Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subsq | Structured version Visualization version GIF version |
Description: Factor the difference of two squares. (Contributed by NM, 21-Feb-2008.) |
Ref | Expression |
---|---|
subsq | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
2 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
3 | subcl 11203 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | adddird 10984 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · (𝐴 − 𝐵)) = ((𝐴 · (𝐴 − 𝐵)) + (𝐵 · (𝐴 − 𝐵)))) |
5 | subdi 11391 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐴 − 𝐵)) = ((𝐴 · 𝐴) − (𝐴 · 𝐵))) | |
6 | 5 | 3anidm12 1417 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐴 − 𝐵)) = ((𝐴 · 𝐴) − (𝐴 · 𝐵))) |
7 | sqval 13816 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴)) | |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) = (𝐴 · 𝐴)) |
9 | 8 | oveq1d 7283 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐴 · 𝐵)) = ((𝐴 · 𝐴) − (𝐴 · 𝐵))) |
10 | 6, 9 | eqtr4d 2782 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐴 − 𝐵)) = ((𝐴↑2) − (𝐴 · 𝐵))) |
11 | 2, 1, 2 | subdid 11414 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 · (𝐴 − 𝐵)) = ((𝐵 · 𝐴) − (𝐵 · 𝐵))) |
12 | mulcom 10941 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | |
13 | sqval 13816 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (𝐵↑2) = (𝐵 · 𝐵)) | |
14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) = (𝐵 · 𝐵)) |
15 | 12, 14 | oveq12d 7286 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) − (𝐵↑2)) = ((𝐵 · 𝐴) − (𝐵 · 𝐵))) |
16 | 11, 15 | eqtr4d 2782 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 · (𝐴 − 𝐵)) = ((𝐴 · 𝐵) − (𝐵↑2))) |
17 | 10, 16 | oveq12d 7286 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐴 − 𝐵)) + (𝐵 · (𝐴 − 𝐵))) = (((𝐴↑2) − (𝐴 · 𝐵)) + ((𝐴 · 𝐵) − (𝐵↑2)))) |
18 | sqcl 13819 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
19 | 18 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) ∈ ℂ) |
20 | mulcl 10939 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
21 | sqcl 13819 | . . . 4 ⊢ (𝐵 ∈ ℂ → (𝐵↑2) ∈ ℂ) | |
22 | 21 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) ∈ ℂ) |
23 | 19, 20, 22 | npncand 11339 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) − (𝐴 · 𝐵)) + ((𝐴 · 𝐵) − (𝐵↑2))) = ((𝐴↑2) − (𝐵↑2))) |
24 | 4, 17, 23 | 3eqtrrd 2784 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 (class class class)co 7268 ℂcc 10853 + caddc 10858 · cmul 10860 − cmin 11188 2c2 12011 ↑cexp 13763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-n0 12217 df-z 12303 df-uz 12565 df-seq 13703 df-exp 13764 |
This theorem is referenced by: subsq2 13908 subsqi 13910 pythagtriplem4 16501 pythagtriplem6 16503 pythagtriplem7 16504 pythagtriplem12 16508 pythagtriplem14 16510 pythagtriplem16 16512 difsqpwdvds 16569 4sqlem8 16627 4sqlem10 16629 4sqlem11 16637 chordthmlem4 25966 heron 25969 dcubic2 25975 cubic 25980 dquart 25984 asinlem2 26000 asinsin 26023 efiatan2 26048 atans2 26062 dvatan 26066 wilthlem1 26198 lgslem1 26426 lgsqrlem2 26476 2sqlem4 26550 2sqblem 26560 2sqmod 26565 rplogsumlem1 26613 pellexlem2 40632 pell1234qrne0 40655 pell1234qrreccl 40656 pell1234qrmulcl 40657 pell14qrdich 40671 rmxyneg 40722 sqrtcval 41202 stoweidlem1 43496 |
Copyright terms: Public domain | W3C validator |