MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablonncan Structured version   Visualization version   GIF version

Theorem ablonncan 30353
Description: Cancellation law for group division. (nncan 11511 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1 𝑋 = ran 𝐺
abldiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
ablonncan ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = 𝐵)

Proof of Theorem ablonncan
StepHypRef Expression
1 id 22 . . . . 5 ((𝐴𝑋𝐴𝑋𝐵𝑋) → (𝐴𝑋𝐴𝑋𝐵𝑋))
213anidm12 1417 . . . 4 ((𝐴𝑋𝐵𝑋) → (𝐴𝑋𝐴𝑋𝐵𝑋))
3 abldiv.1 . . . . 5 𝑋 = ran 𝐺
4 abldiv.3 . . . . 5 𝐷 = ( /𝑔𝐺)
53, 4ablodivdiv 30350 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵))
62, 5sylan2 592 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵))
763impb 1113 . 2 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵))
8 ablogrpo 30344 . . . . 5 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
9 eqid 2727 . . . . . 6 (GId‘𝐺) = (GId‘𝐺)
103, 4, 9grpodivid 30339 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺))
118, 10sylan 579 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺))
12113adant3 1130 . . 3 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺))
1312oveq1d 7429 . 2 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐴)𝐺𝐵) = ((GId‘𝐺)𝐺𝐵))
143, 9grpolid 30313 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵)
158, 14sylan 579 . . 3 ((𝐺 ∈ AbelOp ∧ 𝐵𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵)
16153adant2 1129 . 2 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵)
177, 13, 163eqtrd 2771 1 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  ran crn 5673  cfv 6542  (class class class)co 7414  GrpOpcgr 30286  GIdcgi 30287   /𝑔 cgs 30289  AbelOpcablo 30341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-grpo 30290  df-gid 30291  df-ginv 30292  df-gdiv 30293  df-ablo 30342
This theorem is referenced by:  ablonnncan1  30354
  Copyright terms: Public domain W3C validator