|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ablonncan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for group division. (nncan 11539 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| abldiv.1 | ⊢ 𝑋 = ran 𝐺 | 
| abldiv.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) | 
| Ref | Expression | 
|---|---|
| ablonncan | ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 22 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) | |
| 2 | 1 | 3anidm12 1420 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) | 
| 3 | abldiv.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 4 | abldiv.3 | . . . . 5 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
| 5 | 3, 4 | ablodivdiv 30573 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵)) | 
| 6 | 2, 5 | sylan2 593 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵)) | 
| 7 | 6 | 3impb 1114 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵)) | 
| 8 | ablogrpo 30567 | . . . . 5 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
| 9 | eqid 2736 | . . . . . 6 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
| 10 | 3, 4, 9 | grpodivid 30562 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺)) | 
| 11 | 8, 10 | sylan 580 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺)) | 
| 12 | 11 | 3adant3 1132 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺)) | 
| 13 | 12 | oveq1d 7447 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐴)𝐺𝐵) = ((GId‘𝐺)𝐺𝐵)) | 
| 14 | 3, 9 | grpolid 30536 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵) | 
| 15 | 8, 14 | sylan 580 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐵 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵) | 
| 16 | 15 | 3adant2 1131 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵) | 
| 17 | 7, 13, 16 | 3eqtrd 2780 | 1 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ran crn 5685 ‘cfv 6560 (class class class)co 7432 GrpOpcgr 30509 GIdcgi 30510 /𝑔 cgs 30512 AbelOpcablo 30564 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-grpo 30513 df-gid 30514 df-ginv 30515 df-gdiv 30516 df-ablo 30565 | 
| This theorem is referenced by: ablonnncan1 30577 | 
| Copyright terms: Public domain | W3C validator |