MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1lo1 Structured version   Visualization version   GIF version

Theorem o1lo1 15583
Description: A real function is eventually bounded iff it is eventually lower bounded and eventually upper bounded. (Contributed by Mario Carneiro, 25-May-2016.)
Hypothesis
Ref Expression
o1lo1.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
o1lo1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem o1lo1
Dummy variables 𝑚 𝑐 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1dm 15576 . . 3 ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
21a1i 11 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ))
3 lo1dm 15565 . . . 4 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
43adantr 480 . . 3 (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) → dom (𝑥𝐴𝐵) ⊆ ℝ)
54a1i 11 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) → dom (𝑥𝐴𝐵) ⊆ ℝ))
6 o1lo1.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
76ralrimiva 3152 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
8 dmmptg 6273 . . . . 5 (∀𝑥𝐴 𝐵 ∈ ℝ → dom (𝑥𝐴𝐵) = 𝐴)
97, 8syl 17 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
109sseq1d 4040 . . 3 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
11 simpr 484 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → 𝑚 ∈ ℝ)
126adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
1312adantlr 714 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
14 simplr 768 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → 𝑚 ∈ ℝ)
1513, 14absled 15479 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ 𝑚 ↔ (-𝑚𝐵𝐵𝑚)))
16 ancom 460 . . . . . . . . . . . . . . . . 17 ((-𝑚𝐵𝐵𝑚) ↔ (𝐵𝑚 ∧ -𝑚𝐵))
17 lenegcon1 11794 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝑚𝐵 ↔ -𝐵𝑚))
1814, 13, 17syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → (-𝑚𝐵 ↔ -𝐵𝑚))
1918anbi2d 629 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐵𝑚 ∧ -𝑚𝐵) ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
2016, 19bitrid 283 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((-𝑚𝐵𝐵𝑚) ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
2115, 20bitrd 279 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ 𝑚 ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
2221imbi2d 340 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
2322ralbidva 3182 . . . . . . . . . . . . 13 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
2423rexbidv 3185 . . . . . . . . . . . 12 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
2524biimpd 229 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) → ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
26 breq2 5170 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝐵𝑛𝐵𝑚))
2726anbi1d 630 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝐵𝑛 ∧ -𝐵𝑝) ↔ (𝐵𝑚 ∧ -𝐵𝑝)))
2827imbi2d 340 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝))))
2928rexralbidv 3229 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝))))
30 breq2 5170 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑚 → (-𝐵𝑝 ↔ -𝐵𝑚))
3130anbi2d 629 . . . . . . . . . . . . . . 15 (𝑝 = 𝑚 → ((𝐵𝑚 ∧ -𝐵𝑝) ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
3231imbi2d 340 . . . . . . . . . . . . . 14 (𝑝 = 𝑚 → ((𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝)) ↔ (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
3332rexralbidv 3229 . . . . . . . . . . . . 13 (𝑝 = 𝑚 → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝)) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
3429, 33rspc2ev 3648 . . . . . . . . . . . 12 ((𝑚 ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)))
35343anidm12 1419 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)))
3611, 25, 35syl6an 683 . . . . . . . . . 10 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝))))
3736rexlimdva 3161 . . . . . . . . 9 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝))))
38 simplrr 777 . . . . . . . . . . . 12 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑛𝑝) → 𝑝 ∈ ℝ)
39 simplrl 776 . . . . . . . . . . . 12 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ ¬ 𝑛𝑝) → 𝑛 ∈ ℝ)
4038, 39ifclda 4583 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ)
41 max2 13249 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ) → 𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛))
4241ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛))
4312adantlr 714 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
4443renegcld 11717 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
45 simplrr 777 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑝 ∈ ℝ)
46 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
4745, 46ifcld 4594 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ)
48 letr 11384 . . . . . . . . . . . . . . . . . . . 20 ((-𝐵 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ) → ((-𝐵𝑝𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → -𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
4944, 45, 47, 48syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((-𝐵𝑝𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → -𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5042, 49mpan2d 693 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (-𝐵𝑝 → -𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
