MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsq Structured version   Visualization version   GIF version

Theorem subsq 13575
Description: Factor the difference of two squares. (Contributed by NM, 21-Feb-2008.)
Assertion
Ref Expression
subsq ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))

Proof of Theorem subsq
StepHypRef Expression
1 simpl 485 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
2 simpr 487 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
3 subcl 10887 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
41, 2, 3adddird 10668 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) · (𝐴𝐵)) = ((𝐴 · (𝐴𝐵)) + (𝐵 · (𝐴𝐵))))
5 subdi 11075 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐴𝐵)) = ((𝐴 · 𝐴) − (𝐴 · 𝐵)))
653anidm12 1415 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐴𝐵)) = ((𝐴 · 𝐴) − (𝐴 · 𝐵)))
7 sqval 13484 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
87adantr 483 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) = (𝐴 · 𝐴))
98oveq1d 7173 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐴 · 𝐵)) = ((𝐴 · 𝐴) − (𝐴 · 𝐵)))
106, 9eqtr4d 2861 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐴𝐵)) = ((𝐴↑2) − (𝐴 · 𝐵)))
112, 1, 2subdid 11098 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 · (𝐴𝐵)) = ((𝐵 · 𝐴) − (𝐵 · 𝐵)))
12 mulcom 10625 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
13 sqval 13484 . . . . . 6 (𝐵 ∈ ℂ → (𝐵↑2) = (𝐵 · 𝐵))
1413adantl 484 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) = (𝐵 · 𝐵))
1512, 14oveq12d 7176 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) − (𝐵↑2)) = ((𝐵 · 𝐴) − (𝐵 · 𝐵)))
1611, 15eqtr4d 2861 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 · (𝐴𝐵)) = ((𝐴 · 𝐵) − (𝐵↑2)))
1710, 16oveq12d 7176 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐴𝐵)) + (𝐵 · (𝐴𝐵))) = (((𝐴↑2) − (𝐴 · 𝐵)) + ((𝐴 · 𝐵) − (𝐵↑2))))
18 sqcl 13487 . . . 4 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
1918adantr 483 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
20 mulcl 10623 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
21 sqcl 13487 . . . 4 (𝐵 ∈ ℂ → (𝐵↑2) ∈ ℂ)
2221adantl 484 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2319, 20, 22npncand 11023 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) − (𝐴 · 𝐵)) + ((𝐴 · 𝐵) − (𝐵↑2))) = ((𝐴↑2) − (𝐵↑2)))
244, 17, 233eqtrrd 2863 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  (class class class)co 7158  cc 10537   + caddc 10542   · cmul 10544  cmin 10872  2c2 11695  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-seq 13373  df-exp 13433
This theorem is referenced by:  subsq2  13576  subsqi  13578  pythagtriplem4  16158  pythagtriplem6  16160  pythagtriplem7  16161  pythagtriplem12  16165  pythagtriplem14  16167  pythagtriplem16  16169  difsqpwdvds  16225  4sqlem8  16283  4sqlem10  16285  4sqlem11  16293  chordthmlem4  25415  heron  25418  dcubic2  25424  cubic  25429  dquart  25433  asinlem2  25449  asinsin  25472  efiatan2  25497  atans2  25511  dvatan  25515  wilthlem1  25647  lgslem1  25875  lgsqrlem2  25925  2sqlem4  25999  2sqblem  26009  2sqmod  26014  rplogsumlem1  26062  pellexlem2  39434  pell1234qrne0  39457  pell1234qrreccl  39458  pell1234qrmulcl  39459  pell14qrdich  39473  rmxyneg  39524  stoweidlem1  42293
  Copyright terms: Public domain W3C validator