MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1lo1 Structured version   Visualization version   GIF version

Theorem o1lo1 14955
Description: A real function is eventually bounded iff it is eventually lower bounded and eventually upper bounded. (Contributed by Mario Carneiro, 25-May-2016.)
Hypothesis
Ref Expression
o1lo1.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
o1lo1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem o1lo1
Dummy variables 𝑚 𝑐 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1dm 14948 . . 3 ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
21a1i 11 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ))
3 lo1dm 14937 . . . 4 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
43adantr 484 . . 3 (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) → dom (𝑥𝐴𝐵) ⊆ ℝ)
54a1i 11 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) → dom (𝑥𝐴𝐵) ⊆ ℝ))
6 o1lo1.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
76ralrimiva 3113 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
8 dmmptg 6076 . . . . 5 (∀𝑥𝐴 𝐵 ∈ ℝ → dom (𝑥𝐴𝐵) = 𝐴)
97, 8syl 17 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
109sseq1d 3925 . . 3 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
11 simpr 488 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → 𝑚 ∈ ℝ)
126adantlr 714 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
1312adantlr 714 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
14 simplr 768 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → 𝑚 ∈ ℝ)
1513, 14absled 14851 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ 𝑚 ↔ (-𝑚𝐵𝐵𝑚)))
16 ancom 464 . . . . . . . . . . . . . . . . 17 ((-𝑚𝐵𝐵𝑚) ↔ (𝐵𝑚 ∧ -𝑚𝐵))
17 lenegcon1 11195 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝑚𝐵 ↔ -𝐵𝑚))
1814, 13, 17syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → (-𝑚𝐵 ↔ -𝐵𝑚))
1918anbi2d 631 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐵𝑚 ∧ -𝑚𝐵) ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
2016, 19syl5bb 286 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((-𝑚𝐵𝐵𝑚) ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
2115, 20bitrd 282 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ 𝑚 ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
2221imbi2d 344 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
2322ralbidva 3125 . . . . . . . . . . . . 13 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
2423rexbidv 3221 . . . . . . . . . . . 12 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
2524biimpd 232 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) → ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
26 breq2 5040 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝐵𝑛𝐵𝑚))
2726anbi1d 632 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝐵𝑛 ∧ -𝐵𝑝) ↔ (𝐵𝑚 ∧ -𝐵𝑝)))
2827imbi2d 344 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝))))
2928rexralbidv 3225 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝))))
30 breq2 5040 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑚 → (-𝐵𝑝 ↔ -𝐵𝑚))
3130anbi2d 631 . . . . . . . . . . . . . . 15 (𝑝 = 𝑚 → ((𝐵𝑚 ∧ -𝐵𝑝) ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
3231imbi2d 344 . . . . . . . . . . . . . 14 (𝑝 = 𝑚 → ((𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝)) ↔ (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
3332rexralbidv 3225 . . . . . . . . . . . . 13 (𝑝 = 𝑚 → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝)) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
3429, 33rspc2ev 3555 . . . . . . . . . . . 12 ((𝑚 ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)))
35343anidm12 1416 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)))
3611, 25, 35syl6an 683 . . . . . . . . . 10 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝))))
3736rexlimdva 3208 . . . . . . . . 9 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝))))
38 simplrr 777 . . . . . . . . . . . 12 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑛𝑝) → 𝑝 ∈ ℝ)
39 simplrl 776 . . . . . . . . . . . 12 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ ¬ 𝑛𝑝) → 𝑛 ∈ ℝ)
4038, 39ifclda 4458 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ)
41 max2 12634 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ) → 𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛))
4241ad2antlr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛))
4312adantlr 714 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
4443renegcld 11118 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
45 simplrr 777 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑝 ∈ ℝ)
46 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
4745, 46ifcld 4469 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ)
48 letr 10785 . . . . . . . . . . . . . . . . . . . 20 ((-𝐵 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ) → ((-𝐵𝑝𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → -𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
4944, 45, 47, 48syl3anc 1368 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((-𝐵𝑝𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → -𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5042, 49mpan2d 693 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (-𝐵𝑝 → -𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
51 lenegcon1 11195 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ ∧ if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ) → (-𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛) ↔ -if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵))
