| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fovcl | Structured version Visualization version GIF version | ||
| Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) (Proof shortened by AV, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| fovcl.1 | ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 |
| Ref | Expression |
|---|---|
| fovcl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fovcl.1 | . . . 4 ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑅 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
| 3 | 2 | fovcld 7473 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| 4 | 3 | 3anidm12 1421 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 × cxp 5612 ⟶wf 6477 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: addclnq 10836 mulclnq 10838 adderpq 10847 mulerpq 10848 distrnq 10852 axaddcl 11042 axmulcl 11044 xaddcl 13138 xmulcl 13172 elfzoelz 13559 cncrng 21325 addcnlem 24780 sgmcl 27083 hvaddcl 30992 hvmulcl 30993 hicl 31060 hhssabloilem 31241 rmxynorm 43021 rmxyneg 43023 rmxy1 43025 rmxy0 43026 rmxp1 43035 rmyp1 43036 rmxm1 43037 rmym1 43038 rmxluc 43039 rmyluc 43040 rmyluc2 43041 rmxdbl 43042 rmydbl 43043 rmxypos 43050 ltrmynn0 43051 ltrmxnn0 43052 lermxnn0 43053 rmxnn 43054 ltrmy 43055 rmyeq0 43056 rmyeq 43057 lermy 43058 rmynn 43059 rmynn0 43060 rmyabs 43061 jm2.24nn 43062 jm2.17a 43063 jm2.17b 43064 jm2.17c 43065 jm2.24 43066 rmygeid 43067 jm2.18 43091 jm2.19lem1 43092 jm2.19lem2 43093 jm2.19 43096 jm2.22 43098 jm2.23 43099 jm2.20nn 43100 jm2.25 43102 jm2.26a 43103 jm2.26lem3 43104 jm2.26 43105 jm2.15nn0 43106 jm2.16nn0 43107 jm2.27a 43108 jm2.27c 43110 rmydioph 43117 rmxdiophlem 43118 jm3.1lem1 43120 jm3.1 43123 expdiophlem1 43124 |
| Copyright terms: Public domain | W3C validator |