| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fovcl | Structured version Visualization version GIF version | ||
| Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) (Proof shortened by AV, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| fovcl.1 | ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 |
| Ref | Expression |
|---|---|
| fovcl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fovcl.1 | . . . 4 ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑅 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
| 3 | 2 | fovcld 7496 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| 4 | 3 | 3anidm12 1421 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 × cxp 5629 ⟶wf 6495 (class class class)co 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: addclnq 10874 mulclnq 10876 adderpq 10885 mulerpq 10886 distrnq 10890 axaddcl 11080 axmulcl 11082 xaddcl 13175 xmulcl 13209 elfzoelz 13596 cncrng 21330 addcnlem 24786 sgmcl 27089 hvaddcl 30991 hvmulcl 30992 hicl 31059 hhssabloilem 31240 rmxynorm 42900 rmxyneg 42902 rmxy1 42904 rmxy0 42905 rmxp1 42914 rmyp1 42915 rmxm1 42916 rmym1 42917 rmxluc 42918 rmyluc 42919 rmyluc2 42920 rmxdbl 42921 rmydbl 42922 rmxypos 42929 ltrmynn0 42930 ltrmxnn0 42931 lermxnn0 42932 rmxnn 42933 ltrmy 42934 rmyeq0 42935 rmyeq 42936 lermy 42937 rmynn 42938 rmynn0 42939 rmyabs 42940 jm2.24nn 42941 jm2.17a 42942 jm2.17b 42943 jm2.17c 42944 jm2.24 42945 rmygeid 42946 jm2.18 42970 jm2.19lem1 42971 jm2.19lem2 42972 jm2.19 42975 jm2.22 42977 jm2.23 42978 jm2.20nn 42979 jm2.25 42981 jm2.26a 42982 jm2.26lem3 42983 jm2.26 42984 jm2.15nn0 42985 jm2.16nn0 42986 jm2.27a 42987 jm2.27c 42989 rmydioph 42996 rmxdiophlem 42997 jm3.1lem1 42999 jm3.1 43002 expdiophlem1 43003 |
| Copyright terms: Public domain | W3C validator |