5243, 47, 51syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (-𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛) ↔ -if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵))
5350, 52sylibd 242 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (-𝐵𝑝 → -if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵))
54 max1 12632 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ) → 𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛))
5554ad2antlr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛))
56 letr 10785 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ) → ((𝐵𝑛𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → 𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5743, 46, 47, 56syl3anc 1368 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑛𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → 𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5855, 57mpan2d 693 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (𝐵𝑛𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5953, 58anim12d 611 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((-𝐵𝑝𝐵𝑛) → (-if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6059ancomsd 469 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑛 ∧ -𝐵𝑝) → (-if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6143, 47absled 14851 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛) ↔ (-if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6260, 61sylibrd 262 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑛 ∧ -𝐵𝑝) → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛)))
6362imim2d 57 . . . . . . . . . . . . 13 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6463ralimdva 3108 . . . . . . . . . . . 12 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6564reximdv 3197 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
66 breq2 5040 . . . . . . . . . . . . . 14 (𝑚 = if(𝑛𝑝, 𝑝, 𝑛) → ((abs‘𝐵) ≤ 𝑚 ↔ (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛)))
6766imbi2d 344 . . . . . . . . . . . . 13 (𝑚 = if(𝑛𝑝, 𝑝, 𝑛) → ((𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6867rexralbidv 3225 . . . . . . . . . . . 12 (𝑚 = if(𝑛𝑝, 𝑝, 𝑛) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6968rspcev 3543 . . . . . . . . . . 11 ((if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))) → ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚))
7040, 65, 69syl6an 683 . . . . . . . . . 10 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚)))
7170rexlimdvva 3218 . . . . . . . . 9 ((𝜑𝐴 ⊆ ℝ) → (∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚)))
7237, 71impbid 215 . . . . . . . 8 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝))))
73 rexanre 14767 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
7473adantl 485 . . . . . . . . 9 ((𝜑𝐴 ⊆ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
75742rexbidv 3224 . . . . . . . 8 ((𝜑𝐴 ⊆ ℝ) → (∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
7672, 75bitrd 282 . . . . . . 7 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
77 reeanv 3285 . . . . . . 7 (∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)) ↔ (∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)))
7876, 77bitrdi 290 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
79 rexcom 3273 . . . . . 6 (∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚))
80 rexcom 3273 . . . . . . 7 (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ↔ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛))
81 rexcom 3273 . . . . . . 7 (∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝) ↔ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))
8280, 81anbi12i 629 . . . . . 6 ((∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)) ↔ (∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)))
8378, 79, 823bitr4g 317 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
84 simpr 488 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → 𝐴 ⊆ ℝ)
8512recnd 10720 . . . . . 6 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
8684, 85elo1mpt 14952 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚)))
8784, 12ello1mpt 14939 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛)))
8812renegcld 11118 . . . . . . 7 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
8984, 88ello1mpt 14939 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)))
9087, 89anbi12d 633 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) ↔ (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
9183, 86, 903bitr4d 314 . . . 4 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
9291ex 416 . . 3 (𝜑 → (𝐴 ⊆ ℝ → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)))))
9310, 92sylbid 243 . 2 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)))))
942, 5, 93pm5.21ndd 384 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070  wrex 3071  wss 3860  ifcif 4423   class class class wbr 5036  cmpt 5116  dom cdm 5528  cfv 6340  cr 10587  cle 10727  -cneg 10922  abscabs 14654  𝑂(1)co1 14904  ≤𝑂(1)clo1 14905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-pm 8425  df-en 8541  df-dom 8542  df-sdom 8543  df-sup 8952  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-n0 11948  df-z 12034  df-uz 12296  df-rp 12444  df-ico 12798  df-seq 13432  df-exp 13493  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-o1 14908  df-lo1 14909
This theorem is referenced by:  o1lo12  14956  o1lo1d  14957  icco1  14958  lo1sub  15048
  Copyright terms: Public domain W3C validator