Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > kbpj | Structured version Visualization version GIF version |
Description: If a vector 𝐴 has norm 1, the outer product ∣ 𝐴〉〈𝐴 ∣ is the projector onto the subspace spanned by 𝐴. http://en.wikipedia.org/wiki/Bra-ket#Linear%5Foperators. (Contributed by NM, 30-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
kbpj | ⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) = 1) → (𝐴 ketbra 𝐴) = (projℎ‘(span‘{𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7157 | . . . . . . . . 9 ⊢ ((normℎ‘𝐴) = 1 → ((normℎ‘𝐴)↑2) = (1↑2)) | |
2 | sq1 13608 | . . . . . . . . 9 ⊢ (1↑2) = 1 | |
3 | 1, 2 | eqtrdi 2809 | . . . . . . . 8 ⊢ ((normℎ‘𝐴) = 1 → ((normℎ‘𝐴)↑2) = 1) |
4 | 3 | oveq2d 7166 | . . . . . . 7 ⊢ ((normℎ‘𝐴) = 1 → ((𝑥 ·ih 𝐴) / ((normℎ‘𝐴)↑2)) = ((𝑥 ·ih 𝐴) / 1)) |
5 | hicl 28962 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑥 ·ih 𝐴) ∈ ℂ) | |
6 | 5 | ancoms 462 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐴) ∈ ℂ) |
7 | 6 | div1d 11446 | . . . . . . 7 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐴) / 1) = (𝑥 ·ih 𝐴)) |
8 | 4, 7 | sylan9eqr 2815 | . . . . . 6 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) ∧ (normℎ‘𝐴) = 1) → ((𝑥 ·ih 𝐴) / ((normℎ‘𝐴)↑2)) = (𝑥 ·ih 𝐴)) |
9 | 8 | an32s 651 | . . . . 5 ⊢ (((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) = 1) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐴) / ((normℎ‘𝐴)↑2)) = (𝑥 ·ih 𝐴)) |
10 | 9 | oveq1d 7165 | . . . 4 ⊢ (((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) = 1) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐴) / ((normℎ‘𝐴)↑2)) ·ℎ 𝐴) = ((𝑥 ·ih 𝐴) ·ℎ 𝐴)) |
11 | simpll 766 | . . . . 5 ⊢ (((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) = 1) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℋ) | |
12 | simpr 488 | . . . . 5 ⊢ (((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) = 1) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ) | |
13 | ax-1ne0 10644 | . . . . . . . . 9 ⊢ 1 ≠ 0 | |
14 | neeq1 3013 | . . . . . . . . 9 ⊢ ((normℎ‘𝐴) = 1 → ((normℎ‘𝐴) ≠ 0 ↔ 1 ≠ 0)) | |
15 | 13, 14 | mpbiri 261 | . . . . . . . 8 ⊢ ((normℎ‘𝐴) = 1 → (normℎ‘𝐴) ≠ 0) |
16 | normne0 29012 | . . . . . . . 8 ⊢ (𝐴 ∈ ℋ → ((normℎ‘𝐴) ≠ 0 ↔ 𝐴 ≠ 0ℎ)) | |
17 | 15, 16 | syl5ib 247 | . . . . . . 7 ⊢ (𝐴 ∈ ℋ → ((normℎ‘𝐴) = 1 → 𝐴 ≠ 0ℎ)) |
18 | 17 | imp 410 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) = 1) → 𝐴 ≠ 0ℎ) |
19 | 18 | adantr 484 | . . . . 5 ⊢ (((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) = 1) ∧ 𝑥 ∈ ℋ) → 𝐴 ≠ 0ℎ) |
20 | pjspansn 29459 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → ((projℎ‘(span‘{𝐴}))‘𝑥) = (((𝑥 ·ih 𝐴) / ((normℎ‘𝐴)↑2)) ·ℎ 𝐴)) | |
21 | 11, 12, 19, 20 | syl3anc 1368 | . . . 4 ⊢ (((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) = 1) ∧ 𝑥 ∈ ℋ) → ((projℎ‘(span‘{𝐴}))‘𝑥) = (((𝑥 ·ih 𝐴) / ((normℎ‘𝐴)↑2)) ·ℎ 𝐴)) |
22 | kbval 29836 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐴)‘𝑥) = ((𝑥 ·ih 𝐴) ·ℎ 𝐴)) | |
23 | 22 | 3anidm12 1416 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐴)‘𝑥) = ((𝑥 ·ih 𝐴) ·ℎ 𝐴)) |
24 | 23 | adantlr 714 | . . . 4 ⊢ (((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) = 1) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐴)‘𝑥) = ((𝑥 ·ih 𝐴) ·ℎ 𝐴)) |
25 | 10, 21, 24 | 3eqtr4rd 2804 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) = 1) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐴)‘𝑥) = ((projℎ‘(span‘{𝐴}))‘𝑥)) |
26 | 25 | ralrimiva 3113 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) = 1) → ∀𝑥 ∈ ℋ ((𝐴 ketbra 𝐴)‘𝑥) = ((projℎ‘(span‘{𝐴}))‘𝑥)) |
27 | kbop 29835 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ketbra 𝐴): ℋ⟶ ℋ) | |
28 | 27 | anidms 570 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (𝐴 ketbra 𝐴): ℋ⟶ ℋ) |
