MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablonncan Structured version   Visualization version   GIF version

Theorem ablonncan 30557
Description: Cancellation law for group division. (nncan 11401 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1 𝑋 = ran 𝐺
abldiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
ablonncan ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = 𝐵)

Proof of Theorem ablonncan
StepHypRef Expression
1 id 22 . . . . 5 ((𝐴𝑋𝐴𝑋𝐵𝑋) → (𝐴𝑋𝐴𝑋𝐵𝑋))
213anidm12 1421 . . . 4 ((𝐴𝑋𝐵𝑋) → (𝐴𝑋𝐴𝑋𝐵𝑋))
3 abldiv.1 . . . . 5 𝑋 = ran 𝐺
4 abldiv.3 . . . . 5 𝐷 = ( /𝑔𝐺)
53, 4ablodivdiv 30554 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵))
62, 5sylan2 593 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵))
763impb 1114 . 2 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵))
8 ablogrpo 30548 . . . . 5 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
9 eqid 2733 . . . . . 6 (GId‘𝐺) = (GId‘𝐺)
103, 4, 9grpodivid 30543 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺))
118, 10sylan 580 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺))
12113adant3 1132 . . 3 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺))
1312oveq1d 7370 . 2 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐴)𝐺𝐵) = ((GId‘𝐺)𝐺𝐵))
143, 9grpolid 30517 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵)
158, 14sylan 580 . . 3 ((𝐺 ∈ AbelOp ∧ 𝐵𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵)
16153adant2 1131 . 2 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵)
177, 13, 163eqtrd 2772 1 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  ran crn 5622  cfv 6489  (class class class)co 7355  GrpOpcgr 30490  GIdcgi 30491   /𝑔 cgs 30493  AbelOpcablo 30545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-grpo 30494  df-gid 30495  df-ginv 30496  df-gdiv 30497  df-ablo 30546
This theorem is referenced by:  ablonnncan1  30558
  Copyright terms: Public domain W3C validator