Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fovcl | Structured version Visualization version GIF version |
Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) |
Ref | Expression |
---|---|
fovcl.1 | ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 |
Ref | Expression |
---|---|
fovcl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fovcl.1 | . . 3 ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 | |
2 | ffnov 7392 | . . . 4 ⊢ (𝐹:(𝑅 × 𝑆)⟶𝐶 ↔ (𝐹 Fn (𝑅 × 𝑆) ∧ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶)) | |
3 | 2 | simprbi 496 | . . 3 ⊢ (𝐹:(𝑅 × 𝑆)⟶𝐶 → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶 |
5 | oveq1 7275 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦)) | |
6 | 5 | eleq1d 2824 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦) ∈ 𝐶 ↔ (𝐴𝐹𝑦) ∈ 𝐶)) |
7 | oveq2 7276 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵)) | |
8 | 7 | eleq1d 2824 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝐹𝑦) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶)) |
9 | 6, 8 | rspc2v 3570 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶 → (𝐴𝐹𝐵) ∈ 𝐶)) |
10 | 4, 9 | mpi 20 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 × cxp 5586 Fn wfn 6425 ⟶wf 6426 (class class class)co 7268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 |
This theorem is referenced by: addclnq 10685 mulclnq 10687 adderpq 10696 mulerpq 10697 distrnq 10701 axaddcl 10891 axmulcl 10893 xaddcl 12955 xmulcl 12989 elfzoelz 13369 addcnlem 24008 sgmcl 26276 hvaddcl 29353 hvmulcl 29354 hicl 29421 hhssabloilem 29602 rmxynorm 40720 rmxyneg 40722 rmxy1 40724 rmxy0 40725 rmxp1 40734 rmyp1 40735 rmxm1 40736 rmym1 40737 rmxluc 40738 rmyluc 40739 rmyluc2 40740 rmxdbl 40741 rmydbl 40742 rmxypos 40749 ltrmynn0 40750 ltrmxnn0 40751 lermxnn0 40752 rmxnn 40753 ltrmy 40754 rmyeq0 40755 rmyeq 40756 lermy 40757 rmynn 40758 rmynn0 40759 rmyabs 40760 jm2.24nn 40761 jm2.17a 40762 jm2.17b 40763 jm2.17c 40764 jm2.24 40765 rmygeid 40766 jm2.18 40790 jm2.19lem1 40791 jm2.19lem2 40792 jm2.19 40795 jm2.22 40797 jm2.23 40798 jm2.20nn 40799 jm2.25 40801 jm2.26a 40802 jm2.26lem3 40803 jm2.26 40804 jm2.15nn0 40805 jm2.16nn0 40806 jm2.27a 40807 jm2.27c 40809 rmydioph 40816 rmxdiophlem 40817 jm3.1lem1 40819 jm3.1 40822 expdiophlem1 40823 |
Copyright terms: Public domain | W3C validator |