![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fovcl | Structured version Visualization version GIF version |
Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) |
Ref | Expression |
---|---|
fovcl.1 | ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 |
Ref | Expression |
---|---|
fovcl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fovcl.1 | . . 3 ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 | |
2 | ffnov 7488 | . . . 4 ⊢ (𝐹:(𝑅 × 𝑆)⟶𝐶 ↔ (𝐹 Fn (𝑅 × 𝑆) ∧ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶)) | |
3 | 2 | simprbi 497 | . . 3 ⊢ (𝐹:(𝑅 × 𝑆)⟶𝐶 → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶 |
5 | oveq1 7369 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦)) | |
6 | 5 | eleq1d 2817 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦) ∈ 𝐶 ↔ (𝐴𝐹𝑦) ∈ 𝐶)) |
7 | oveq2 7370 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵)) | |
8 | 7 | eleq1d 2817 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝐹𝑦) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶)) |
9 | 6, 8 | rspc2v 3591 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶 → (𝐴𝐹𝐵) ∈ 𝐶)) |
10 | 4, 9 | mpi 20 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3060 × cxp 5636 Fn wfn 6496 ⟶wf 6497 (class class class)co 7362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3406 df-v 3448 df-sbc 3743 df-csb 3859 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-fv 6509 df-ov 7365 |
This theorem is referenced by: addclnq 10890 mulclnq 10892 adderpq 10901 mulerpq 10902 distrnq 10906 axaddcl 11096 axmulcl 11098 xaddcl 13168 xmulcl 13202 elfzoelz 13582 addcnlem 24264 sgmcl 26532 hvaddcl 30017 hvmulcl 30018 hicl 30085 hhssabloilem 30266 rmxynorm 41300 rmxyneg 41302 rmxy1 41304 rmxy0 41305 rmxp1 41314 rmyp1 41315 rmxm1 41316 rmym1 41317 rmxluc 41318 rmyluc 41319 rmyluc2 41320 rmxdbl 41321 rmydbl 41322 rmxypos 41329 ltrmynn0 41330 ltrmxnn0 41331 lermxnn0 41332 rmxnn 41333 ltrmy 41334 rmyeq0 41335 rmyeq 41336 lermy 41337 rmynn 41338 rmynn0 41339 rmyabs 41340 jm2.24nn 41341 jm2.17a 41342 jm2.17b 41343 jm2.17c 41344 jm2.24 41345 rmygeid 41346 jm2.18 41370 jm2.19lem1 41371 jm2.19lem2 41372 jm2.19 41375 jm2.22 41377 jm2.23 41378 jm2.20nn 41379 jm2.25 41381 jm2.26a 41382 jm2.26lem3 41383 jm2.26 41384 jm2.15nn0 41385 jm2.16nn0 41386 jm2.27a 41387 jm2.27c 41389 rmydioph 41396 rmxdiophlem 41397 jm3.1lem1 41399 jm3.1 41402 expdiophlem1 41403 |
Copyright terms: Public domain | W3C validator |