Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fovcl | Structured version Visualization version GIF version |
Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) |
Ref | Expression |
---|---|
fovcl.1 | ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 |
Ref | Expression |
---|---|
fovcl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fovcl.1 | . . 3 ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 | |
2 | ffnov 7433 | . . . 4 ⊢ (𝐹:(𝑅 × 𝑆)⟶𝐶 ↔ (𝐹 Fn (𝑅 × 𝑆) ∧ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶)) | |
3 | 2 | simprbi 498 | . . 3 ⊢ (𝐹:(𝑅 × 𝑆)⟶𝐶 → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶 |
5 | oveq1 7314 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦) = (𝐴𝐹𝑦)) | |
6 | 5 | eleq1d 2821 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦) ∈ 𝐶 ↔ (𝐴𝐹𝑦) ∈ 𝐶)) |
7 | oveq2 7315 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝐴𝐹𝑦) = (𝐴𝐹𝐵)) | |
8 | 7 | eleq1d 2821 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴𝐹𝑦) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶)) |
9 | 6, 8 | rspc2v 3575 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 (𝑥𝐹𝑦) ∈ 𝐶 → (𝐴𝐹𝐵) ∈ 𝐶)) |
10 | 4, 9 | mpi 20 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 × cxp 5598 Fn wfn 6453 ⟶wf 6454 (class class class)co 7307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-ov 7310 |
This theorem is referenced by: addclnq 10747 mulclnq 10749 adderpq 10758 mulerpq 10759 distrnq 10763 axaddcl 10953 axmulcl 10955 xaddcl 13019 xmulcl 13053 elfzoelz 13433 addcnlem 24072 sgmcl 26340 hvaddcl 29419 hvmulcl 29420 hicl 29487 hhssabloilem 29668 rmxynorm 40778 rmxyneg 40780 rmxy1 40782 rmxy0 40783 rmxp1 40792 rmyp1 40793 rmxm1 40794 rmym1 40795 rmxluc 40796 rmyluc 40797 rmyluc2 40798 rmxdbl 40799 rmydbl 40800 rmxypos 40807 ltrmynn0 40808 ltrmxnn0 40809 lermxnn0 40810 rmxnn 40811 ltrmy 40812 rmyeq0 40813 rmyeq 40814 lermy 40815 rmynn 40816 rmynn0 40817 rmyabs 40818 jm2.24nn 40819 jm2.17a 40820 jm2.17b 40821 jm2.17c 40822 jm2.24 40823 rmygeid 40824 jm2.18 40848 jm2.19lem1 40849 jm2.19lem2 40850 jm2.19 40853 jm2.22 40855 jm2.23 40856 jm2.20nn 40857 jm2.25 40859 jm2.26a 40860 jm2.26lem3 40861 jm2.26 40862 jm2.15nn0 40863 jm2.16nn0 40864 jm2.27a 40865 jm2.27c 40867 rmydioph 40874 rmxdiophlem 40875 jm3.1lem1 40877 jm3.1 40880 expdiophlem1 40881 |
Copyright terms: Public domain | W3C validator |