HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbpj Structured version   Visualization version   GIF version

Theorem kbpj 31918
Description: If a vector 𝐴 has norm 1, the outer product 𝐴⟩⟨𝐴 is the projector onto the subspace spanned by 𝐴. http://en.wikipedia.org/wiki/Bra-ket#Linear%5Foperators. (Contributed by NM, 30-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbpj ((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) → (𝐴 ketbra 𝐴) = (proj‘(span‘{𝐴})))

Proof of Theorem kbpj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7360 . . . . . . . . 9 ((norm𝐴) = 1 → ((norm𝐴)↑2) = (1↑2))
2 sq1 14120 . . . . . . . . 9 (1↑2) = 1
31, 2eqtrdi 2780 . . . . . . . 8 ((norm𝐴) = 1 → ((norm𝐴)↑2) = 1)
43oveq2d 7369 . . . . . . 7 ((norm𝐴) = 1 → ((𝑥 ·ih 𝐴) / ((norm𝐴)↑2)) = ((𝑥 ·ih 𝐴) / 1))
5 hicl 31042 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑥 ·ih 𝐴) ∈ ℂ)
65ancoms 458 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐴) ∈ ℂ)
76div1d 11910 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐴) / 1) = (𝑥 ·ih 𝐴))
84, 7sylan9eqr 2786 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) ∧ (norm𝐴) = 1) → ((𝑥 ·ih 𝐴) / ((norm𝐴)↑2)) = (𝑥 ·ih 𝐴))
98an32s 652 . . . . 5 (((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐴) / ((norm𝐴)↑2)) = (𝑥 ·ih 𝐴))
109oveq1d 7368 . . . 4 (((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴) = ((𝑥 ·ih 𝐴) · 𝐴))
11 simpll 766 . . . . 5 (((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℋ)
12 simpr 484 . . . . 5 (((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
13 ax-1ne0 11097 . . . . . . . . 9 1 ≠ 0
14 neeq1 2987 . . . . . . . . 9 ((norm𝐴) = 1 → ((norm𝐴) ≠ 0 ↔ 1 ≠ 0))
1513, 14mpbiri 258 . . . . . . . 8 ((norm𝐴) = 1 → (norm𝐴) ≠ 0)
16 normne0 31092 . . . . . . . 8 (𝐴 ∈ ℋ → ((norm𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
1715, 16imbitrid 244 . . . . . . 7 (𝐴 ∈ ℋ → ((norm𝐴) = 1 → 𝐴 ≠ 0))
1817imp 406 . . . . . 6 ((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) → 𝐴 ≠ 0)
1918adantr 480 . . . . 5 (((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) ∧ 𝑥 ∈ ℋ) → 𝐴 ≠ 0)
20 pjspansn 31539 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝑥) = (((𝑥 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))
2111, 12, 19, 20syl3anc 1373 . . . 4 (((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) ∧ 𝑥 ∈ ℋ) → ((proj‘(span‘{𝐴}))‘𝑥) = (((𝑥 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))
22 kbval 31916 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐴)‘𝑥) = ((𝑥 ·ih 𝐴) · 𝐴))
23223anidm12 1421 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐴)‘𝑥) = ((𝑥 ·ih 𝐴) · 𝐴))
2423adantlr 715 . . . 4 (((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐴)‘𝑥) = ((𝑥 ·ih 𝐴) · 𝐴))
2510, 21, 243eqtr4rd 2775 . . 3 (((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐴)‘𝑥) = ((proj‘(span‘{𝐴}))‘𝑥))
2625ralrimiva 3121 . 2 ((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) → ∀𝑥 ∈ ℋ ((𝐴 ketbra 𝐴)‘𝑥) = ((proj‘(span‘{𝐴}))‘𝑥))
27 kbop 31915 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ketbra 𝐴): ℋ⟶ ℋ)
2827anidms 566 . . . . 5 (𝐴 ∈ ℋ → (𝐴 ketbra 𝐴): ℋ⟶ ℋ)
2928ffnd 6657 . . . 4 (𝐴 ∈ ℋ → (𝐴 ketbra 𝐴) Fn ℋ)
30 spansnch 31522 . . . . 5 (𝐴 ∈ ℋ → (span‘{𝐴}) ∈ C )
31 pjfn 31671 . . . . 5 ((span‘{𝐴}) ∈ C → (proj‘(span‘{𝐴})) Fn ℋ)
3230, 31syl 17 . . . 4 (𝐴 ∈ ℋ → (proj‘(span‘{𝐴})) Fn ℋ)
33 eqfnfv 6969 . . . 4 (((𝐴 ketbra 𝐴) Fn ℋ ∧ (proj‘(span‘{𝐴})) Fn ℋ) → ((𝐴 ketbra 𝐴) = (proj‘(span‘{𝐴})) ↔ ∀𝑥 ∈ ℋ ((𝐴 ketbra 𝐴)‘𝑥) = ((proj‘(span‘{𝐴}))‘𝑥)))
3429, 32, 33syl2anc 584 . . 3 (𝐴 ∈ ℋ → ((𝐴 ketbra 𝐴) = (proj‘(span‘{𝐴})) ↔ ∀𝑥 ∈ ℋ ((𝐴 ketbra 𝐴)‘𝑥) = ((proj‘(span‘{𝐴}))‘𝑥)))
3534adantr 480 . 2 ((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) → ((𝐴 ketbra 𝐴) = (proj‘(span‘{𝐴})) ↔ ∀𝑥 ∈ ℋ ((𝐴 ketbra 𝐴)‘𝑥) = ((proj‘(span‘{𝐴}))‘𝑥)))
3626, 35mpbird 257 1 ((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) → (𝐴 ketbra 𝐴) = (proj‘(span‘{𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {csn 4579   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   / cdiv 11795  2c2 12201  cexp 13986  chba 30881   · csm 30883   ·ih csp 30884  normcno 30885  0c0v 30886   C cch 30891  spancspn 30894  projcpjh 30899   ketbra ck 30919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108  ax-hilex 30961  ax-hfvadd 30962  ax-hvcom 30963  ax-hvass 30964  ax-hv0cl 30965  ax-hvaddid 30966  ax-hfvmul 30967  ax-hvmulid 30968  ax-hvmulass 30969  ax-hvdistr1 30970  ax-hvdistr2 30971  ax-hvmul0 30972  ax-hfi 31041  ax-his1 31044  ax-his2 31045  ax-his3 31046  ax-his4 31047  ax-hcompl 31164
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-cn 23130  df-cnp 23131  df-lm 23132  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cfil 25171  df-cau 25172  df-cmet 25173  df-grpo 30455  df-gid 30456  df-ginv 30457  df-gdiv 30458  df-ablo 30507  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-vs 30561  df-nmcv 30562  df-ims 30563  df-dip 30663  df-ssp 30684  df-ph 30775  df-cbn 30825  df-hnorm 30930  df-hba 30931  df-hvsub 30933  df-hlim 30934  df-hcau 30935  df-sh 31169  df-ch 31183  df-oc 31214  df-ch0 31215  df-shs 31270  df-span 31271  df-pjh 31357  df-kb 31813
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator