![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > recotcl | Structured version Visualization version GIF version |
Description: The closure of the cotangent function with a real argument. (Contributed by David A. Wheeler, 15-Mar-2014.) |
Ref | Expression |
---|---|
recotcl | β’ ((π΄ β β β§ (sinβπ΄) β 0) β (cotβπ΄) β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 11234 | . . 3 β’ (π΄ β β β π΄ β β) | |
2 | cotval 48231 | . . 3 β’ ((π΄ β β β§ (sinβπ΄) β 0) β (cotβπ΄) = ((cosβπ΄) / (sinβπ΄))) | |
3 | 1, 2 | sylan 578 | . 2 β’ ((π΄ β β β§ (sinβπ΄) β 0) β (cotβπ΄) = ((cosβπ΄) / (sinβπ΄))) |
4 | resincl 16122 | . . . 4 β’ (π΄ β β β (sinβπ΄) β β) | |
5 | recoscl 16123 | . . . . 5 β’ (π΄ β β β (cosβπ΄) β β) | |
6 | redivcl 11969 | . . . . 5 β’ (((cosβπ΄) β β β§ (sinβπ΄) β β β§ (sinβπ΄) β 0) β ((cosβπ΄) / (sinβπ΄)) β β) | |
7 | 5, 6 | syl3an1 1160 | . . . 4 β’ ((π΄ β β β§ (sinβπ΄) β β β§ (sinβπ΄) β 0) β ((cosβπ΄) / (sinβπ΄)) β β) |
8 | 4, 7 | syl3an2 1161 | . . 3 β’ ((π΄ β β β§ π΄ β β β§ (sinβπ΄) β 0) β ((cosβπ΄) / (sinβπ΄)) β β) |
9 | 8 | 3anidm12 1416 | . 2 β’ ((π΄ β β β§ (sinβπ΄) β 0) β ((cosβπ΄) / (sinβπ΄)) β β) |
10 | 3, 9 | eqeltrd 2828 | 1 β’ ((π΄ β β β§ (sinβπ΄) β 0) β (cotβπ΄) β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2936 βcfv 6551 (class class class)co 7424 βcc 11142 βcr 11143 0cc0 11144 / cdiv 11907 sincsin 16045 cosccos 16046 cotccot 48225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-inf2 9670 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-pm 8852 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9471 df-inf 9472 df-oi 9539 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-n0 12509 df-z 12595 df-uz 12859 df-rp 13013 df-ico 13368 df-fz 13523 df-fzo 13666 df-fl 13795 df-seq 14005 df-exp 14065 df-fac 14271 df-hash 14328 df-shft 15052 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-abs 15221 df-limsup 15453 df-clim 15470 df-rlim 15471 df-sum 15671 df-ef 16049 df-sin 16051 df-cos 16052 df-cot 48228 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |