| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fovcl | Structured version Visualization version GIF version | ||
| Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) (Proof shortened by AV, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| fovcl.1 | ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 |
| Ref | Expression |
|---|---|
| fovcl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fovcl.1 | . . . 4 ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑅 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
| 3 | 2 | fovcld 7516 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| 4 | 3 | 3anidm12 1421 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 × cxp 5636 ⟶wf 6507 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: addclnq 10898 mulclnq 10900 adderpq 10909 mulerpq 10910 distrnq 10914 axaddcl 11104 axmulcl 11106 xaddcl 13199 xmulcl 13233 elfzoelz 13620 cncrng 21300 addcnlem 24753 sgmcl 27056 hvaddcl 30941 hvmulcl 30942 hicl 31009 hhssabloilem 31190 rmxynorm 42907 rmxyneg 42909 rmxy1 42911 rmxy0 42912 rmxp1 42921 rmyp1 42922 rmxm1 42923 rmym1 42924 rmxluc 42925 rmyluc 42926 rmyluc2 42927 rmxdbl 42928 rmydbl 42929 rmxypos 42936 ltrmynn0 42937 ltrmxnn0 42938 lermxnn0 42939 rmxnn 42940 ltrmy 42941 rmyeq0 42942 rmyeq 42943 lermy 42944 rmynn 42945 rmynn0 42946 rmyabs 42947 jm2.24nn 42948 jm2.17a 42949 jm2.17b 42950 jm2.17c 42951 jm2.24 42952 rmygeid 42953 jm2.18 42977 jm2.19lem1 42978 jm2.19lem2 42979 jm2.19 42982 jm2.22 42984 jm2.23 42985 jm2.20nn 42986 jm2.25 42988 jm2.26a 42989 jm2.26lem3 42990 jm2.26 42991 jm2.15nn0 42992 jm2.16nn0 42993 jm2.27a 42994 jm2.27c 42996 rmydioph 43003 rmxdiophlem 43004 jm3.1lem1 43006 jm3.1 43009 expdiophlem1 43010 |
| Copyright terms: Public domain | W3C validator |