Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrsmulgzz Structured version   Visualization version   GIF version

Theorem xrsmulgzz 31287
Description: The "multiple" function in the extended real numbers structure. (Contributed by Thierry Arnoux, 14-Jun-2017.)
Assertion
Ref Expression
xrsmulgzz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ*) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵))

Proof of Theorem xrsmulgzz
Dummy variables 𝑛 𝑚 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7282 . . . 4 (𝑛 = 0 → (𝑛(.g‘ℝ*𝑠)𝐵) = (0(.g‘ℝ*𝑠)𝐵))
2 oveq1 7282 . . . 4 (𝑛 = 0 → (𝑛 ·e 𝐵) = (0 ·e 𝐵))
31, 2eqeq12d 2754 . . 3 (𝑛 = 0 → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ (0(.g‘ℝ*𝑠)𝐵) = (0 ·e 𝐵)))
4 oveq1 7282 . . . 4 (𝑛 = 𝑚 → (𝑛(.g‘ℝ*𝑠)𝐵) = (𝑚(.g‘ℝ*𝑠)𝐵))
5 oveq1 7282 . . . 4 (𝑛 = 𝑚 → (𝑛 ·e 𝐵) = (𝑚 ·e 𝐵))
64, 5eqeq12d 2754 . . 3 (𝑛 = 𝑚 → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)))
7 oveq1 7282 . . . 4 (𝑛 = (𝑚 + 1) → (𝑛(.g‘ℝ*𝑠)𝐵) = ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵))
8 oveq1 7282 . . . 4 (𝑛 = (𝑚 + 1) → (𝑛 ·e 𝐵) = ((𝑚 + 1) ·e 𝐵))
97, 8eqeq12d 2754 . . 3 (𝑛 = (𝑚 + 1) → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚 + 1) ·e 𝐵)))
10 oveq1 7282 . . . 4 (𝑛 = -𝑚 → (𝑛(.g‘ℝ*𝑠)𝐵) = (-𝑚(.g‘ℝ*𝑠)𝐵))
11 oveq1 7282 . . . 4 (𝑛 = -𝑚 → (𝑛 ·e 𝐵) = (-𝑚 ·e 𝐵))
1210, 11eqeq12d 2754 . . 3 (𝑛 = -𝑚 → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ (-𝑚(.g‘ℝ*𝑠)𝐵) = (-𝑚 ·e 𝐵)))
13 oveq1 7282 . . . 4 (𝑛 = 𝐴 → (𝑛(.g‘ℝ*𝑠)𝐵) = (𝐴(.g‘ℝ*𝑠)𝐵))
14 oveq1 7282 . . . 4 (𝑛 = 𝐴 → (𝑛 ·e 𝐵) = (𝐴 ·e 𝐵))
1513, 14eqeq12d 2754 . . 3 (𝑛 = 𝐴 → ((𝑛(.g‘ℝ*𝑠)𝐵) = (𝑛 ·e 𝐵) ↔ (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵)))
16 xrsbas 20614 . . . . 5 * = (Base‘ℝ*𝑠)
17 xrs0 31284 . . . . 5 0 = (0g‘ℝ*𝑠)
18 eqid 2738 . . . . 5 (.g‘ℝ*𝑠) = (.g‘ℝ*𝑠)
1916, 17, 18mulg0 18707 . . . 4 (𝐵 ∈ ℝ* → (0(.g‘ℝ*𝑠)𝐵) = 0)
20 xmul02 13002 . . . 4 (𝐵 ∈ ℝ* → (0 ·e 𝐵) = 0)
2119, 20eqtr4d 2781 . . 3 (𝐵 ∈ ℝ* → (0(.g‘ℝ*𝑠)𝐵) = (0 ·e 𝐵))
22 simpr 485 . . . . . 6 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵))
2322oveq1d 7290 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵) = ((𝑚 ·e 𝐵) +𝑒 𝐵))
24 simpr 485 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
25 simpll 764 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 ∈ ℕ) → 𝐵 ∈ ℝ*)
26 xrsadd 20615 . . . . . . . . 9 +𝑒 = (+g‘ℝ*𝑠)
2716, 18, 26mulgnnp1 18712 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ*) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
2824, 25, 27syl2anc 584 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
29 simpr 485 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 = 0) → 𝑚 = 0)
30 simpll 764 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 = 0) → 𝐵 ∈ ℝ*)
31 xaddid2 12976 . . . . . . . . . 10 (𝐵 ∈ ℝ* → (0 +𝑒 𝐵) = 𝐵)
3231adantl 482 . . . . . . . . 9 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (0 +𝑒 𝐵) = 𝐵)
33 simpl 483 . . . . . . . . . . . 12 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → 𝑚 = 0)
3433oveq1d 7290 . . . . . . . . . . 11 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (𝑚(.g‘ℝ*𝑠)𝐵) = (0(.g‘ℝ*𝑠)𝐵))
3519adantl 482 . . . . . . . . . . 11 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (0(.g‘ℝ*𝑠)𝐵) = 0)
3634, 35eqtrd 2778 . . . . . . . . . 10 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (𝑚(.g‘ℝ*𝑠)𝐵) = 0)
3736oveq1d 7290 . . . . . . . . 9 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵) = (0 +𝑒 𝐵))
3833oveq1d 7290 . . . . . . . . . . . 12 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (𝑚 + 1) = (0 + 1))
39 0p1e1 12095 . . . . . . . . . . . 12 (0 + 1) = 1
4038, 39eqtrdi 2794 . . . . . . . . . . 11 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (𝑚 + 1) = 1)
4140oveq1d 7290 . . . . . . . . . 10 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = (1(.g‘ℝ*𝑠)𝐵))
4216, 18mulg1 18711 . . . . . . . . . . 11 (𝐵 ∈ ℝ* → (1(.g‘ℝ*𝑠)𝐵) = 𝐵)
4342adantl 482 . . . . . . . . . 10 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → (1(.g‘ℝ*𝑠)𝐵) = 𝐵)
4441, 43eqtrd 2778 . . . . . . . . 9 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = 𝐵)
4532, 37, 443eqtr4rd 2789 . . . . . . . 8 ((𝑚 = 0 ∧ 𝐵 ∈ ℝ*) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
4629, 30, 45syl2anc 584 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ 𝑚 = 0) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
47 simpr 485 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
48 elnn0 12235 . . . . . . . 8 (𝑚 ∈ ℕ0 ↔ (𝑚 ∈ ℕ ∨ 𝑚 = 0))
4947, 48sylib 217 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) → (𝑚 ∈ ℕ ∨ 𝑚 = 0))
5028, 46, 49mpjaodan 956 . . . . . 6 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
5150adantr 481 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚(.g‘ℝ*𝑠)𝐵) +𝑒 𝐵))
52 nn0ssre 12237 . . . . . . . . 9 0 ⊆ ℝ
53 ressxr 11019 . . . . . . . . 9 ℝ ⊆ ℝ*
5452, 53sstri 3930 . . . . . . . 8 0 ⊆ ℝ*
5547adantr 481 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 𝑚 ∈ ℕ0)
5654, 55sselid 3919 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 𝑚 ∈ ℝ*)
57 nn0ge0 12258 . . . . . . . 8 (𝑚 ∈ ℕ0 → 0 ≤ 𝑚)
5857ad2antlr 724 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 0 ≤ 𝑚)
59 1xr 11034 . . . . . . . 8 1 ∈ ℝ*
6059a1i 11 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 1 ∈ ℝ*)
61 0le1 11498 . . . . . . . 8 0 ≤ 1
6261a1i 11 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 0 ≤ 1)
