MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divid Structured version   Visualization version   GIF version

Theorem divid 11065
Description: A number divided by itself is one. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
divid ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1)

Proof of Theorem divid
StepHypRef Expression
1 divrec 11052 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = (𝐴 · (1 / 𝐴)))
213anidm12 1491 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = (𝐴 · (1 / 𝐴)))
3 recid 11050 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 · (1 / 𝐴)) = 1)
42, 3eqtrd 2814 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wne 2969  (class class class)co 6924  cc 10272  0cc0 10274  1c1 10275   · cmul 10279   / cdiv 11035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-po 5276  df-so 5277  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11036
This theorem is referenced by:  subdivcomb2  11074  divdivdiv  11079  divcan5  11080  div2neg  11101  dividi  11111  dividd  11152  qreccl  12121  modlt  13003  crreczi  13313  divgcdcoprm0  15794  infpnlem2  16030  aalioulem2  24536  logexprlim  25413  chtppilimlem1  25631  chpchtlim  25637  rplogsumlem2  25643  rpvmasumlem  25645  pntlemc  25753  pntlemr  25760  xdivid  30212  nndivlub  33048  stoweidlem42  41200  2zrngnmlid  42978  2zrngnmrid  42979  divsub1dir  43336  onetansqsecsq  43624
  Copyright terms: Public domain W3C validator