adantl 482 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → -𝑒(𝑚(.g‘ℝ*𝑠)𝐵) = -𝑒(𝑚 ·e 𝐵))
80 eqid 2736 . . . . . . . . 9 (invg‘ℝ*𝑠) = (invg‘ℝ*𝑠)
8116, 18, 80mulgnegnn 18886 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ*) → (-𝑚(.g‘ℝ*𝑠)𝐵) = ((invg‘ℝ*𝑠)‘(𝑚(.g‘ℝ*𝑠)𝐵)))
8281ancoms 459 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑚(.g‘ℝ*𝑠)𝐵) = ((invg‘ℝ*𝑠)‘(𝑚(.g‘ℝ*𝑠)𝐵)))
83 xrsex 20812 . . . . . . . . . . . 12 *𝑠 ∈ V
8483a1i 11 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ℝ*𝑠 ∈ V)
85 ssidd 3967 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ℝ* ⊆ ℝ*)
86 simp2 1137 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
87 simp3 1138 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
8886, 87xaddcld 13220 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 +𝑒 𝑦) ∈ ℝ*)
8916, 18, 26, 84, 85, 88mulgnnsubcl 18888 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ*) → (𝑚(.g‘ℝ*𝑠)𝐵) ∈ ℝ*)
90893anidm12 1419 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ*) → (𝑚(.g‘ℝ*𝑠)𝐵) ∈ ℝ*)
9190ancoms 459 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (𝑚(.g‘ℝ*𝑠)𝐵) ∈ ℝ*)
92 xrsinvgval 31868 . . . . . . . 8 ((𝑚(.g‘ℝ*𝑠)𝐵) ∈ ℝ* → ((invg‘ℝ*𝑠)‘(𝑚(.g‘ℝ*𝑠)𝐵)) = -𝑒(𝑚(.g‘ℝ*𝑠)𝐵))
9391, 92syl 17 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → ((invg‘ℝ*𝑠)‘(𝑚(.g‘ℝ*𝑠)𝐵)) = -𝑒(𝑚(.g‘ℝ*𝑠)𝐵))
9482, 93eqtrd 2776 . . . . . 6 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑚(.g‘ℝ*𝑠)𝐵) = -𝑒(𝑚(.g‘ℝ*𝑠)𝐵))
9594adantr 481 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (-𝑚(.g‘ℝ*𝑠)𝐵) = -𝑒(𝑚(.g‘ℝ*𝑠)𝐵))
96 nnre 12160 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
9796adantl 482 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
98 rexneg 13130 . . . . . . . . 9 (𝑚 ∈ ℝ → -𝑒𝑚 = -𝑚)
9997, 98syl 17 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → -𝑒𝑚 = -𝑚)
10099oveq1d 7372 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑒𝑚 ·e 𝐵) = (-𝑚 ·e 𝐵))
101 nnssre 12157 . . . . . . . . . 10 ℕ ⊆ ℝ
102101, 53sstri 3953 . . . . . . . . 9 ℕ ⊆ ℝ*
103 simpr 485 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
104102, 103sselid 3942 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → 𝑚 ∈ ℝ*)
105 simpl 483 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → 𝐵 ∈ ℝ*)
106 xmulneg1 13188 . . . . . . . 8 ((𝑚 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝑚 ·e 𝐵) = -𝑒(𝑚 ·e 𝐵))
107104, 105, 106syl2anc 584 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑒𝑚 ·e 𝐵) = -𝑒(𝑚 ·e 𝐵))
108100, 107eqtr3d 2778 . . . . . 6 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑚 ·e 𝐵) = -𝑒(𝑚 ·e 𝐵))
109108adantr 481 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (-𝑚 ·e 𝐵) = -𝑒(𝑚 ·e 𝐵))
11079, 95, 1093eqtr4d 2786 . . . 4 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (-𝑚(.g‘ℝ*𝑠)𝐵) = (-𝑚 ·e 𝐵))
111110exp31 420 . . 3 (𝐵 ∈ ℝ* → (𝑚 ∈ ℕ → ((𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵) → (-𝑚(.g‘ℝ*𝑠)𝐵) = (-𝑚 ·e 𝐵))))
1123, 6, 9, 12, 15, 21, 77, 111zindd 12604 . 2 (𝐵 ∈ ℝ* → (𝐴 ∈ ℤ → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵)))
113112impcom 408 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ*) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3445   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   + caddc 11054  *cxr 11188  cle 11190  -cneg 11386  cn 12153  0cn0 12413  cz 12499  -𝑒cxne 13030   +𝑒 cxad 13031   ·e cxmu 13032  *𝑠cxrs 17382  invgcminusg 18749  .gcmg 18872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-fz 13425  df-seq 13907  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-tset 17152  df-ple 17153  df-ds 17155  df-0g 17323  df-xrs 17384  df-minusg 18752  df-mulg 18873
This theorem is referenced by:  xrge0mulgnn0  31880  pnfinf  32019
  Copyright terms: Public domain W3C validator