HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbpj Structured version   Visualization version   GIF version

Theorem kbpj 31942
Description: If a vector 𝐴 has norm 1, the outer product 𝐴⟩⟨𝐴 is the projector onto the subspace spanned by 𝐴. http://en.wikipedia.org/wiki/Bra-ket#Linear%5Foperators. (Contributed by NM, 30-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbpj ((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) → (𝐴 ketbra 𝐴) = (proj‘(span‘{𝐴})))

Proof of Theorem kbpj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7417 . . . . . . . . 9 ((norm𝐴) = 1 → ((norm𝐴)↑2) = (1↑2))
2 sq1 14218 . . . . . . . . 9 (1↑2) = 1
31, 2eqtrdi 2787 . . . . . . . 8 ((norm𝐴) = 1 → ((norm𝐴)↑2) = 1)
43oveq2d 7426 . . . . . . 7 ((norm𝐴) = 1 → ((𝑥 ·ih 𝐴) / ((norm𝐴)↑2)) = ((𝑥 ·ih 𝐴) / 1))
5 hicl 31066 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑥 ·ih 𝐴) ∈ ℂ)
65ancoms 458 . . . . . . . 8 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐴) ∈ ℂ)
76div1d 12014 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐴) / 1) = (𝑥 ·ih 𝐴))
84, 7sylan9eqr 2793 . . . . . 6 (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) ∧ (norm𝐴) = 1) → ((𝑥 ·ih 𝐴) / ((norm𝐴)↑2)) = (𝑥 ·ih 𝐴))
98an32s 652 . . . . 5 (((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐴) / ((norm𝐴)↑2)) = (𝑥 ·ih 𝐴))
109oveq1d 7425 . . . 4 (((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴) = ((𝑥 ·ih 𝐴) · 𝐴))
11 simpll 766 . . . . 5 (((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℋ)
12 simpr 484 . . . . 5 (((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
13 ax-1ne0 11203 . . . . . . . . 9 1 ≠ 0
14 neeq1 2995 . . . . . . . . 9 ((norm𝐴) = 1 → ((norm𝐴) ≠ 0 ↔ 1 ≠ 0))
1513, 14mpbiri 258 . . . . . . . 8 ((norm𝐴) = 1 → (norm𝐴) ≠ 0)
16 normne0 31116 . . . . . . . 8 (𝐴 ∈ ℋ → ((norm𝐴) ≠ 0 ↔ 𝐴 ≠ 0))
1715, 16imbitrid 244 . . . . . . 7 (𝐴 ∈ ℋ → ((norm𝐴) = 1 → 𝐴 ≠ 0))
1817imp 406 . . . . . 6 ((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) → 𝐴 ≠ 0)
1918adantr 480 . . . . 5 (((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) ∧ 𝑥 ∈ ℋ) → 𝐴 ≠ 0)
20 pjspansn 31563 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ∧ 𝐴 ≠ 0) → ((proj‘(span‘{𝐴}))‘𝑥) = (((𝑥 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))
2111, 12, 19, 20syl3anc 1373 . . . 4 (((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) ∧ 𝑥 ∈ ℋ) → ((proj‘(span‘{𝐴}))‘𝑥) = (((𝑥 ·ih 𝐴) / ((norm𝐴)↑2)) · 𝐴))
22 kbval 31940 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐴)‘𝑥) = ((𝑥 ·ih 𝐴) · 𝐴))
23223anidm12 1421 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐴)‘𝑥) = ((𝑥 ·ih 𝐴) · 𝐴))
2423adantlr 715 . . . 4 (((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐴)‘𝑥) = ((𝑥 ·ih 𝐴) · 𝐴))
2510, 21, 243eqtr4rd 2782 . . 3 (((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐴)‘𝑥) = ((proj‘(span‘{𝐴}))‘𝑥))
2625ralrimiva 3133 . 2 ((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) → ∀𝑥 ∈ ℋ ((𝐴 ketbra 𝐴)‘𝑥) = ((proj‘(span‘{𝐴}))‘𝑥))
27 kbop 31939 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ketbra 𝐴): ℋ⟶ ℋ)
2827anidms 566 . . . . 5 (𝐴 ∈ ℋ → (𝐴 ketbra 𝐴): ℋ⟶ ℋ)
2928ffnd 6712 . . . 4 (𝐴 ∈ ℋ → (𝐴 ketbra 𝐴) Fn ℋ)
30 spansnch 31546 . . . . 5 (𝐴 ∈ ℋ → (span‘{𝐴}) ∈ C )
31 pjfn 31695 . . . . 5 ((span‘{𝐴}) ∈ C → (proj‘(span‘{𝐴})) Fn ℋ)
3230, 31syl 17 . . . 4 (𝐴 ∈ ℋ → (proj‘(span‘{𝐴})) Fn ℋ)
33 eqfnfv 7026 . . . 4 (((𝐴 ketbra 𝐴) Fn ℋ ∧ (proj‘(span‘{𝐴})) Fn ℋ) → ((𝐴 ketbra 𝐴) = (proj‘(span‘{𝐴})) ↔ ∀𝑥 ∈ ℋ ((𝐴 ketbra 𝐴)‘𝑥) = ((proj‘(span‘{𝐴}))‘𝑥)))
3429, 32, 33syl2anc 584 . . 3 (𝐴 ∈ ℋ → ((𝐴 ketbra 𝐴) = (proj‘(span‘{𝐴})) ↔ ∀𝑥 ∈ ℋ ((𝐴 ketbra 𝐴)‘𝑥) = ((proj‘(span‘{𝐴}))‘𝑥)))
3534adantr 480 . 2 ((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) → ((𝐴 ketbra 𝐴) = (proj‘(span‘{𝐴})) ↔ ∀𝑥 ∈ ℋ ((𝐴 ketbra 𝐴)‘𝑥) = ((proj‘(span‘{𝐴}))‘𝑥)))
3626, 35mpbird 257 1 ((𝐴 ∈ ℋ ∧ (norm𝐴) = 1) → (𝐴 ketbra 𝐴) = (proj‘(span‘{𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  {csn 4606   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135   / cdiv 11899  2c2 12300  cexp 14084  chba 30905   · csm 30907   ·ih csp 30908  normcno 30909  0c0v 30910   C cch 30915  spancspn 30918  projcpjh 30923   ketbra ck 30943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cc 10454  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214  ax-hilex 30985  ax-hfvadd 30986  ax-hvcom 30987  ax-hvass 30988  ax-hv0cl 30989  ax-hvaddid 30990  ax-hfvmul 30991  ax-hvmulid 30992  ax-hvmulass 30993  ax-hvdistr1 30994  ax-hvdistr2 30995  ax-hvmul0 30996  ax-hfi 31065  ax-his1 31068  ax-his2 31069  ax-his3 31070  ax-his4 31071  ax-hcompl 31188
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-acn 9961  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-cn 23170  df-cnp 23171  df-lm 23172  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cfil 25212  df-cau 25213  df-cmet 25214  df-grpo 30479  df-gid 30480  df-ginv 30481  df-gdiv 30482  df-ablo 30531  df-vc 30545  df-nv 30578  df-va 30581  df-ba 30582  df-sm 30583  df-0v 30584  df-vs 30585  df-nmcv 30586  df-ims 30587  df-dip 30687  df-ssp 30708  df-ph 30799  df-cbn 30849  df-hnorm 30954  df-hba 30955  df-hvsub 30957  df-hlim 30958  df-hcau 30959  df-sh 31193  df-ch 31207  df-oc 31238  df-ch0 31239  df-shs 31294  df-span 31295  df-pjh 31381  df-kb 31837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator