| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fovcl | Structured version Visualization version GIF version | ||
| Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) (Proof shortened by AV, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| fovcl.1 | ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 |
| Ref | Expression |
|---|---|
| fovcl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fovcl.1 | . . . 4 ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑅 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
| 3 | 2 | fovcld 7476 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| 4 | 3 | 3anidm12 1421 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 × cxp 5617 ⟶wf 6478 (class class class)co 7349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: addclnq 10839 mulclnq 10841 adderpq 10850 mulerpq 10851 distrnq 10855 axaddcl 11045 axmulcl 11047 xaddcl 13141 xmulcl 13175 elfzoelz 13562 cncrng 21295 addcnlem 24751 sgmcl 27054 hvaddcl 30956 hvmulcl 30957 hicl 31024 hhssabloilem 31205 rmxynorm 42895 rmxyneg 42897 rmxy1 42899 rmxy0 42900 rmxp1 42909 rmyp1 42910 rmxm1 42911 rmym1 42912 rmxluc 42913 rmyluc 42914 rmyluc2 42915 rmxdbl 42916 rmydbl 42917 rmxypos 42924 ltrmynn0 42925 ltrmxnn0 42926 lermxnn0 42927 rmxnn 42928 ltrmy 42929 rmyeq0 42930 rmyeq 42931 lermy 42932 rmynn 42933 rmynn0 42934 rmyabs 42935 jm2.24nn 42936 jm2.17a 42937 jm2.17b 42938 jm2.17c 42939 jm2.24 42940 rmygeid 42941 jm2.18 42965 jm2.19lem1 42966 jm2.19lem2 42967 jm2.19 42970 jm2.22 42972 jm2.23 42973 jm2.20nn 42974 jm2.25 42976 jm2.26a 42977 jm2.26lem3 42978 jm2.26 42979 jm2.15nn0 42980 jm2.16nn0 42981 jm2.27a 42982 jm2.27c 42984 rmydioph 42991 rmxdiophlem 42992 jm3.1lem1 42994 jm3.1 42997 expdiophlem1 42998 |
| Copyright terms: Public domain | W3C validator |