![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fovcl | Structured version Visualization version GIF version |
Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) (Proof shortened by AV, 9-Mar-2025.) |
Ref | Expression |
---|---|
fovcl.1 | ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 |
Ref | Expression |
---|---|
fovcl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fovcl.1 | . . . 4 ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑅 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
3 | 2 | fovcld 7559 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
4 | 3 | 3anidm12 1418 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 × cxp 5686 ⟶wf 6558 (class class class)co 7430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 |
This theorem is referenced by: addclnq 10982 mulclnq 10984 adderpq 10993 mulerpq 10994 distrnq 10998 axaddcl 11188 axmulcl 11190 xaddcl 13277 xmulcl 13311 elfzoelz 13695 cncrng 21418 addcnlem 24899 sgmcl 27203 hvaddcl 31040 hvmulcl 31041 hicl 31108 hhssabloilem 31289 rmxynorm 42906 rmxyneg 42908 rmxy1 42910 rmxy0 42911 rmxp1 42920 rmyp1 42921 rmxm1 42922 rmym1 42923 rmxluc 42924 rmyluc 42925 rmyluc2 42926 rmxdbl 42927 rmydbl 42928 rmxypos 42935 ltrmynn0 42936 ltrmxnn0 42937 lermxnn0 42938 rmxnn 42939 ltrmy 42940 rmyeq0 42941 rmyeq 42942 lermy 42943 rmynn 42944 rmynn0 42945 rmyabs 42946 jm2.24nn 42947 jm2.17a 42948 jm2.17b 42949 jm2.17c 42950 jm2.24 42951 rmygeid 42952 jm2.18 42976 jm2.19lem1 42977 jm2.19lem2 42978 jm2.19 42981 jm2.22 42983 jm2.23 42984 jm2.20nn 42985 jm2.25 42987 jm2.26a 42988 jm2.26lem3 42989 jm2.26 42990 jm2.15nn0 42991 jm2.16nn0 42992 jm2.27a 42993 jm2.27c 42995 rmydioph 43002 rmxdiophlem 43003 jm3.1lem1 43005 jm3.1 43008 expdiophlem1 43009 |
Copyright terms: Public domain | W3C validator |