Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divid | Structured version Visualization version GIF version |
Description: A number divided by itself is one. (Contributed by NM, 1-Aug-2004.) |
Ref | Expression |
---|---|
divid | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divrec 11658 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = (𝐴 · (1 / 𝐴))) | |
2 | 1 | 3anidm12 1418 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = (𝐴 · (1 / 𝐴))) |
3 | recid 11656 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 · (1 / 𝐴)) = 1) | |
4 | 2, 3 | eqtrd 2779 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ≠ wne 2944 (class class class)co 7284 ℂcc 10878 0cc0 10880 1c1 10881 · cmul 10885 / cdiv 11641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 |
This theorem is referenced by: subdivcomb2 11680 divdivdiv 11685 divcan5 11686 div2neg 11707 dividi 11717 dividd 11758 qreccl 12718 modlt 13609 crreczi 13952 divgcdcoprm0 16379 infpnlem2 16621 aalioulem2 25502 logexprlim 26382 chtppilimlem1 26630 chpchtlim 26636 rplogsumlem2 26642 rpvmasumlem 26644 pntlemc 26752 pntlemr 26759 xdivid 31211 nndivlub 34656 stoweidlem42 43590 2zrngnmlid 45518 2zrngnmrid 45519 divsub1dir 45869 onetansqsecsq 46474 |
Copyright terms: Public domain | W3C validator |