![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablonncan | Structured version Visualization version GIF version |
Description: Cancellation law for group division. (nncan 11529 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
abldiv.1 | ⊢ 𝑋 = ran 𝐺 |
abldiv.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
ablonncan | ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) | |
2 | 1 | 3anidm12 1416 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
3 | abldiv.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
4 | abldiv.3 | . . . . 5 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
5 | 3, 4 | ablodivdiv 30391 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵)) |
6 | 2, 5 | sylan2 591 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵)) |
7 | 6 | 3impb 1112 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵)) |
8 | ablogrpo 30385 | . . . . 5 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
9 | eqid 2728 | . . . . . 6 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
10 | 3, 4, 9 | grpodivid 30380 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺)) |
11 | 8, 10 | sylan 578 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺)) |
12 | 11 | 3adant3 1129 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺)) |
13 | 12 | oveq1d 7441 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐴)𝐺𝐵) = ((GId‘𝐺)𝐺𝐵)) |
14 | 3, 9 | grpolid 30354 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵) |
15 | 8, 14 | sylan 578 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐵 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵) |
16 | 15 | 3adant2 1128 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵) |
17 | 7, 13, 16 | 3eqtrd 2772 | 1 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ran crn 5683 ‘cfv 6553 (class class class)co 7426 GrpOpcgr 30327 GIdcgi 30328 /𝑔 cgs 30330 AbelOpcablo 30382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 8001 df-2nd 8002 df-grpo 30331 df-gid 30332 df-ginv 30333 df-gdiv 30334 df-ablo 30383 |
This theorem is referenced by: ablonnncan1 30395 |
Copyright terms: Public domain | W3C validator |