MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1lo1 Structured version   Visualization version   GIF version

Theorem o1lo1 15477
Description: A real function is eventually bounded iff it is eventually lower bounded and eventually upper bounded. (Contributed by Mario Carneiro, 25-May-2016.)
Hypothesis
Ref Expression
o1lo1.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
o1lo1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem o1lo1
Dummy variables 𝑚 𝑐 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 o1dm 15470 . . 3 ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
21a1i 11 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ))
3 lo1dm 15459 . . . 4 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → dom (𝑥𝐴𝐵) ⊆ ℝ)
43adantr 481 . . 3 (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) → dom (𝑥𝐴𝐵) ⊆ ℝ)
54a1i 11 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) → dom (𝑥𝐴𝐵) ⊆ ℝ))
6 o1lo1.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
76ralrimiva 3146 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
8 dmmptg 6238 . . . . 5 (∀𝑥𝐴 𝐵 ∈ ℝ → dom (𝑥𝐴𝐵) = 𝐴)
97, 8syl 17 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
109sseq1d 4012 . . 3 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
11 simpr 485 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → 𝑚 ∈ ℝ)
126adantlr 713 . . . . . . . . . . . . . . . . . 18 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
1312adantlr 713 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
14 simplr 767 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → 𝑚 ∈ ℝ)
1513, 14absled 15373 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ 𝑚 ↔ (-𝑚𝐵𝐵𝑚)))
16 ancom 461 . . . . . . . . . . . . . . . . 17 ((-𝑚𝐵𝐵𝑚) ↔ (𝐵𝑚 ∧ -𝑚𝐵))
17 lenegcon1 11714 . . . . . . . . . . . . . . . . . . 19 ((𝑚 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝑚𝐵 ↔ -𝐵𝑚))
1814, 13, 17syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → (-𝑚𝐵 ↔ -𝐵𝑚))
1918anbi2d 629 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((𝐵𝑚 ∧ -𝑚𝐵) ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
2016, 19bitrid 282 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((-𝑚𝐵𝐵𝑚) ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
2115, 20bitrd 278 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ 𝑚 ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
2221imbi2d 340 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
2322ralbidva 3175 . . . . . . . . . . . . 13 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
2423rexbidv 3178 . . . . . . . . . . . 12 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
2524biimpd 228 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) → ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
26 breq2 5151 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝐵𝑛𝐵𝑚))
2726anbi1d 630 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝐵𝑛 ∧ -𝐵𝑝) ↔ (𝐵𝑚 ∧ -𝐵𝑝)))
2827imbi2d 340 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝))))
2928rexralbidv 3220 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝))))
30 breq2 5151 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑚 → (-𝐵𝑝 ↔ -𝐵𝑚))
3130anbi2d 629 . . . . . . . . . . . . . . 15 (𝑝 = 𝑚 → ((𝐵𝑚 ∧ -𝐵𝑝) ↔ (𝐵𝑚 ∧ -𝐵𝑚)))
3231imbi2d 340 . . . . . . . . . . . . . 14 (𝑝 = 𝑚 → ((𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝)) ↔ (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
3332rexralbidv 3220 . . . . . . . . . . . . 13 (𝑝 = 𝑚 → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑝)) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))))
3429, 33rspc2ev 3623 . . . . . . . . . . . 12 ((𝑚 ∈ ℝ ∧ 𝑚 ∈ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)))
35343anidm12 1419 . . . . . . . . . . 11 ((𝑚 ∈ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑚 ∧ -𝐵𝑚))) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)))
3611, 25, 35syl6an 682 . . . . . . . . . 10 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑚 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝))))
3736rexlimdva 3155 . . . . . . . . 9 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) → ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝))))
38 simplrr 776 . . . . . . . . . . . 12 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑛𝑝) → 𝑝 ∈ ℝ)
39 simplrl 775 . . . . . . . . . . . 12 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ ¬ 𝑛𝑝) → 𝑛 ∈ ℝ)
4038, 39ifclda 4562 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ)
41 max2 13162 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ) → 𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛))
4241ad2antlr 725 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛))
4312adantlr 713 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
4443renegcld 11637 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
45 simplrr 776 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑝 ∈ ℝ)
46 simplrl 775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ∈ ℝ)
4745, 46ifcld 4573 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ)
48 letr 11304 . . . . . . . . . . . . . . . . . . . 20 ((-𝐵 ∈ ℝ ∧ 𝑝 ∈ ℝ ∧ if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ) → ((-𝐵𝑝𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → -𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
4944, 45, 47, 48syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((-𝐵𝑝𝑝 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → -𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5042, 49mpan2d 692 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (-𝐵𝑝 → -𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
51 lenegcon1 11714 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ ∧ if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ) → (-𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛) ↔ -if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵))
5243, 47, 51syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (-𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛) ↔ -if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵))
