MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsq Structured version   Visualization version   GIF version

Theorem subsq 14121
Description: Factor the difference of two squares. (Contributed by NM, 21-Feb-2008.)
Assertion
Ref Expression
subsq ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ดโ†‘2) โˆ’ (๐ตโ†‘2)) = ((๐ด + ๐ต) ยท (๐ด โˆ’ ๐ต)))

Proof of Theorem subsq
StepHypRef Expression
1 simpl 484 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ๐ด โˆˆ โ„‚)
2 simpr 486 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ๐ต โˆˆ โ„‚)
3 subcl 11407 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด โˆ’ ๐ต) โˆˆ โ„‚)
41, 2, 3adddird 11187 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ด + ๐ต) ยท (๐ด โˆ’ ๐ต)) = ((๐ด ยท (๐ด โˆ’ ๐ต)) + (๐ต ยท (๐ด โˆ’ ๐ต))))
5 subdi 11595 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด ยท (๐ด โˆ’ ๐ต)) = ((๐ด ยท ๐ด) โˆ’ (๐ด ยท ๐ต)))
653anidm12 1420 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด ยท (๐ด โˆ’ ๐ต)) = ((๐ด ยท ๐ด) โˆ’ (๐ด ยท ๐ต)))
7 sqval 14027 . . . . . 6 (๐ด โˆˆ โ„‚ โ†’ (๐ดโ†‘2) = (๐ด ยท ๐ด))
87adantr 482 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ดโ†‘2) = (๐ด ยท ๐ด))
98oveq1d 7377 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ดโ†‘2) โˆ’ (๐ด ยท ๐ต)) = ((๐ด ยท ๐ด) โˆ’ (๐ด ยท ๐ต)))
106, 9eqtr4d 2780 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด ยท (๐ด โˆ’ ๐ต)) = ((๐ดโ†‘2) โˆ’ (๐ด ยท ๐ต)))
112, 1, 2subdid 11618 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ต ยท (๐ด โˆ’ ๐ต)) = ((๐ต ยท ๐ด) โˆ’ (๐ต ยท ๐ต)))
12 mulcom 11144 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด ยท ๐ต) = (๐ต ยท ๐ด))
13 sqval 14027 . . . . . 6 (๐ต โˆˆ โ„‚ โ†’ (๐ตโ†‘2) = (๐ต ยท ๐ต))
1413adantl 483 . . . . 5 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ตโ†‘2) = (๐ต ยท ๐ต))
1512, 14oveq12d 7380 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ต) โˆ’ (๐ตโ†‘2)) = ((๐ต ยท ๐ด) โˆ’ (๐ต ยท ๐ต)))
1611, 15eqtr4d 2780 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ต ยท (๐ด โˆ’ ๐ต)) = ((๐ด ยท ๐ต) โˆ’ (๐ตโ†‘2)))
1710, 16oveq12d 7380 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ด ยท (๐ด โˆ’ ๐ต)) + (๐ต ยท (๐ด โˆ’ ๐ต))) = (((๐ดโ†‘2) โˆ’ (๐ด ยท ๐ต)) + ((๐ด ยท ๐ต) โˆ’ (๐ตโ†‘2))))
18 sqcl 14030 . . . 4 (๐ด โˆˆ โ„‚ โ†’ (๐ดโ†‘2) โˆˆ โ„‚)
1918adantr 482 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ดโ†‘2) โˆˆ โ„‚)
20 mulcl 11142 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด ยท ๐ต) โˆˆ โ„‚)
21 sqcl 14030 . . . 4 (๐ต โˆˆ โ„‚ โ†’ (๐ตโ†‘2) โˆˆ โ„‚)
2221adantl 483 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ตโ†‘2) โˆˆ โ„‚)
2319, 20, 22npncand 11543 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (((๐ดโ†‘2) โˆ’ (๐ด ยท ๐ต)) + ((๐ด ยท ๐ต) โˆ’ (๐ตโ†‘2))) = ((๐ดโ†‘2) โˆ’ (๐ตโ†‘2)))
244, 17, 233eqtrrd 2782 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ ((๐ดโ†‘2) โˆ’ (๐ตโ†‘2)) = ((๐ด + ๐ต) ยท (๐ด โˆ’ ๐ต)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 397   = wceq 1542   โˆˆ wcel 2107  (class class class)co 7362  โ„‚cc 11056   + caddc 11061   ยท cmul 11063   โˆ’ cmin 11392  2c2 12215  โ†‘cexp 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-n0 12421  df-z 12507  df-uz 12771  df-seq 13914  df-exp 13975
This theorem is referenced by:  subsq2  14122  subsqi  14124  pythagtriplem4  16698  pythagtriplem6  16700  pythagtriplem7  16701  pythagtriplem12  16705  pythagtriplem14  16707  pythagtriplem16  16709  difsqpwdvds  16766  4sqlem8  16824  4sqlem10  16826  4sqlem11  16834  chordthmlem4  26201  heron  26204  dcubic2  26210  cubic  26215  dquart  26219  asinlem2  26235  asinsin  26258  efiatan2  26283  atans2  26297  dvatan  26301  wilthlem1  26433  lgslem1  26661  lgsqrlem2  26711  2sqlem4  26785  2sqblem  26795  2sqmod  26800  rplogsumlem1  26848  pellexlem2  41182  pell1234qrne0  41205  pell1234qrreccl  41206  pell1234qrmulcl  41207  pell14qrdich  41221  rmxyneg  41273  sqrtcval  41987  stoweidlem1  44316
  Copyright terms: Public domain W3C validator