Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrsmulgzz Structured version   Visualization version   GIF version

Theorem xrsmulgzz 32992
Description: The "multiple" function in the extended real numbers structure. (Contributed by Thierry Arnoux, 14-Jun-2017.)
Assertion
Ref Expression
xrsmulgzz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ*) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵))

Proof of Theorem xrsmulgzz
Dummy variables 𝑛 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . . . 4 (𝑛 = 0 → (𝑛(.g‘ℝ*𝑠)𝐵) = (0(.g‘ℝ*𝑠)𝐵))
2 oveq1 7455 . . . 4 (𝑛 = 0 → (𝑛 ·e 𝐵) = (0 ·e 𝐵))
31, 2eqeq12d 2756 . . 3 (𝑛 = 0 → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ (0(.g‘ℝ*𝑠)𝐵) = (0 ·e 𝐵)))
4 oveq1 7455 . . . 4 (𝑛 = 𝑚 → (𝑛(.g‘ℝ*𝑠)𝐵) = (𝑚(.g‘ℝ*𝑠)𝐵))
5 oveq1 7455 . . . 4 (𝑛 = 𝑚 → (𝑛 ·e 𝐵) = (𝑚 ·e 𝐵))
64, 5eqeq12d 2756 . . 3 (𝑛 = 𝑚 → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)))
7 oveq1 7455 . . . 4 (𝑛 = (𝑚 + 1) → (𝑛(.g‘ℝ*𝑠)𝐵) = ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵))
8 oveq1 7455 . . . 4 (𝑛 = (𝑚 + 1) → (𝑛 ·e 𝐵) = ((𝑚 + 1) ·e 𝐵))
97, 8eqeq12d 2756 . . 3 (𝑛 = (𝑚 + 1) → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚 + 1) ·e 𝐵)))
10 oveq1 7455 . . . 4 (𝑛 = -𝑚 → (𝑛(.g‘ℝ*𝑠)𝐵) = (-𝑚(.g‘ℝ*𝑠)𝐵))
11 oveq1 7455 . . . 4 (𝑛 = -𝑚 → (𝑛 ·e 𝐵) = (-𝑚 ·e 𝐵))
1210, 11eqeq12d 2756 . . 3 (𝑛 = -𝑚 → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ (-𝑚(.g‘ℝ*𝑠)𝐵) = (-𝑚 ·e 𝐵)))
13 oveq1 7455 . . . 4 (𝑛 = 𝐴 → (𝑛(.g‘ℝ*𝑠)𝐵) = (𝐴(.g‘ℝ*𝑠)𝐵))
14 oveq1 7455 . . . 4 (𝑛 = 𝐴 → (𝑛 ·e 𝐵) = (𝐴 ·e 𝐵))
1513, 14eqeq12d 2756 . . 3 (𝑛 = 𝐴 → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵)))
16 xrsbas 21419 . . . . 5 * = (Base‘ℝ*𝑠)
17 xrs0 32989 . . . . 5 0 = (0g‘ℝ*𝑠)
18 eqid 2740 . . . . 5 (.g‘ℝ*𝑠) = (.g‘ℝ*𝑠)
1916, 17, 18mulg0 19114 . . . 4 (𝐵 ∈ ℝ* → (0(.g‘ℝ*𝑠)𝐵) = 0)
20 xmul02 13330 . . . 4 (𝐵 ∈ ℝ* → (0 ·e 𝐵) = 0)
2119, 20eqtr4d 2783 . . 3 (𝐵 ∈ ℝ* → (0(.g‘ℝ*𝑠)𝐵) = (0 ·e 𝐵))
22 simpr 484 . . . . . 6 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵))
2322oveq1d 7463 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵) = ((𝑚 ·e 𝐵) +𝑒 𝐵))
24 simpr 484 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
25 simpll 766 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 ∈ ℕ) → 𝐵 ∈ ℝ*)
26 xrsadd 21420 . . . . . . . . 9 +𝑒 = (+g‘ℝ*𝑠)
2716, 18, 26mulgnnp1 19122 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ*) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
2824, 25, 27syl2anc 583 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
29 simpr 484 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 = 0) → 𝑚 = 0)
30 simpll 766 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 = 0) → 𝐵 ∈ ℝ*)
31 xaddlid 13304 . . . . . . . . . 10 (𝐵 ∈ ℝ* → (0 +𝑒 𝐵) = 𝐵)
3231adantl 481 . . . . . . . . 9 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (0 +𝑒 𝐵) = 𝐵)
33 simpl 482 . . . . . . . . . . . 12 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → 𝑚 = 0)
3433oveq1d 7463 . . . . . . . . . . 11 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (𝑚(.g‘ℝ*𝑠)𝐵) = (0(.g‘ℝ*𝑠)𝐵))
3519adantl 481 . . . . . . . . . . 11 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (0(.g‘ℝ*𝑠)𝐵) = 0)
3634, 35eqtrd 2780 . . . . . . . . . 10 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (𝑚(.g‘ℝ*𝑠)𝐵) = 0)
3736oveq1d 7463 . . . . . . . . 9 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵) = (0 +𝑒 𝐵))
3833oveq1d 7463 . . . . . . . . . . . 12 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (𝑚 + 1) = (0 + 1))
39 0p1e1 12415 . . . . . . . . . . . 12 (0 + 1) = 1
4038, 39eqtrdi 2796 . . . . . . . . . . 11 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (𝑚 + 1) = 1)
4140oveq1d 7463 . . . . . . . . . 10 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = (1(.g‘ℝ*𝑠)𝐵))
4216, 18mulg1 19121 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (1(.g‘ℝ*𝑠)𝐵) = 𝐵)
4342adantl 481 . . . . . . . . . 10 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (1(.g‘ℝ*𝑠)𝐵) = 𝐵)
4441, 43eqtrd 2780 . . . . . . . . 9 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = 𝐵)
4532, 37, 443eqtr4rd 2791 . . . . . . . 8 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
4629, 30, 45syl2anc 583 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 = 0) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
47 simpr 484 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
48 elnn0 12555 . . . . . . . 8 (𝑚 ∈ ℕ0 ↔ (𝑚 ∈ ℕ ∨ 𝑚 = 0))
4947, 48sylib 218 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) → (𝑚 ∈ ℕ ∨ 𝑚 = 0))
5028, 46, 49mpjaodan 959 . . . . . 6 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
5150adantr 480 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
52 nn0ssre 12557 . . . . . . . . 9 0 ⊆ ℝ
53 ressxr 11334 . . . . . . . . 9 ℝ ⊆ ℝ*
5452, 53sstri 4018 . . . . . . . 8 0 ⊆ ℝ*
5547adantr 480 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 𝑚 ∈ ℕ0)
5654, 55sselid 4006 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 𝑚 ∈ ℝ*)
57 nn0ge0 12578 . . . . . . . 8 (𝑚 ∈ ℕ0 → 0 ≤ 𝑚)
5857ad2antlr 726 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 0 ≤ 𝑚)
59 1xr 11349 . . . . . . . 8 1 ∈ ℝ*
6059a1i 11 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 1 ∈ ℝ*)
61 0le1 11813 . . . . . . . 8 0 ≤ 1
6261a1i 11 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 0 ≤ 1)
63 simpll 766 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 𝐵 ∈ ℝ*)
64 xadddi2r 13360 . . . . . . 7 (((𝑚 ∈ ℝ* ∧ 0 ≤ 𝑚) ∧ (1 ∈ ℝ* ∧ 0 ≤ 1) ∧ 𝐵 ∈ ℝ*) → ((𝑚 +𝑒 1) ·e 𝐵) = ((𝑚 ·e 𝐵) +𝑒 (1 ·e 𝐵)))
6556, 58, 60, 62, 63, 64syl221anc 1381 . . . . . 6 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 +𝑒 1) ·e 𝐵) = ((𝑚 ·e 𝐵) +𝑒 (1 ·e 𝐵)))
6652, 55sselid 4006 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 𝑚 ∈ ℝ)
67 1re 11290 . . . . . . . . 9 1 ∈ ℝ
6867a1i 11 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 1 ∈ ℝ)
69 rexadd 13294 . . . . . . . 8 ((𝑚 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑚 +𝑒 1) = (𝑚 + 1))
7066, 68, 69syl2anc 583 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (𝑚 +𝑒 1) = (𝑚 + 1))
7170oveq1d 7463 . . . . . 6 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 +𝑒 1) ·e 𝐵) = ((𝑚 + 1) ·e 𝐵))
72 xmullid 13342 . . . . . . . 8 (𝐵 ∈ ℝ* → (1 ·e 𝐵) = 𝐵)
7363, 72syl 17 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (1 ·e 𝐵) = 𝐵)
7473oveq2d 7464 . . . . . 6 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 ·e 𝐵) +𝑒 (1 ·e 𝐵)) = ((𝑚 ·e 𝐵) +𝑒 𝐵))
7565, 71, 743eqtr3d 2788 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 + 1) ·e 𝐵) = ((𝑚 ·e 𝐵) +𝑒 𝐵))
7623, 51, 753eqtr4d 2790 . . . 4 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚 + 1) ·e 𝐵))
7776exp31 419 . . 3 (𝐵 ∈ ℝ* → (𝑚 ∈ ℕ0 → ((𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚 + 1) ·e 𝐵))))
78 xnegeq 13269 . . . . . 6 ((𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵) → -𝑒(𝑚(.g‘ℝ*𝑠)𝐵) = -𝑒(𝑚 ·e 𝐵))
7978adantl 481 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → -𝑒(𝑚(.g‘ℝ*𝑠)𝐵) = -𝑒(𝑚 ·e 𝐵))
80 eqid 2740 . . . . . . . . 9 (invg‘ℝ*𝑠) = (invg‘ℝ*𝑠)