29 | 28 | ffnd 6499 | . . . 4 ⊢ (𝐴 ∈ ℋ → (𝐴 ketbra 𝐴) Fn ℋ) |
30 | spansnch 29442 | . . . . 5 ⊢ (𝐴 ∈ ℋ → (span‘{𝐴}) ∈ Cℋ ) | |
31 | pjfn 29591 | . . . . 5 ⊢ ((span‘{𝐴}) ∈ Cℋ → (projℎ‘(span‘{𝐴})) Fn ℋ) | |
32 | 30, 31 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℋ → (projℎ‘(span‘{𝐴})) Fn ℋ) |
33 | eqfnfv 6793 | . . . 4 ⊢ (((𝐴 ketbra 𝐴) Fn ℋ ∧ (projℎ‘(span‘{𝐴})) Fn ℋ) → ((𝐴 ketbra 𝐴) = (projℎ‘(span‘{𝐴})) ↔ ∀𝑥 ∈ ℋ ((𝐴 ketbra 𝐴)‘𝑥) = ((projℎ‘(span‘{𝐴}))‘𝑥))) | |
34 | 29, 32, 33 | syl2anc 587 | . . 3 ⊢ (𝐴 ∈ ℋ → ((𝐴 ketbra 𝐴) = (projℎ‘(span‘{𝐴})) ↔ ∀𝑥 ∈ ℋ ((𝐴 ketbra 𝐴)‘𝑥) = ((projℎ‘(span‘{𝐴}))‘𝑥))) |
35 | 34 | adantr 484 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) = 1) → ((𝐴 ketbra 𝐴) = (projℎ‘(span‘{𝐴})) ↔ ∀𝑥 ∈ ℋ ((𝐴 ketbra 𝐴)‘𝑥) = ((projℎ‘(span‘{𝐴}))‘𝑥))) |
36 | 26, 35 | mpbird 260 | 1 ⊢ ((𝐴 ∈ ℋ ∧ (normℎ‘𝐴) = 1) → (𝐴 ketbra 𝐴) = (projℎ‘(span‘{𝐴}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 {csn 4522 Fn wfn 6330 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 ℂcc 10573 0cc0 10575 1c1 10576 / cdiv 11335 2c2 11729 ↑cexp 13479 ℋchba 28801 ·ℎ csm 28803 ·ih csp 28804 normℎcno 28805 0ℎc0v 28806 Cℋ cch 28811 spancspn 28814 projℎcpjh 28819 ketbra ck 28839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cc 9895 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 ax-addf 10654 ax-mulf 10655 ax-hilex 28881 ax-hfvadd 28882 ax-hvcom 28883 ax-hvass 28884 ax-hv0cl 28885 ax-hvaddid 28886 ax-hfvmul 28887 ax-hvmulid 28888 ax-hvmulass 28889 ax-hvdistr1 28890 ax-hvdistr2 28891 ax-hvmul0 28892 ax-hfi 28961 ax-his1 28964 ax-his2 28965 ax-his3 28966 ax-his4 28967 ax-hcompl 29084 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-of 7405 df-om 7580 df-1st 7693 df-2nd 7694 df-supp 7836 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-oadd 8116 df-omul 8117 df-er 8299 df-map 8418 df-pm 8419 df-ixp 8480 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-fsupp 8867 df-fi 8908 df-sup 8939 df-inf 8940 df-oi 9007 df-card 9401 df-acn 9404 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-q 12389 df-rp 12431 df-xneg 12548 df-xadd 12549 df-xmul 12550 df-ioo 12783 df-ico 12785 df-icc 12786 df-fz 12940 df-fzo 13083 df-fl 13211 df-seq 13419 df-exp 13480 df-hash 13741 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-clim 14893 df-rlim 14894 df-sum 15091 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-starv 16638 df-sca 16639 df-vsca 16640 df-ip 16641 df-tset 16642 df-ple 16643 df-ds 16645 df-unif 16646 df-hom 16647 df-cco 16648 df-rest 16754 df-topn 16755 df-0g 16773 df-gsum 16774 df-topgen 16775 df-pt 16776 df-prds 16779 df-xrs 16833 df-qtop 16838 df-imas 16839 df-xps 16841 df-mre 16915 df-mrc 16916 df-acs 16918 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-submnd 18023 df-mulg 18292 df-cntz 18514 df-cmn 18975 df-psmet 20158 df-xmet 20159 df-met 20160 df-bl 20161 df-mopn 20162 df-fbas 20163 df-fg 20164 df-cnfld 20167 df-top 21594 df-topon 21611 df-topsp 21633 df-bases 21646 df-cld 21719 df-ntr 21720 df-cls 21721 df-nei 21798 df-cn 21927 df-cnp 21928 df-lm 21929 df-haus 22015 df-tx 22262 df-hmeo 22455 df-fil 22546 df-fm 22638 df-flim 22639 df-flf 22640 df-xms 23022 df-ms 23023 df-tms 23024 df-cfil 23955 df-cau 23956 df-cmet 23957 df-grpo 28375 df-gid 28376 df-ginv 28377 df-gdiv 28378 df-ablo 28427 df-vc 28441 df-nv 28474 df-va 28477 df-ba 28478 df-sm 28479 df-0v 28480 df-vs 28481 df-nmcv 28482 df-ims 28483 df-dip 28583 df-ssp 28604 df-ph 28695 df-cbn 28745 df-hnorm 28850 df-hba 28851 df-hvsub 28853 df-hlim 28854 df-hcau 28855 df-sh 29089 df-ch 29103 df-oc 29134 df-ch0 29135 df-shs 29190 df-span 29191 df-pjh 29277 df-kb 29733 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |