| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fovcl | Structured version Visualization version GIF version | ||
| Description: Closure law for an operation. (Contributed by NM, 19-Apr-2007.) (Proof shortened by AV, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| fovcl.1 | ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 |
| Ref | Expression |
|---|---|
| fovcl | ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fovcl.1 | . . . 4 ⊢ 𝐹:(𝑅 × 𝑆)⟶𝐶 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑅 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
| 3 | 2 | fovcld 7532 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| 4 | 3 | 3anidm12 1421 | 1 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 × cxp 5652 ⟶wf 6526 (class class class)co 7403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 |
| This theorem is referenced by: addclnq 10957 mulclnq 10959 adderpq 10968 mulerpq 10969 distrnq 10973 axaddcl 11163 axmulcl 11165 xaddcl 13253 xmulcl 13287 elfzoelz 13674 cncrng 21349 addcnlem 24802 sgmcl 27106 hvaddcl 30939 hvmulcl 30940 hicl 31007 hhssabloilem 31188 rmxynorm 42889 rmxyneg 42891 rmxy1 42893 rmxy0 42894 rmxp1 42903 rmyp1 42904 rmxm1 42905 rmym1 42906 rmxluc 42907 rmyluc 42908 rmyluc2 42909 rmxdbl 42910 rmydbl 42911 rmxypos 42918 ltrmynn0 42919 ltrmxnn0 42920 lermxnn0 42921 rmxnn 42922 ltrmy 42923 rmyeq0 42924 rmyeq 42925 lermy 42926 rmynn 42927 rmynn0 42928 rmyabs 42929 jm2.24nn 42930 jm2.17a 42931 jm2.17b 42932 jm2.17c 42933 jm2.24 42934 rmygeid 42935 jm2.18 42959 jm2.19lem1 42960 jm2.19lem2 42961 jm2.19 42964 jm2.22 42966 jm2.23 42967 jm2.20nn 42968 jm2.25 42970 jm2.26a 42971 jm2.26lem3 42972 jm2.26 42973 jm2.15nn0 42974 jm2.16nn0 42975 jm2.27a 42976 jm2.27c 42978 rmydioph 42985 rmxdiophlem 42986 jm3.1lem1 42988 jm3.1 42991 expdiophlem1 42992 |
| Copyright terms: Public domain | W3C validator |