8116, 18, 80mulgnegnn 19124 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ*) → (-𝑚(.g‘ℝ*𝑠)𝐵) = ((invg‘ℝ*𝑠)‘(𝑚(.g‘ℝ*𝑠)𝐵)))
8281ancoms 458 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑚(.g‘ℝ*𝑠)𝐵) = ((invg‘ℝ*𝑠)‘(𝑚(.g‘ℝ*𝑠)𝐵)))
83 xrsex 21418 . . . . . . . . . . . 12 *𝑠 ∈ V
8483a1i 11 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ℝ*𝑠 ∈ V)
85 ssidd 4032 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ℝ* ⊆ ℝ*)
86 simp2 1137 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
87 simp3 1138 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
8886, 87xaddcld 13363 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 +𝑒 𝑦) ∈ ℝ*)
8916, 18, 26, 84, 85, 88mulgnnsubcl 19126 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ*) → (𝑚(.g‘ℝ*𝑠)𝐵) ∈ ℝ*)
90893anidm12 1419 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ*) → (𝑚(.g‘ℝ*𝑠)𝐵) ∈ ℝ*)
9190ancoms 458 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (𝑚(.g‘ℝ*𝑠)𝐵) ∈ ℝ*)
92 xrsinvgval 32991 . . . . . . . 8 ((𝑚(.g‘ℝ*𝑠)𝐵) ∈ ℝ* → ((invg‘ℝ*𝑠)‘(𝑚(.g‘ℝ*𝑠)𝐵)) = -𝑒(𝑚(.g‘ℝ*𝑠)𝐵))
9391, 92syl 17 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → ((invg‘ℝ*𝑠)‘(𝑚(.g‘ℝ*𝑠)𝐵)) = -𝑒(𝑚(.g‘ℝ*𝑠)𝐵))
9482, 93eqtrd 2780 . . . . . 6 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑚(.g‘ℝ*𝑠)𝐵) = -𝑒(𝑚(.g‘ℝ*𝑠)𝐵))
9594adantr 480 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (-𝑚(.g‘ℝ*𝑠)𝐵) = -𝑒(𝑚(.g‘ℝ*𝑠)𝐵))
96 nnre 12300 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
9796adantl 481 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
98 rexneg 13273 . . . . . . . . 9 (𝑚 ∈ ℝ → -𝑒𝑚 = -𝑚)
9997, 98syl 17 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → -𝑒𝑚 = -𝑚)
10099oveq1d 7463 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑒𝑚 ·e 𝐵) = (-𝑚 ·e 𝐵))
101 nnssre 12297 . . . . . . . . . 10 ℕ ⊆ ℝ
102101, 53sstri 4018 . . . . . . . . 9 ℕ ⊆ ℝ*
103 simpr 484 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
104102, 103sselid 4006 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → 𝑚 ∈ ℝ*)
105 simpl 482 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → 𝐵 ∈ ℝ*)
106 xmulneg1 13331 . . . . . . . 8 ((𝑚 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝑚 ·e 𝐵) = -𝑒(𝑚 ·e 𝐵))
107104, 105, 106syl2anc 583 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑒𝑚 ·e 𝐵) = -𝑒(𝑚 ·e 𝐵))
108100, 107eqtr3d 2782 . . . . . 6 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑚 ·e 𝐵) = -𝑒(𝑚 ·e 𝐵))
109108adantr 480 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (-𝑚 ·e 𝐵) = -𝑒(𝑚 ·e 𝐵))
11079, 95, 1093eqtr4d 2790 . . . 4 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (-𝑚(.g‘ℝ*𝑠)𝐵) = (-𝑚 ·e 𝐵))
111110exp31 419 . . 3 (𝐵 ∈ ℝ* → (𝑚 ∈ ℕ → ((𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵) → (-𝑚(.g‘ℝ*𝑠)𝐵) = (-𝑚 ·e 𝐵))))
1123, 6, 9, 12, 15, 21, 77, 111zindd 12744 . 2 (𝐵 ∈ ℝ* → (𝐴 ∈ ℤ → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵)))
113112impcom 407 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ*) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  *cxr 11323  cle 11325  -cneg 11521  cn 12293  0cn0 12553  cz 12639  -𝑒cxne 13172   +𝑒 cxad 13173   ·e cxmu 13174  *𝑠cxrs 17560  invgcminusg 18974  .gcmg 19107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-fz 13568  df-seq 14053  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-tset 17330  df-ple 17331  df-ds 17333  df-0g 17501  df-xrs 17562  df-minusg 18977  df-mulg 19108
This theorem is referenced by:  xrge0mulgnn0  33001  pnfinf  33163
  Copyright terms: Public domain W3C validator