Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrsmulgzz Structured version   Visualization version   GIF version

Theorem xrsmulgzz 31189
Description: The "multiple" function in the extended real numbers structure. (Contributed by Thierry Arnoux, 14-Jun-2017.)
Assertion
Ref Expression
xrsmulgzz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ*) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵))

Proof of Theorem xrsmulgzz
Dummy variables 𝑛 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . . 4 (𝑛 = 0 → (𝑛(.g‘ℝ*𝑠)𝐵) = (0(.g‘ℝ*𝑠)𝐵))
2 oveq1 7262 . . . 4 (𝑛 = 0 → (𝑛 ·e 𝐵) = (0 ·e 𝐵))
31, 2eqeq12d 2754 . . 3 (𝑛 = 0 → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ (0(.g‘ℝ*𝑠)𝐵) = (0 ·e 𝐵)))
4 oveq1 7262 . . . 4 (𝑛 = 𝑚 → (𝑛(.g‘ℝ*𝑠)𝐵) = (𝑚(.g‘ℝ*𝑠)𝐵))
5 oveq1 7262 . . . 4 (𝑛 = 𝑚 → (𝑛 ·e 𝐵) = (𝑚 ·e 𝐵))
64, 5eqeq12d 2754 . . 3 (𝑛 = 𝑚 → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)))
7 oveq1 7262 . . . 4 (𝑛 = (𝑚 + 1) → (𝑛(.g‘ℝ*𝑠)𝐵) = ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵))
8 oveq1 7262 . . . 4 (𝑛 = (𝑚 + 1) → (𝑛 ·e 𝐵) = ((𝑚 + 1) ·e 𝐵))
97, 8eqeq12d 2754 . . 3 (𝑛 = (𝑚 + 1) → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚 + 1) ·e 𝐵)))
10 oveq1 7262 . . . 4 (𝑛 = -𝑚 → (𝑛(.g‘ℝ*𝑠)𝐵) = (-𝑚(.g‘ℝ*𝑠)𝐵))
11 oveq1 7262 . . . 4 (𝑛 = -𝑚 → (𝑛 ·e 𝐵) = (-𝑚 ·e 𝐵))
1210, 11eqeq12d 2754 . . 3 (𝑛 = -𝑚 → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ (-𝑚(.g‘ℝ*𝑠)𝐵) = (-𝑚 ·e 𝐵)))
13 oveq1 7262 . . . 4 (𝑛 = 𝐴 → (𝑛(.g‘ℝ*𝑠)𝐵) = (𝐴(.g‘ℝ*𝑠)𝐵))
14 oveq1 7262 . . . 4 (𝑛 = 𝐴 → (𝑛 ·e 𝐵) = (𝐴 ·e 𝐵))
1513, 14eqeq12d 2754 . . 3 (𝑛 = 𝐴 → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵)))
16 xrsbas 20526 . . . . 5 * = (Base‘ℝ*𝑠)
17 xrs0 31186 . . . . 5 0 = (0g‘ℝ*𝑠)
18 eqid 2738 . . . . 5 (.g‘ℝ*𝑠) = (.g‘ℝ*𝑠)
1916, 17, 18mulg0 18622 . . . 4 (𝐵 ∈ ℝ* → (0(.g‘ℝ*𝑠)𝐵) = 0)
20 xmul02 12931 . . . 4 (𝐵 ∈ ℝ* → (0 ·e 𝐵) = 0)
2119, 20eqtr4d 2781 . . 3 (𝐵 ∈ ℝ* → (0(.g‘ℝ*𝑠)𝐵) = (0 ·e 𝐵))
22 simpr 484 . . . . . 6 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵))
2322oveq1d 7270 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵) = ((𝑚 ·e 𝐵) +𝑒 𝐵))
24 simpr 484 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
25 simpll 763 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 ∈ ℕ) → 𝐵 ∈ ℝ*)
26 xrsadd 20527 . . . . . . . . 9 +𝑒 = (+g‘ℝ*𝑠)
2716, 18, 26mulgnnp1 18627 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ*) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
2824, 25, 27syl2anc 583 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
29 simpr 484 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 = 0) → 𝑚 = 0)
30 simpll 763 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 = 0) → 𝐵 ∈ ℝ*)
31 xaddid2 12905 . . . . . . . . . 10 (𝐵 ∈ ℝ* → (0 +𝑒 𝐵) = 𝐵)
3231adantl 481 . . . . . . . . 9 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (0 +𝑒 𝐵) = 𝐵)
33 simpl 482 . . . . . . . . . . . 12 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → 𝑚 = 0)
3433oveq1d 7270 . . . . . . . . . . 11 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (𝑚(.g‘ℝ*𝑠)𝐵) = (0(.g‘ℝ*𝑠)𝐵))
3519adantl 481 . . . . . . . . . . 11 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (0(.g‘ℝ*𝑠)𝐵) = 0)
3634, 35eqtrd 2778 . . . . . . . . . 10 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (𝑚(.g‘ℝ*𝑠)𝐵) = 0)
3736oveq1d 7270 . . . . . . . . 9 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵) = (0 +𝑒 𝐵))
3833oveq1d 7270 . . . . . . . . . . . 12 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (𝑚 + 1) = (0 + 1))