63 simpll 764 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 𝐵 ∈ ℝ*)
64 xadddi2r 13032 . . . . . . 7 (((𝑚 ∈ ℝ* ∧ 0 ≤ 𝑚) ∧ (1 ∈ ℝ* ∧ 0 ≤ 1) ∧ 𝐵 ∈ ℝ*) → ((𝑚 +𝑒 1) ·e 𝐵) = ((𝑚 ·e 𝐵) +𝑒 (1 ·e 𝐵)))
6556, 58, 60, 62, 63, 64syl221anc 1380 . . . . . 6 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 +𝑒 1) ·e 𝐵) = ((𝑚 ·e 𝐵) +𝑒 (1 ·e 𝐵)))
6652, 55sselid 3919 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 𝑚 ∈ ℝ)
67 1re 10975 . . . . . . . . 9 1 ∈ ℝ
6867a1i 11 . . . . . . . 8 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → 1 ∈ ℝ)
69 rexadd 12966 . . . . . . . 8 ((𝑚 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑚 +𝑒 1) = (𝑚 + 1))
7066, 68, 69syl2anc 584 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (𝑚 +𝑒 1) = (𝑚 + 1))
7170oveq1d 7290 . . . . . 6 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 +𝑒 1) ·e 𝐵) = ((𝑚 + 1) ·e 𝐵))
72 xmulid2 13014 . . . . . . . 8 (𝐵 ∈ ℝ* → (1 ·e 𝐵) = 𝐵)
7363, 72syl 17 . . . . . . 7 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (1 ·e 𝐵) = 𝐵)
7473oveq2d 7291 . . . . . 6 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 ·e 𝐵) +𝑒 (1 ·e 𝐵)) = ((𝑚 ·e 𝐵) +𝑒 𝐵))
7565, 71, 743eqtr3d 2786 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 + 1) ·e 𝐵) = ((𝑚 ·e 𝐵) +𝑒 𝐵))
7623, 51, 753eqtr4d 2788 . . . 4 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ0) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚 + 1) ·e 𝐵))
7776exp31 420 . . 3 (𝐵 ∈ ℝ* → (𝑚 ∈ ℕ0 → ((𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵) → ((𝑚 + 1)(.g‘ℝ*𝑠)𝐵) = ((𝑚 + 1) ·e 𝐵))))
78 xnegeq 12941 . . . . . 6 ((𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵) → -𝑒(𝑚(.g‘ℝ*𝑠)𝐵) = -𝑒(𝑚 ·e 𝐵))
7978adantl 482 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → -𝑒(𝑚(.g‘ℝ*𝑠)𝐵) = -𝑒(𝑚 ·e 𝐵))
80 eqid 2738 . . . . . . . . 9 (invg‘ℝ*𝑠) = (invg‘ℝ*𝑠)
8116, 18, 80mulgnegnn 18714 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ*) → (-𝑚(.g‘ℝ*𝑠)𝐵) = ((invg‘ℝ*𝑠)‘(𝑚(.g‘ℝ*𝑠)𝐵)))
8281ancoms 459 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑚(.g‘ℝ*𝑠)𝐵) = ((invg‘ℝ*𝑠)‘(𝑚(.g‘ℝ*𝑠)𝐵)))
83 xrsex 20613 . . . . . . . . . . . 12 *𝑠 ∈ V
8483a1i 11 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ℝ*𝑠 ∈ V)
85 ssidd 3944 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ℝ* ⊆ ℝ*)
86 simp2 1136 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
87 simp3 1137 . . . . . . . . . . . 12 ((𝑚 ∈ ℕ ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
8886, 87xaddcld 13035 . . . . . . . . . . 11 ((𝑚 ∈ ℕ ∧ 𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 +𝑒 𝑦) ∈ ℝ*)
8916, 18, 26, 84, 85, 88mulgnnsubcl 18716 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ*) → (𝑚(.g‘ℝ*𝑠)𝐵) ∈ ℝ*)
90893anidm12 1418 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝐵 ∈ ℝ*) → (𝑚(.g‘ℝ*𝑠)𝐵) ∈ ℝ*)
