| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fovcl | Structured version Visualization version GIF version | ||
| Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) (Proof shortened by AV, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| fovcl.1 | ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 |
| Ref | Expression |
|---|---|
| fovcl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fovcl.1 | . . . 4 ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑅 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
| 3 | 2 | fovcld 7519 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| 4 | 3 | 3anidm12 1421 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 × cxp 5639 ⟶wf 6510 (class class class)co 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: addclnq 10905 mulclnq 10907 adderpq 10916 mulerpq 10917 distrnq 10921 axaddcl 11111 axmulcl 11113 xaddcl 13206 xmulcl 13240 elfzoelz 13627 cncrng 21307 addcnlem 24760 sgmcl 27063 hvaddcl 30948 hvmulcl 30949 hicl 31016 hhssabloilem 31197 rmxynorm 42914 rmxyneg 42916 rmxy1 42918 rmxy0 42919 rmxp1 42928 rmyp1 42929 rmxm1 42930 rmym1 42931 rmxluc 42932 rmyluc 42933 rmyluc2 42934 rmxdbl 42935 rmydbl 42936 rmxypos 42943 ltrmynn0 42944 ltrmxnn0 42945 lermxnn0 42946 rmxnn 42947 ltrmy 42948 rmyeq0 42949 rmyeq 42950 lermy 42951 rmynn 42952 rmynn0 42953 rmyabs 42954 jm2.24nn 42955 jm2.17a 42956 jm2.17b 42957 jm2.17c 42958 jm2.24 42959 rmygeid 42960 jm2.18 42984 jm2.19lem1 42985 jm2.19lem2 42986 jm2.19 42989 jm2.22 42991 jm2.23 42992 jm2.20nn 42993 jm2.25 42995 jm2.26a 42996 jm2.26lem3 42997 jm2.26 42998 jm2.15nn0 42999 jm2.16nn0 43000 jm2.27a 43001 jm2.27c 43003 rmydioph 43010 rmxdiophlem 43011 jm3.1lem1 43013 jm3.1 43016 expdiophlem1 43017 |
| Copyright terms: Public domain | W3C validator |