MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsq Structured version   Visualization version   GIF version

Theorem subsq 14117
Description: Factor the difference of two squares. (Contributed by NM, 21-Feb-2008.)
Assertion
Ref Expression
subsq ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))

Proof of Theorem subsq
StepHypRef Expression
1 simpl 482 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
2 simpr 484 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
3 subcl 11359 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
41, 2, 3adddird 11137 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · (𝐴𝐵)) = ((𝐴 · (𝐴𝐵)) + (𝐵 · (𝐴𝐵))))
5 subdi 11550 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐴𝐵)) = ((𝐴 · 𝐴) − (𝐴 · 𝐵)))
653anidm12 1421 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐴𝐵)) = ((𝐴 · 𝐴) − (𝐴 · 𝐵)))
7 sqval 14021 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
87adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) = (𝐴 · 𝐴))
98oveq1d 7361 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐴 · 𝐵)) = ((𝐴 · 𝐴) − (𝐴 · 𝐵)))
106, 9eqtr4d 2769 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐴𝐵)) = ((𝐴↑2) − (𝐴 · 𝐵)))
112, 1, 2subdid 11573 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 · (𝐴𝐵)) = ((𝐵 · 𝐴) − (𝐵 · 𝐵)))
12 mulcom 11092 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
13 sqval 14021 . . . . . 6 (𝐵 ∈ ℂ → (𝐵↑2) = (𝐵 · 𝐵))
1413adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) = (𝐵 · 𝐵))
1512, 14oveq12d 7364 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) − (𝐵↑2)) = ((𝐵 · 𝐴) − (𝐵 · 𝐵)))
1611, 15eqtr4d 2769 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 · (𝐴𝐵)) = ((𝐴 · 𝐵) − (𝐵↑2)))
1710, 16oveq12d 7364 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐴𝐵)) + (𝐵 · (𝐴𝐵))) = (((𝐴↑2) − (𝐴 · 𝐵)) + ((𝐴 · 𝐵) − (𝐵↑2))))
18 sqcl 14025 . . . 4 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
1918adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
20 mulcl 11090 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
21 sqcl 14025 . . . 4 (𝐵 ∈ ℂ → (𝐵↑2) ∈ ℂ)
2221adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2319, 20, 22npncand 11496 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) − (𝐴 · 𝐵)) + ((𝐴 · 𝐵) − (𝐵↑2))) = ((𝐴↑2) − (𝐵↑2)))
244, 17, 233eqtrrd 2771 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11004   + caddc 11009   · cmul 11011  cmin 11344  2c2 12180  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-seq 13909  df-exp 13969
This theorem is referenced by:  subsq2  14118  subsqi  14120  pythagtriplem4  16731  pythagtriplem6  16733  pythagtriplem7  16734  pythagtriplem12  16738  pythagtriplem14  16740  pythagtriplem16  16742  difsqpwdvds  16799  4sqlem8  16857  4sqlem10  16859  4sqlem11  16867  chordthmlem4  26772  heron  26775  dcubic2  26781  cubic  26786  dquart  26790  asinlem2  26806  asinsin  26829  efiatan2  26854  atans2  26868  dvatan  26872  wilthlem1  27005  lgslem1  27235  lgsqrlem2  27285  2sqlem4  27359  2sqblem  27369  2sqmod  27374  rplogsumlem1  27422  binom2subadd  32725  pythagreim  32729  pellexlem2  42871  pell1234qrne0  42894  pell1234qrreccl  42895  pell1234qrmulcl  42896  pell14qrdich  42910  rmxyneg  42961  sqrtcval  43682  stoweidlem1  46047
  Copyright terms: Public domain W3C validator