Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onetansqsecsq Structured version   Visualization version   GIF version

Theorem onetansqsecsq 49335
Description: Prove the tangent squared secant squared identity (1 + ((tan‘𝐴)↑2)) = ((sec‘𝐴)↑2)). (Contributed by David A. Wheeler, 25-May-2015.)
Assertion
Ref Expression
onetansqsecsq ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = ((sec‘𝐴)↑2))

Proof of Theorem onetansqsecsq
StepHypRef Expression
1 coscl 16164 . . . . . . . . . 10 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
2 sqeq0 14161 . . . . . . . . . 10 ((cos‘𝐴) ∈ ℂ → (((cos‘𝐴)↑2) = 0 ↔ (cos‘𝐴) = 0))
31, 2syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) = 0 ↔ (cos‘𝐴) = 0))
43necon3bid 2984 . . . . . . . 8 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) ≠ 0 ↔ (cos‘𝐴) ≠ 0))
54biimpar 477 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((cos‘𝐴)↑2) ≠ 0)
61sqcld 14185 . . . . . . . 8 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ)
7 divid 11954 . . . . . . . 8 ((((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → (((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) = 1)
86, 7sylan 580 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → (((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) = 1)
95, 8syldan 591 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) = 1)
109eqcomd 2742 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 1 = (((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)))
11 tanval 16165 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
1211oveq1d 7447 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) = (((sin‘𝐴) / (cos‘𝐴))↑2))
13 2nn0 12545 . . . . . . . . . 10 2 ∈ ℕ0
14 sincl 16163 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
15 expdiv 14155 . . . . . . . . . . 11 (((sin‘𝐴) ∈ ℂ ∧ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) ∧ 2 ∈ ℕ0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
1614, 15syl3an1 1163 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) ∧ 2 ∈ ℕ0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
1713, 16mp3an3 1451 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0)) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
18173impb 1114 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
191, 18syl3an2 1164 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
20193anidm12 1420 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
2112, 20eqtrd 2776 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
2210, 21oveq12d 7450 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
2314sqcld 14185 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ)
24 divdir 11948 . . . . . . . . . . 11 ((((cos‘𝐴)↑2) ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ ∧ (((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0)) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
256, 24syl3an1 1163 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ ∧ (((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0)) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
2623, 25syl3an2 1164 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0)) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
27263anidm12 1420 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0)) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
28273impb 1114 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
296, 28syl3an2 1164 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
30293anidm12 1420 . . . . 5 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
315, 30syldan 591 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
3222, 31eqtr4d 2779 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)))
3323, 6addcomd 11464 . . . . . 6 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))
34 sincossq 16213 . . . . . 6 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
3533, 34eqtr3d 2778 . . . . 5 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = 1)
3635oveq1d 7447 . . . 4 (𝐴 ∈ ℂ → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = (1 / ((cos‘𝐴)↑2)))
3736adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = (1 / ((cos‘𝐴)↑2)))
3832, 37eqtrd 2776 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = (1 / ((cos‘𝐴)↑2)))
39 secval 49321 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sec‘𝐴) = (1 / (cos‘𝐴)))
4039oveq1d 7447 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sec‘𝐴)↑2) = ((1 / (cos‘𝐴))↑2))
41 ax-1cn 11214 . . . . . 6 1 ∈ ℂ
42 expdiv 14155 . . . . . 6 ((1 ∈ ℂ ∧ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) ∧ 2 ∈ ℕ0) → ((1 / (cos‘𝐴))↑2) = ((1↑2) / ((cos‘𝐴)↑2)))
4341, 13, 42mp3an13 1453 . . . . 5 (((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((1 / (cos‘𝐴))↑2) = ((1↑2) / ((cos‘𝐴)↑2)))
441, 43sylan 580 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((1 / (cos‘𝐴))↑2) = ((1↑2) / ((cos‘𝐴)↑2)))
45 sq1 14235 . . . . 5 (1↑2) = 1
4645oveq1i 7442 . . . 4 ((1↑2) / ((cos‘𝐴)↑2)) = (1 / ((cos‘𝐴)↑2))
4744, 46eqtrdi 2792 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((1 / (cos‘𝐴))↑2) = (1 / ((cos‘𝐴)↑2)))
4840, 47eqtrd 2776 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sec‘𝐴)↑2) = (1 / ((cos‘𝐴)↑2)))
4938, 48eqtr4d 2779 1 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = ((sec‘𝐴)↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  cfv 6560  (class class class)co 7432  cc 11154  0cc0 11156  1c1 11157   + caddc 11159   / cdiv 11921  2c2 12322  0cn0 12528  cexp 14103  sincsin 16100  cosccos 16101  tanctan 16102  seccsec 49315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-ico 13394  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-sin 16106  df-cos 16107  df-tan 16108  df-sec 49318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator