![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > kbpj | Structured version Visualization version GIF version |
Description: If a vector π΄ has norm 1, the outer product β£ π΄β©β¨π΄ β£ is the projector onto the subspace spanned by π΄. http://en.wikipedia.org/wiki/Bra-ket#Linear%5Foperators. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
kbpj | β’ ((π΄ β β β§ (normββπ΄) = 1) β (π΄ ketbra π΄) = (projββ(spanβ{π΄}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7412 | . . . . . . . . 9 β’ ((normββπ΄) = 1 β ((normββπ΄)β2) = (1β2)) | |
2 | sq1 14155 | . . . . . . . . 9 β’ (1β2) = 1 | |
3 | 1, 2 | eqtrdi 2788 | . . . . . . . 8 β’ ((normββπ΄) = 1 β ((normββπ΄)β2) = 1) |
4 | 3 | oveq2d 7421 | . . . . . . 7 β’ ((normββπ΄) = 1 β ((π₯ Β·ih π΄) / ((normββπ΄)β2)) = ((π₯ Β·ih π΄) / 1)) |
5 | hicl 30320 | . . . . . . . . 9 β’ ((π₯ β β β§ π΄ β β) β (π₯ Β·ih π΄) β β) | |
6 | 5 | ancoms 459 | . . . . . . . 8 β’ ((π΄ β β β§ π₯ β β) β (π₯ Β·ih π΄) β β) |
7 | 6 | div1d 11978 | . . . . . . 7 β’ ((π΄ β β β§ π₯ β β) β ((π₯ Β·ih π΄) / 1) = (π₯ Β·ih π΄)) |
8 | 4, 7 | sylan9eqr 2794 | . . . . . 6 β’ (((π΄ β β β§ π₯ β β) β§ (normββπ΄) = 1) β ((π₯ Β·ih π΄) / ((normββπ΄)β2)) = (π₯ Β·ih π΄)) |
9 | 8 | an32s 650 | . . . . 5 β’ (((π΄ β β β§ (normββπ΄) = 1) β§ π₯ β β) β ((π₯ Β·ih π΄) / ((normββπ΄)β2)) = (π₯ Β·ih π΄)) |
10 | 9 | oveq1d 7420 | . . . 4 β’ (((π΄ β β β§ (normββπ΄) = 1) β§ π₯ β β) β (((π₯ Β·ih π΄) / ((normββπ΄)β2)) Β·β π΄) = ((π₯ Β·ih π΄) Β·β π΄)) |
11 | simpll 765 | . . . . 5 β’ (((π΄ β β β§ (normββπ΄) = 1) β§ π₯ β β) β π΄ β β) | |
12 | simpr 485 | . . . . 5 β’ (((π΄ β β β§ (normββπ΄) = 1) β§ π₯ β β) β π₯ β β) | |
13 | ax-1ne0 11175 | . . . . . . . . 9 β’ 1 β 0 | |
14 | neeq1 3003 | . . . . . . . . 9 β’ ((normββπ΄) = 1 β ((normββπ΄) β 0 β 1 β 0)) | |
15 | 13, 14 | mpbiri 257 | . . . . . . . 8 β’ ((normββπ΄) = 1 β (normββπ΄) β 0) |
16 | normne0 30370 | . . . . . . . 8 β’ (π΄ β β β ((normββπ΄) β 0 β π΄ β 0β)) | |
17 | 15, 16 | imbitrid 243 | . . . . . . 7 β’ (π΄ β β β ((normββπ΄) = 1 β π΄ β 0β)) |
18 | 17 | imp 407 | . . . . . 6 β’ ((π΄ β β β§ (normββπ΄) = 1) β π΄ β 0β) |
19 | 18 | adantr 481 | . . . . 5 β’ (((π΄ β β β§ (normββπ΄) = 1) β§ π₯ β β) β π΄ β 0β) |
20 | pjspansn 30817 | . . . . 5 β’ ((π΄ β β β§ π₯ β β β§ π΄ β 0β) β ((projββ(spanβ{π΄}))βπ₯) = (((π₯ Β·ih π΄) / ((normββπ΄)β2)) Β·β π΄)) | |
21 | 11, 12, 19, 20 | syl3anc 1371 | . . . 4 β’ (((π΄ β β β§ (normββπ΄) = 1) β§ π₯ β β) β ((projββ(spanβ{π΄}))βπ₯) = (((π₯ Β·ih π΄) / ((normββπ΄)β2)) Β·β π΄)) |
22 | kbval 31194 | . . . . . 6 β’ ((π΄ β β β§ π΄ β β β§ π₯ β β) β ((π΄ ketbra π΄)βπ₯) = ((π₯ Β·ih π΄) Β·β π΄)) | |
23 | 22 | 3anidm12 1419 | . . . . 5 β’ ((π΄ β β β§ π₯ β β) β ((π΄ ketbra π΄)βπ₯) = ((π₯ Β·ih π΄) Β·β π΄)) |
24 | 23 | adantlr 713 | . . . 4 β’ (((π΄ β β β§ (normββπ΄) = 1) β§ π₯ β β) β ((π΄ ketbra π΄)βπ₯) = ((π₯ Β·ih π΄) Β·β π΄)) |
25 | 10, 21, 24 | 3eqtr4rd 2783 | . . 3 β’ (((π΄ β β β§ (normββπ΄) = 1) β§ π₯ β β) β ((π΄ ketbra π΄)βπ₯) = ((projββ(spanβ{π΄}))βπ₯)) |
26 | 25 | ralrimiva 3146 | . 2 β’ ((π΄ β β β§ (normββπ΄) = 1) β βπ₯ β β ((π΄ ketbra π΄)βπ₯) = ((projββ(spanβ{π΄}))βπ₯)) |
27 | kbop 31193 | . . . . . 6 β’ ((π΄ β β β§ π΄ β β) β (π΄ ketbra π΄): ββΆ β) | |
28 | 27 | anidms 567 | . . . . 5 β’ (π΄ β β β (π΄ ketbra π΄): ββΆ β) |
29 | 28 | ffnd 6715 | . . . 4 β’ (π΄ β β β (π΄ ketbra π΄) Fn β) |
30 | spansnch 30800 | . . . . 5 β’ (π΄ β β β (spanβ{π΄}) β Cβ ) | |
31 | pjfn 30949 | . . . . 5 β’ ((spanβ{π΄}) β Cβ β (projββ(spanβ{π΄})) Fn β) | |
32 | 30, 31 | syl 17 | . . . 4 β’ (π΄ β β β (projββ(spanβ{π΄})) Fn β) |
33 | eqfnfv 7029 | . . . 4 β’ (((π΄ ketbra π΄) Fn β β§ (projββ(spanβ{π΄})) Fn β) β ((π΄ ketbra π΄) = (projββ(spanβ{π΄})) β βπ₯ β β ((π΄ ketbra π΄)βπ₯) = ((projββ(spanβ{π΄}))βπ₯))) | |
34 | 29, 32, 33 | syl2anc 584 | . . 3 β’ (π΄ β β β ((π΄ ketbra π΄) = (projββ(spanβ{π΄})) β βπ₯ β β ((π΄ ketbra π΄)βπ₯) = ((projββ(spanβ{π΄}))βπ₯))) |
35 | 34 | adantr 481 | . 2 β’ ((π΄ β β β§ (normββπ΄) = 1) β ((π΄ ketbra π΄) = (projββ(spanβ{π΄})) β βπ₯ β β ((π΄ ketbra π΄)βπ₯) = ((projββ(spanβ{π΄}))βπ₯))) |
36 | 26, 35 | mpbird 256 | 1 β’ ((π΄ β β β§ (normββπ΄) = 1) β (π΄ ketbra π΄) = (projββ(spanβ{π΄}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 {csn 4627 Fn wfn 6535 βΆwf 6536 βcfv 6540 (class class class)co 7405 βcc 11104 0cc0 11106 1c1 11107 / cdiv 11867 2c2 12263 βcexp 14023 βchba 30159 Β·β csm 30161 Β·ih csp 30162 normβcno 30163 0βc0v 30164 Cβ cch 30169 spancspn 30172 projβcpjh 30177 ketbra ck 30197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cc 10426 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 ax-hilex 30239 ax-hfvadd 30240 ax-hvcom 30241 ax-hvass 30242 ax-hv0cl 30243 ax-hvaddid 30244 ax-hfvmul 30245 ax-hvmulid 30246 ax-hvmulass 30247 ax-hvdistr1 30248 ax-hvdistr2 30249 ax-hvmul0 30250 ax-hfi 30319 ax-his1 30322 ax-his2 30323 ax-his3 30324 ax-his4 30325 ax-hcompl 30442 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-omul 8467 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-acn 9933 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-rlim 15429 df-sum 15629 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-mulg 18945 df-cntz 19175 df-cmn 19644 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-fbas 20933 df-fg 20934 df-cnfld 20937 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-cld 22514 df-ntr 22515 df-cls 22516 df-nei 22593 df-cn 22722 df-cnp 22723 df-lm 22724 df-haus 22810 df-tx 23057 df-hmeo 23250 df-fil 23341 df-fm 23433 df-flim 23434 df-flf 23435 df-xms 23817 df-ms 23818 df-tms 23819 df-cfil 24763 df-cau 24764 df-cmet 24765 df-grpo 29733 df-gid 29734 df-ginv 29735 df-gdiv 29736 df-ablo 29785 df-vc 29799 df-nv 29832 df-va 29835 df-ba 29836 df-sm 29837 df-0v 29838 df-vs 29839 df-nmcv 29840 df-ims 29841 df-dip 29941 df-ssp 29962 df-ph 30053 df-cbn 30103 df-hnorm 30208 df-hba 30209 df-hvsub 30211 df-hlim 30212 df-hcau 30213 df-sh 30447 df-ch 30461 df-oc 30492 df-ch0 30493 df-shs 30548 df-span 30549 df-pjh 30635 df-kb 31091 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |