![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablonncan | Structured version Visualization version GIF version |
Description: Cancellation law for group division. (nncan 11493 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
abldiv.1 | ⊢ 𝑋 = ran 𝐺 |
abldiv.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
ablonncan | ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) | |
2 | 1 | 3anidm12 1416 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
3 | abldiv.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
4 | abldiv.3 | . . . . 5 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
5 | 3, 4 | ablodivdiv 30315 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵)) |
6 | 2, 5 | sylan2 592 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵)) |
7 | 6 | 3impb 1112 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵)) |
8 | ablogrpo 30309 | . . . . 5 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
9 | eqid 2726 | . . . . . 6 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
10 | 3, 4, 9 | grpodivid 30304 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺)) |
11 | 8, 10 | sylan 579 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺)) |
12 | 11 | 3adant3 1129 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺)) |
13 | 12 | oveq1d 7420 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐴)𝐺𝐵) = ((GId‘𝐺)𝐺𝐵)) |
14 | 3, 9 | grpolid 30278 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵) |
15 | 8, 14 | sylan 579 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐵 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵) |
16 | 15 | 3adant2 1128 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵) |
17 | 7, 13, 16 | 3eqtrd 2770 | 1 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ran crn 5670 ‘cfv 6537 (class class class)co 7405 GrpOpcgr 30251 GIdcgi 30252 /𝑔 cgs 30254 AbelOpcablo 30306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7974 df-2nd 7975 df-grpo 30255 df-gid 30256 df-ginv 30257 df-gdiv 30258 df-ablo 30307 |
This theorem is referenced by: ablonnncan1 30319 |
Copyright terms: Public domain | W3C validator |