9190ancoms 459 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (𝑚(.g‘ℝ*𝑠)𝐵) ∈ ℝ*)
92 xrsinvgval 31286 . . . . . . . 8 ((𝑚(.g‘ℝ*𝑠)𝐵) ∈ ℝ* → ((invg‘ℝ*𝑠)‘(𝑚(.g‘ℝ*𝑠)𝐵)) = -𝑒(𝑚(.g‘ℝ*𝑠)𝐵))
9391, 92syl 17 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → ((invg‘ℝ*𝑠)‘(𝑚(.g‘ℝ*𝑠)𝐵)) = -𝑒(𝑚(.g‘ℝ*𝑠)𝐵))
9482, 93eqtrd 2778 . . . . . 6 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑚(.g‘ℝ*𝑠)𝐵) = -𝑒(𝑚(.g‘ℝ*𝑠)𝐵))
9594adantr 481 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (-𝑚(.g‘ℝ*𝑠)𝐵) = -𝑒(𝑚(.g‘ℝ*𝑠)𝐵))
96 nnre 11980 . . . . . . . . . 10 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
9796adantl 482 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
98 rexneg 12945 . . . . . . . . 9 (𝑚 ∈ ℝ → -𝑒𝑚 = -𝑚)
9997, 98syl 17 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → -𝑒𝑚 = -𝑚)
10099oveq1d 7290 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑒𝑚 ·e 𝐵) = (-𝑚 ·e 𝐵))
101 nnssre 11977 . . . . . . . . . 10 ℕ ⊆ ℝ
102101, 53sstri 3930 . . . . . . . . 9 ℕ ⊆ ℝ*
103 simpr 485 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
104102, 103sselid 3919 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → 𝑚 ∈ ℝ*)
105 simpl 483 . . . . . . . 8 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → 𝐵 ∈ ℝ*)
106 xmulneg1 13003 . . . . . . . 8 ((𝑚 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝑚 ·e 𝐵) = -𝑒(𝑚 ·e 𝐵))
107104, 105, 106syl2anc 584 . . . . . . 7 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑒𝑚 ·e 𝐵) = -𝑒(𝑚 ·e 𝐵))
108100, 107eqtr3d 2780 . . . . . 6 ((𝐵 ∈ ℝ*𝑚 ∈ ℕ) → (-𝑚 ·e 𝐵) = -𝑒(𝑚 ·e 𝐵))
109108adantr 481 . . . . 5 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (-𝑚 ·e 𝐵) = -𝑒(𝑚 ·e 𝐵))
11079, 95, 1093eqtr4d 2788 . . . 4 (((𝐵 ∈ ℝ*𝑚 ∈ ℕ) ∧ (𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵)) → (-𝑚(.g‘ℝ*𝑠)𝐵) = (-𝑚 ·e 𝐵))
111110exp31 420 . . 3 (𝐵 ∈ ℝ* → (𝑚 ∈ ℕ → ((𝑚(.g‘ℝ*𝑠)𝐵) = (𝑚 ·e 𝐵) → (-𝑚(.g‘ℝ*𝑠)𝐵) = (-𝑚 ·e 𝐵))))
1123, 6, 9, 12, 15, 21, 77, 111zindd 12421 . 2 (𝐵 ∈ ℝ* → (𝐴 ∈ ℤ → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵)))
113112impcom 408 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ*) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  *cxr 11008  cle 11010  -cneg 11206  cn 11973  0cn0 12233  cz 12319  -𝑒cxne 12845   +𝑒 cxad 12846   ·e cxmu 12847  *𝑠cxrs 17211  invgcminusg 18578  .gcmg 18700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-fz 13240  df-seq 13722  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-tset 16981  df-ple 16982  df-ds 16984  df-0g 17152  df-xrs 17213  df-minusg 18581  df-mulg 18701
This theorem is referenced by:  xrge0mulgnn0  31298  pnfinf  31437
  Copyright terms: Public domain W3C validator