Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tanneg | Structured version Visualization version GIF version |
Description: The tangent of a negative is the negative of the tangent. (Contributed by David A. Wheeler, 23-Mar-2014.) |
Ref | Expression |
---|---|
tanneg | ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = -(tan‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coscl 15845 | . . . 4 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
2 | sincl 15844 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
3 | divneg 11676 | . . . . 5 ⊢ (((sin‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → -((sin‘𝐴) / (cos‘𝐴)) = (-(sin‘𝐴) / (cos‘𝐴))) | |
4 | 2, 3 | syl3an1 1162 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → -((sin‘𝐴) / (cos‘𝐴)) = (-(sin‘𝐴) / (cos‘𝐴))) |
5 | 1, 4 | syl3an2 1163 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → -((sin‘𝐴) / (cos‘𝐴)) = (-(sin‘𝐴) / (cos‘𝐴))) |
6 | 5 | 3anidm12 1418 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → -((sin‘𝐴) / (cos‘𝐴)) = (-(sin‘𝐴) / (cos‘𝐴))) |
7 | tanval 15846 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) | |
8 | 7 | negeqd 11224 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → -(tan‘𝐴) = -((sin‘𝐴) / (cos‘𝐴))) |
9 | negcl 11230 | . . . 4 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
10 | cosneg 15865 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) | |
11 | 10 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘-𝐴) = (cos‘𝐴)) |
12 | simpr 485 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) ≠ 0) | |
13 | 11, 12 | eqnetrd 3012 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘-𝐴) ≠ 0) |
14 | tanval 15846 | . . . 4 ⊢ ((-𝐴 ∈ ℂ ∧ (cos‘-𝐴) ≠ 0) → (tan‘-𝐴) = ((sin‘-𝐴) / (cos‘-𝐴))) | |
15 | 9, 13, 14 | syl2an2r 682 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = ((sin‘-𝐴) / (cos‘-𝐴))) |
16 | sinneg 15864 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) | |
17 | 16, 10 | oveq12d 7302 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((sin‘-𝐴) / (cos‘-𝐴)) = (-(sin‘𝐴) / (cos‘𝐴))) |
18 | 17 | adantr 481 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sin‘-𝐴) / (cos‘-𝐴)) = (-(sin‘𝐴) / (cos‘𝐴))) |
19 | 15, 18 | eqtrd 2779 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = (-(sin‘𝐴) / (cos‘𝐴))) |
20 | 6, 8, 19 | 3eqtr4rd 2790 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = -(tan‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ≠ wne 2944 ‘cfv 6437 (class class class)co 7284 ℂcc 10878 0cc0 10880 -cneg 11215 / cdiv 11641 sincsin 15782 cosccos 15783 tanctan 15784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-inf2 9408 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 ax-pre-sup 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-isom 6446 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-er 8507 df-pm 8627 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-sup 9210 df-inf 9211 df-oi 9278 df-card 9706 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-nn 11983 df-2 12045 df-3 12046 df-n0 12243 df-z 12329 df-uz 12592 df-rp 12740 df-ico 13094 df-fz 13249 df-fzo 13392 df-fl 13521 df-seq 13731 df-exp 13792 df-fac 13997 df-hash 14054 df-shft 14787 df-cj 14819 df-re 14820 df-im 14821 df-sqrt 14955 df-abs 14956 df-limsup 15189 df-clim 15206 df-rlim 15207 df-sum 15407 df-ef 15786 df-sin 15788 df-cos 15789 df-tan 15790 |
This theorem is referenced by: tanhbnd 15879 tanabsge 25672 tanord 25703 atantan 26082 |
Copyright terms: Public domain | W3C validator |