| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tanneg | Structured version Visualization version GIF version | ||
| Description: The tangent of a negative is the negative of the tangent. (Contributed by David A. Wheeler, 23-Mar-2014.) |
| Ref | Expression |
|---|---|
| tanneg | ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = -(tan‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coscl 16036 | . . . 4 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
| 2 | sincl 16035 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
| 3 | divneg 11816 | . . . . 5 ⊢ (((sin‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → -((sin‘𝐴) / (cos‘𝐴)) = (-(sin‘𝐴) / (cos‘𝐴))) | |
| 4 | 2, 3 | syl3an1 1163 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → -((sin‘𝐴) / (cos‘𝐴)) = (-(sin‘𝐴) / (cos‘𝐴))) |
| 5 | 1, 4 | syl3an2 1164 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → -((sin‘𝐴) / (cos‘𝐴)) = (-(sin‘𝐴) / (cos‘𝐴))) |
| 6 | 5 | 3anidm12 1421 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → -((sin‘𝐴) / (cos‘𝐴)) = (-(sin‘𝐴) / (cos‘𝐴))) |
| 7 | tanval 16037 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) | |
| 8 | 7 | negeqd 11357 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → -(tan‘𝐴) = -((sin‘𝐴) / (cos‘𝐴))) |
| 9 | negcl 11363 | . . . 4 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
| 10 | cosneg 16056 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘-𝐴) = (cos‘𝐴)) |
| 12 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) ≠ 0) | |
| 13 | 11, 12 | eqnetrd 2992 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘-𝐴) ≠ 0) |
| 14 | tanval 16037 | . . . 4 ⊢ ((-𝐴 ∈ ℂ ∧ (cos‘-𝐴) ≠ 0) → (tan‘-𝐴) = ((sin‘-𝐴) / (cos‘-𝐴))) | |
| 15 | 9, 13, 14 | syl2an2r 685 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = ((sin‘-𝐴) / (cos‘-𝐴))) |
| 16 | sinneg 16055 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) | |
| 17 | 16, 10 | oveq12d 7367 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((sin‘-𝐴) / (cos‘-𝐴)) = (-(sin‘𝐴) / (cos‘𝐴))) |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sin‘-𝐴) / (cos‘-𝐴)) = (-(sin‘𝐴) / (cos‘𝐴))) |
| 19 | 15, 18 | eqtrd 2764 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = (-(sin‘𝐴) / (cos‘𝐴))) |
| 20 | 6, 8, 19 | 3eqtr4rd 2775 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘-𝐴) = -(tan‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 -cneg 11348 / cdiv 11777 sincsin 15970 cosccos 15971 tanctan 15972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-ico 13254 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-fac 14181 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 df-ef 15974 df-sin 15976 df-cos 15977 df-tan 15978 |
| This theorem is referenced by: tanhbnd 16070 tanabsge 26413 tanord 26445 atantan 26831 |
| Copyright terms: Public domain | W3C validator |