39 0p1e1 12025 . . . . . . . . . . . 12 (0 + 1) = 1
4038, 39eqtrdi 2795 . . . . . . . . . . 11 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (𝑚 + 1) = 1)
4140oveq1d 7270 . . . . . . . . . 10 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = (1(.g‘ℝ*𝑠)𝐵))
4216, 18mulg1 18626 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (1(.g‘ℝ*𝑠)𝐵) = 𝐵)
4342adantl 481 . . . . . . . . . 10 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (1(.g‘ℝ*𝑠)𝐵) = 𝐵)
4441, 43eqtrd 2778 . . . . . . . . 9 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = 𝐵)
4532, 37, 443eqtr4rd 2789 . . . . . . . 8 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
4629, 30, 45syl2anc 583 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 = 0) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
47 simpr 484 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
48 elnn0 12165 . . . . . . . 8 (𝑚 ∈ ℕ0 ↔ (𝑚 ∈ ℕ ∨ 𝑚 = 0))
4947, 48sylib 217 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) → (𝑚 ∈ ℕ ∨ 𝑚 = 0))
5028, 46, 49mpjaodan 955 . . . . . 6 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
5150adantr 480 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
52 nn0ssre 12167 . . . . . . . . 9 0 ⊆ ℝ
53 ressxr 10950 . . . . . . . . 9 ℝ ⊆ ℝ*
5452, 53sstri 3926 . . . . . . . 8 0 ⊆ ℝ*
5547adantr 480 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 𝑚 ∈ ℕ0)
5654, 55sselid 3915 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 𝑚 ∈ ℝ*)
57 nn0ge0 12188 . . . . . . . 8 (𝑚 ∈ ℕ0 → 0 ≤ 𝑚)
5857ad2antlr 723 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 0 ≤ 𝑚)
59 1xr 10965 . . . . . . . 8 1 ∈ ℝ*
6059a1i 11 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 1 ∈ ℝ*)
61 0le1 11428 . . . . . . . 8 0 ≤ 1
6261a1i 11 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 0 ≤ 1)
63 simpll 763 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 𝐵 ∈ ℝ*)
64 xadddi2r 12961 . . . . . . 7 (((𝑚 ∈ ℝ* ∧ 0 ≤ 𝑚) ∧ (1 ∈ ℝ* ∧ 0 ≤ 1) ∧ 𝐵 ∈ ℝ*) → ((𝑚 +𝑒 1) ·e 𝐵) = ((𝑚 ·e 𝐵) +𝑒 (1 ·e 𝐵)))
6556, 58, 60, 62, 63, 64syl221anc 1379 . . . . . 6 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 +𝑒 1) ·e 𝐵) = ((𝑚 ·e 𝐵) +𝑒 (1 ·e 𝐵)))
6652, 55sselid 3915 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 𝑚 ∈ ℝ)
67 1re 10906 . . . . . . . . 9 1 ∈ ℝ
6867a1i 11 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 1 ∈ ℝ)
69 rexadd 12895 . . . . . . . 8 ((𝑚 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑚 +𝑒 1) = (𝑚 + 1))
7066, 68, 69syl2anc 583 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (𝑚 +𝑒 1) = (𝑚 + 1))
7170oveq1d 7270 . . . . . 6 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 +𝑒 1) ·e 𝐵) = ((𝑚 + 1) ·e 𝐵))
72 xmulid2 12943 . . . . . . . 8 (𝐵 ∈ ℝ* → (1 ·e 𝐵) = 𝐵)
7363, 72syl 17 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (1 ·e 𝐵) = 𝐵)
7473oveq2d 7271 . . . . . 6 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 ·e 𝐵) +𝑒 (1 ·e 𝐵)) = ((𝑚 ·e 𝐵) +𝑒 𝐵))
7565, 71, 743eqtr3d 2786 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 + 1) ·e 𝐵) = ((𝑚 ·e 𝐵) +𝑒 𝐵))
7623, 51, 753eqtr4d 2788 . . . 4 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚 + 1) ·e 𝐵))
7776exp31 419 . . 3 (𝐵 ∈ ℝ* → (𝑚 ∈ ℕ0 → ((𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚 + 1) ·e 𝐵))))
78 xnegeq 12870 . . . . . 6 ((𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵) → -𝑒(𝑚(.g‘ℝ*𝑠)𝐵) = -𝑒(𝑚 ·e 𝐵))
7978adantl 481 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → -𝑒(𝑚(.g‘ℝ*𝑠)𝐵) = -𝑒(𝑚 ·e 𝐵))
80 eqid 2738 . . . . . . . . 9 (invg‘ℝ*𝑠) = (invg‘ℝ*𝑠)