51 lenegcon1 11794 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ ∧ if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ) → (-𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛) ↔ -if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵))
5243, 47, 51syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (-𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛) ↔ -if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵))
5350, 52sylibd 239 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (-𝐵𝑝 → -if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵))
54 max1 13247 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ) → 𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛))
5554ad2antlr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛))
56 letr 11384 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ) → ((𝐵𝑛𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → 𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5743, 46, 47, 56syl3anc 1371 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑛𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → 𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5855, 57mpan2d 693 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (𝐵𝑛𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5953, 58anim12d 608 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((-𝐵𝑝𝐵𝑛) → (-if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6059ancomsd 465 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑛 ∧ -𝐵𝑝) → (-if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6143, 47absled 15479 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛) ↔ (-if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6260, 61sylibrd 259 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑛 ∧ -𝐵𝑝) → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛)))
6362imim2d 57 . . . . . . . . . . . . 13 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6463ralimdva 3173 . . . . . . . . . . . 12 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6564reximdv 3176 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
66 breq2 5170 . . . . . . . . . . . . . 14 (𝑚 = if(𝑛𝑝, 𝑝, 𝑛) → ((abs‘𝐵) ≤ 𝑚 ↔ (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛)))
6766imbi2d 340 . . . . . . . . . . . . 13 (𝑚 = if(𝑛𝑝, 𝑝, 𝑛) → ((𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6867rexralbidv 3229 . . . . . . . . . . . 12 (𝑚 = if(𝑛𝑝, 𝑝, 𝑛) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6968rspcev 3635 . . . . . . . . . . 11 ((if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))) → ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚))
7040, 65, 69syl6an 683 . . . . . . . . . 10 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚)))
7170rexlimdvva 3219 . . . . . . . . 9 ((𝜑𝐴 ⊆ ℝ) → (∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚)))
7237, 71impbid 212 . . . . . . . 8 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝))))
73 rexanre 15395 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
7473adantl 481 . . . . . . . . 9 ((𝜑𝐴 ⊆ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
75742rexbidv 3228 . . . . . . . 8 ((𝜑𝐴 ⊆ ℝ) → (∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
7672, 75bitrd 279 . . . . . . 7 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
77 reeanv 3235 . . . . . . 7 (∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)) ↔ (∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)))
7876, 77bitrdi 287 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
79 rexcom 3296 . . . . . 6 (∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚))
80 rexcom 3296 . . . . . . 7 (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ↔ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛))
81 rexcom 3296 . . . . . . 7 (∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝) ↔ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))
8280, 81anbi12i 627 . . . . . 6 ((∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)) ↔ (∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)))
8378, 79, 823bitr4g 314 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
84 simpr 484 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → 𝐴 ⊆ ℝ)
8512recnd 11318 . . . . . 6 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
8684, 85elo1mpt 15580 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚)))
8784, 12ello1mpt 15567 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛)))
8812renegcld 11717 . . . . . . 7 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
8984, 88ello1mpt 15567 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)))
9087, 89anbi12d 631 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) ↔ (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
9183, 86, 903bitr4d 311 . . . 4 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
9291ex 412 . . 3 (𝜑 → (𝐴 ⊆ ℝ → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)))))
9310, 92sylbid 240 . 2 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)))))
942, 5, 93pm5.21ndd 379 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976  ifcif 4548   class class class wbr 5166  cmpt 5249  dom cdm 5700  cfv 6573  cr 11183  cle 11325  -cneg 11521  abscabs 15283  𝑂(1)co1 15532  ≤𝑂(1)clo1 15533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-o1 15536  df-lo1 15537
This theorem is referenced by:  o1lo12  15584  o1lo1d  15585  icco1  15586  lo1sub  15677
  Copyright terms: Public domain W3C validator