Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onetansqsecsq Structured version   Visualization version   GIF version

Theorem onetansqsecsq 46349
Description: Prove the tangent squared secant squared identity (1 + ((tan A ) ^ 2 ) ) = ( ( sec 𝐴)↑2)). (Contributed by David A. Wheeler, 25-May-2015.)
Assertion
Ref Expression
onetansqsecsq ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = ((sec‘𝐴)↑2))

Proof of Theorem onetansqsecsq
StepHypRef Expression
1 coscl 15764 . . . . . . . . . 10 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
2 sqeq0 13768 . . . . . . . . . 10 ((cos‘𝐴) ∈ ℂ → (((cos‘𝐴)↑2) = 0 ↔ (cos‘𝐴) = 0))
31, 2syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) = 0 ↔ (cos‘𝐴) = 0))
43necon3bid 2987 . . . . . . . 8 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) ≠ 0 ↔ (cos‘𝐴) ≠ 0))
54biimpar 477 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((cos‘𝐴)↑2) ≠ 0)
61sqcld 13790 . . . . . . . 8 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ)
7 divid 11592 . . . . . . . 8 ((((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → (((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) = 1)
86, 7sylan 579 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → (((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) = 1)
95, 8syldan 590 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) = 1)
109eqcomd 2744 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 1 = (((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)))
11 tanval 15765 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
1211oveq1d 7270 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) = (((sin‘𝐴) / (cos‘𝐴))↑2))
13 2nn0 12180 . . . . . . . . . 10 2 ∈ ℕ0
14 sincl 15763 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
15 expdiv 13762 . . . . . . . . . . 11 (((sin‘𝐴) ∈ ℂ ∧ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) ∧ 2 ∈ ℕ0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
1614, 15syl3an1 1161 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) ∧ 2 ∈ ℕ0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
1713, 16mp3an3 1448 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0)) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
18173impb 1113 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
191, 18syl3an2 1162 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
20193anidm12 1417 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
2112, 20eqtrd 2778 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
2210, 21oveq12d 7273 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
2314sqcld 13790 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ)
24 divdir 11588 . . . . . . . . . . 11 ((((cos‘𝐴)↑2) ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ ∧ (((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0)) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
256, 24syl3an1 1161 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ ∧ (((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0)) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
2623, 25syl3an2 1162 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0)) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
27263anidm12 1417 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0)) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
28273impb 1113 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
296, 28syl3an2 1162 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
30293anidm12 1417 . . . . 5 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
315, 30syldan 590 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
3222, 31eqtr4d 2781 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)))
3323, 6addcomd 11107 . . . . . 6 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))
34 sincossq 15813 . . . . . 6 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
3533, 34eqtr3d 2780 . . . . 5 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = 1)
3635oveq1d 7270 . . . 4 (𝐴 ∈ ℂ → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = (1 / ((cos‘𝐴)↑2)))
3736adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = (1 / ((cos‘𝐴)↑2)))
3832, 37eqtrd 2778 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = (1 / ((cos‘𝐴)↑2)))
39 secval 46335 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sec‘𝐴) = (1 / (cos‘𝐴)))
4039oveq1d 7270 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sec‘𝐴)↑2) = ((1 / (cos‘𝐴))↑2))
41 ax-1cn 10860 . . . . . 6 1 ∈ ℂ
42 expdiv 13762 . . . . . 6 ((1 ∈ ℂ ∧ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) ∧ 2 ∈ ℕ0) → ((1 / (cos‘𝐴))↑2) = ((1↑2) / ((cos‘𝐴)↑2)))
4341, 13, 42mp3an13 1450 . . . . 5 (((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((1 / (cos‘𝐴))↑2) = ((1↑2) / ((cos‘𝐴)↑2)))
441, 43sylan 579 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((1 / (cos‘𝐴))↑2) = ((1↑2) / ((cos‘𝐴)↑2)))
45 sq1 13840 . . . . 5 (1↑2) = 1
4645oveq1i 7265 . . . 4 ((1↑2) / ((cos‘𝐴)↑2)) = (1 / ((cos‘𝐴)↑2))
4744, 46eqtrdi 2795 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((1 / (cos‘𝐴))↑2) = (1 / ((cos‘𝐴)↑2)))
4840, 47eqtrd 2778 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sec‘𝐴)↑2) = (1 / ((cos‘𝐴)↑2)))
4938, 48eqtr4d 2781 1 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = ((sec‘𝐴)↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   / cdiv 11562  2c2 11958  0cn0 12163  cexp 13710  sincsin 15701  cosccos 15702  tanctan 15703  seccsec 46329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-tan 15709  df-sec 46332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator