![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablonncan | Structured version Visualization version GIF version |
Description: Cancellation law for group division. (nncan 11489 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
abldiv.1 | ⊢ 𝑋 = ran 𝐺 |
abldiv.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
ablonncan | ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) | |
2 | 1 | 3anidm12 1420 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) |
3 | abldiv.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
4 | abldiv.3 | . . . . 5 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
5 | 3, 4 | ablodivdiv 29806 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵)) |
6 | 2, 5 | sylan2 594 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵)) |
7 | 6 | 3impb 1116 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵)) |
8 | ablogrpo 29800 | . . . . 5 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
9 | eqid 2733 | . . . . . 6 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
10 | 3, 4, 9 | grpodivid 29795 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺)) |
11 | 8, 10 | sylan 581 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺)) |
12 | 11 | 3adant3 1133 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺)) |
13 | 12 | oveq1d 7424 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐴)𝐺𝐵) = ((GId‘𝐺)𝐺𝐵)) |
14 | 3, 9 | grpolid 29769 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵) |
15 | 8, 14 | sylan 581 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐵 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵) |
16 | 15 | 3adant2 1132 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵) |
17 | 7, 13, 16 | 3eqtrd 2777 | 1 ⊢ ((𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ran crn 5678 ‘cfv 6544 (class class class)co 7409 GrpOpcgr 29742 GIdcgi 29743 /𝑔 cgs 29745 AbelOpcablo 29797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-grpo 29746 df-gid 29747 df-ginv 29748 df-gdiv 29749 df-ablo 29798 |
This theorem is referenced by: ablonnncan1 29810 |
Copyright terms: Public domain | W3C validator |