8116, 18, 80mulgnegnn 18629 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ*) → (-𝑚(.g‘ℝ*𝑠)𝐵) = ((invg‘ℝ*𝑠)‘(𝑚(.g‘ℝ*𝑠)𝐵)))
8281ancoms 458 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑚(.g‘ℝ*𝑠)𝐵) = ((invg‘ℝ*𝑠)‘(𝑚(.g‘ℝ*𝑠)𝐵)))
83 xrsex 20525 . . . . . . . . . . . 12 *𝑠 ∈ V
8483a1i 11 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ℝ*𝑠 ∈ V)
85 ssidd 3940 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ℝ* ⊆ ℝ*)
86 simp2 1135 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
87 simp3 1136 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
8886, 87xaddcld 12964 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 +𝑒 𝑦) ∈ ℝ*)
8916, 18, 26, 84, 85, 88mulgnnsubcl 18631 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ*) → (𝑚(.g‘ℝ*𝑠)𝐵) ∈ ℝ*)
90893anidm12 1417 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ*) → (𝑚(.g‘ℝ*𝑠)𝐵) ∈ ℝ*)
9190ancoms 458 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (𝑚(.g‘ℝ*𝑠)𝐵) ∈ ℝ*)
92 xrsinvgval 31188 . . . . . . . 8 ((𝑚(.g‘ℝ*𝑠)𝐵) ∈ ℝ* → ((invg‘ℝ*𝑠)‘(𝑚(.g‘ℝ*𝑠)𝐵)) = -𝑒(𝑚(.g‘ℝ*𝑠)𝐵))
9391, 92syl 17 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → ((invg‘ℝ*𝑠)‘(𝑚(.g‘ℝ*𝑠)𝐵)) = -𝑒(𝑚(.g‘ℝ*𝑠)𝐵))
9482, 93eqtrd 2778 . . . . . 6 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑚(.g‘ℝ*𝑠)𝐵) = -𝑒(𝑚(.g‘ℝ*𝑠)𝐵))
9594adantr 480 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (-𝑚(.g‘ℝ*𝑠)𝐵) = -𝑒(𝑚(.g‘ℝ*𝑠)𝐵))
96 nnre 11910 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
9796adantl 481 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
98 rexneg 12874 . . . . . . . . 9 (𝑚 ∈ ℝ → -𝑒𝑚 = -𝑚)
9997, 98syl 17 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → -𝑒𝑚 = -𝑚)
10099oveq1d 7270 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑒𝑚 ·e 𝐵) = (-𝑚 ·e 𝐵))
101 nnssre 11907 . . . . . . . . . 10 ℕ ⊆ ℝ
102101, 53sstri 3926 . . . . . . . . 9 ℕ ⊆ ℝ*
103 simpr 484 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
104102, 103sselid 3915 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → 𝑚 ∈ ℝ*)
105 simpl 482 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → 𝐵 ∈ ℝ*)
106 xmulneg1 12932 . . . . . . . 8 ((𝑚 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝑚 ·e 𝐵) = -𝑒(𝑚 ·e 𝐵))
107104, 105, 106syl2anc 583 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑒𝑚 ·e 𝐵) = -𝑒(𝑚 ·e 𝐵))
108100, 107eqtr3d 2780 . . . . . 6 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑚 ·e 𝐵) = -𝑒(𝑚 ·e 𝐵))
109108adantr 480 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (-𝑚 ·e 𝐵) = -𝑒(𝑚 ·e 𝐵))
11079, 95, 1093eqtr4d 2788 . . . 4 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (-𝑚(.g‘ℝ*𝑠)𝐵) = (-𝑚 ·e 𝐵))
111110exp31 419 . . 3 (𝐵 ∈ ℝ* → (𝑚 ∈ ℕ → ((𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵) → (-𝑚(.g‘ℝ*𝑠)𝐵) = (-𝑚 ·e 𝐵))))
1123, 6, 9, 12, 15, 21, 77, 111zindd 12351 . 2 (𝐵 ∈ ℝ* → (𝐴 ∈ ℤ → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵)))
113112impcom 407 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ*) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  *cxr 10939  cle 10941  -cneg 11136  cn 11903  0cn0 12163  cz 12249  -𝑒cxne 12774   +𝑒 cxad 12775   ·e cxmu 12776  *𝑠cxrs 17128  invgcminusg 18493  .gcmg 18615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-seq 13650  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-tset 16907  df-ple 16908  df-ds 16910  df-0g 17069  df-xrs 17130  df-minusg 18496  df-mulg 18616
This theorem is referenced by:  xrge0mulgnn0  31200  pnfinf  31339
  Copyright terms: Public domain W3C validator