5350, 52sylibd 238 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (-𝐵𝑝 → -if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵))
54 max1 13160 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ) → 𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛))
5554ad2antlr 725 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → 𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛))
56 letr 11304 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ) → ((𝐵𝑛𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → 𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5743, 46, 47, 56syl3anc 1371 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑛𝑛 ≤ if(𝑛𝑝, 𝑝, 𝑛)) → 𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5855, 57mpan2d 692 . . . . . . . . . . . . . . . . 17 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → (𝐵𝑛𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛)))
5953, 58anim12d 609 . . . . . . . . . . . . . . . 16 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((-𝐵𝑝𝐵𝑛) → (-if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6059ancomsd 466 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑛 ∧ -𝐵𝑝) → (-if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6143, 47absled 15373 . . . . . . . . . . . . . . 15 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛) ↔ (-if(𝑛𝑝, 𝑝, 𝑛) ≤ 𝐵𝐵 ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6260, 61sylibrd 258 . . . . . . . . . . . . . 14 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝐵𝑛 ∧ -𝐵𝑝) → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛)))
6362imim2d 57 . . . . . . . . . . . . 13 ((((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) ∧ 𝑥𝐴) → ((𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6463ralimdva 3167 . . . . . . . . . . . 12 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → (∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6564reximdv 3170 . . . . . . . . . . 11 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
66 breq2 5151 . . . . . . . . . . . . . 14 (𝑚 = if(𝑛𝑝, 𝑝, 𝑛) → ((abs‘𝐵) ≤ 𝑚 ↔ (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛)))
6766imbi2d 340 . . . . . . . . . . . . 13 (𝑚 = if(𝑛𝑝, 𝑝, 𝑛) → ((𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6867rexralbidv 3220 . . . . . . . . . . . 12 (𝑚 = if(𝑛𝑝, 𝑝, 𝑛) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))))
6968rspcev 3612 . . . . . . . . . . 11 ((if(𝑛𝑝, 𝑝, 𝑛) ∈ ℝ ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ if(𝑛𝑝, 𝑝, 𝑛))) → ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚))
7040, 65, 69syl6an 682 . . . . . . . . . 10 (((𝜑𝐴 ⊆ ℝ) ∧ (𝑛 ∈ ℝ ∧ 𝑝 ∈ ℝ)) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚)))
7170rexlimdvva 3211 . . . . . . . . 9 ((𝜑𝐴 ⊆ ℝ) → (∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) → ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚)))
7237, 71impbid 211 . . . . . . . 8 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝))))
73 rexanre 15289 . . . . . . . . . 10 (𝐴 ⊆ ℝ → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
7473adantl 482 . . . . . . . . 9 ((𝜑𝐴 ⊆ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
75742rexbidv 3219 . . . . . . . 8 ((𝜑𝐴 ⊆ ℝ) → (∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (𝐵𝑛 ∧ -𝐵𝑝)) ↔ ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
7672, 75bitrd 278 . . . . . . 7 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
77 reeanv 3226 . . . . . . 7 (∃𝑛 ∈ ℝ ∃𝑝 ∈ ℝ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)) ↔ (∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)))
7876, 77bitrdi 286 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → (∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
79 rexcom 3287 . . . . . 6 (∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ ∃𝑚 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚))
80 rexcom 3287 . . . . . . 7 (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ↔ ∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛))
81 rexcom 3287 . . . . . . 7 (∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝) ↔ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))
8280, 81anbi12i 627 . . . . . 6 ((∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)) ↔ (∃𝑛 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑝 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)))
8378, 79, 823bitr4g 313 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚) ↔ (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
84 simpr 485 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → 𝐴 ⊆ ℝ)
8512recnd 11238 . . . . . 6 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
8684, 85elo1mpt 15474 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑚)))
8784, 12ello1mpt 15461 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛)))
8812renegcld 11637 . . . . . . 7 (((𝜑𝐴 ⊆ ℝ) ∧ 𝑥𝐴) → -𝐵 ∈ ℝ)
8984, 88ello1mpt 15461 . . . . . 6 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝)))
9087, 89anbi12d 631 . . . . 5 ((𝜑𝐴 ⊆ ℝ) → (((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)) ↔ (∃𝑐 ∈ ℝ ∃𝑛 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥𝐵𝑛) ∧ ∃𝑐 ∈ ℝ ∃𝑝 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → -𝐵𝑝))))
9183, 86, 903bitr4d 310 . . . 4 ((𝜑𝐴 ⊆ ℝ) → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
9291ex 413 . . 3 (𝜑 → (𝐴 ⊆ ℝ → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)))))
9310, 92sylbid 239 . 2 (𝜑 → (dom (𝑥𝐴𝐵) ⊆ ℝ → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1)))))
942, 5, 93pm5.21ndd 380 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  wrex 3070  wss 3947  ifcif 4527   class class class wbr 5147  cmpt 5230  dom cdm 5675  cfv 6540  cr 11105  cle 11245  -cneg 11441  abscabs 15177  𝑂(1)co1 15426  ≤𝑂(1)clo1 15427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-o1 15430  df-lo1 15431
This theorem is referenced by:  o1lo12  15478  o1lo1d  15479  icco1  15480  lo1sub  15571
  Copyright terms: Public domain W3C validator