Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onetansqsecsq Structured version   Visualization version   GIF version

Theorem onetansqsecsq 49743
Description: Prove the tangent squared secant squared identity (1 + ((tan‘𝐴)↑2)) = ((sec‘𝐴)↑2)). (Contributed by David A. Wheeler, 25-May-2015.)
Assertion
Ref Expression
onetansqsecsq ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = ((sec‘𝐴)↑2))

Proof of Theorem onetansqsecsq
StepHypRef Expression
1 coscl 16071 . . . . . . . . . 10 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
2 sqeq0 14061 . . . . . . . . . 10 ((cos‘𝐴) ∈ ℂ → (((cos‘𝐴)↑2) = 0 ↔ (cos‘𝐴) = 0))
31, 2syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) = 0 ↔ (cos‘𝐴) = 0))
43necon3bid 2969 . . . . . . . 8 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) ≠ 0 ↔ (cos‘𝐴) ≠ 0))
54biimpar 477 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((cos‘𝐴)↑2) ≠ 0)
61sqcld 14085 . . . . . . . 8 (𝐴 ∈ ℂ → ((cos‘𝐴)↑2) ∈ ℂ)
7 divid 11844 . . . . . . . 8 ((((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → (((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) = 1)
86, 7sylan 580 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → (((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) = 1)
95, 8syldan 591 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) = 1)
109eqcomd 2735 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 1 = (((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)))
11 tanval 16072 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
1211oveq1d 7384 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) = (((sin‘𝐴) / (cos‘𝐴))↑2))
13 2nn0 12435 . . . . . . . . . 10 2 ∈ ℕ0
14 sincl 16070 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
15 expdiv 14054 . . . . . . . . . . 11 (((sin‘𝐴) ∈ ℂ ∧ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) ∧ 2 ∈ ℕ0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
1614, 15syl3an1 1163 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) ∧ 2 ∈ ℕ0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
1713, 16mp3an3 1452 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0)) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
18173impb 1114 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
191, 18syl3an2 1164 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
20193anidm12 1421 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
2112, 20eqtrd 2764 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
2210, 21oveq12d 7387 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
2314sqcld 14085 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((sin‘𝐴)↑2) ∈ ℂ)
24 divdir 11838 . . . . . . . . . . 11 ((((cos‘𝐴)↑2) ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ ∧ (((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0)) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
256, 24syl3an1 1163 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((sin‘𝐴)↑2) ∈ ℂ ∧ (((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0)) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
2623, 25syl3an2 1164 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0)) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
27263anidm12 1421 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0)) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
28273impb 1114 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴)↑2) ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
296, 28syl3an2 1164 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
30293anidm12 1421 . . . . 5 ((𝐴 ∈ ℂ ∧ ((cos‘𝐴)↑2) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
315, 30syldan 591 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = ((((cos‘𝐴)↑2) / ((cos‘𝐴)↑2)) + (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))))
3222, 31eqtr4d 2767 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)))
3323, 6addcomd 11352 . . . . . 6 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)))
34 sincossq 16120 . . . . . 6 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
3533, 34eqtr3d 2766 . . . . 5 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = 1)
3635oveq1d 7384 . . . 4 (𝐴 ∈ ℂ → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = (1 / ((cos‘𝐴)↑2)))
3736adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) / ((cos‘𝐴)↑2)) = (1 / ((cos‘𝐴)↑2)))
3832, 37eqtrd 2764 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = (1 / ((cos‘𝐴)↑2)))
39 secval 49729 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sec‘𝐴) = (1 / (cos‘𝐴)))
4039oveq1d 7384 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sec‘𝐴)↑2) = ((1 / (cos‘𝐴))↑2))
41 ax-1cn 11102 . . . . . 6 1 ∈ ℂ
42 expdiv 14054 . . . . . 6 ((1 ∈ ℂ ∧ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) ∧ 2 ∈ ℕ0) → ((1 / (cos‘𝐴))↑2) = ((1↑2) / ((cos‘𝐴)↑2)))
4341, 13, 42mp3an13 1454 . . . . 5 (((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((1 / (cos‘𝐴))↑2) = ((1↑2) / ((cos‘𝐴)↑2)))
441, 43sylan 580 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((1 / (cos‘𝐴))↑2) = ((1↑2) / ((cos‘𝐴)↑2)))
45 sq1 14136 . . . . 5 (1↑2) = 1
4645oveq1i 7379 . . . 4 ((1↑2) / ((cos‘𝐴)↑2)) = (1 / ((cos‘𝐴)↑2))
4744, 46eqtrdi 2780 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((1 / (cos‘𝐴))↑2) = (1 / ((cos‘𝐴)↑2)))
4840, 47eqtrd 2764 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sec‘𝐴)↑2) = (1 / ((cos‘𝐴)↑2)))
4938, 48eqtr4d 2767 1 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (1 + ((tan‘𝐴)↑2)) = ((sec‘𝐴)↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   / cdiv 11811  2c2 12217  0cn0 12418  cexp 14002  sincsin 16005  cosccos 16006  tanctan 16007  seccsec 49723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-tan 16013  df-sec 49726
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator