Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sinhpcosh Structured version   Visualization version   GIF version

Theorem sinhpcosh 44859
Description: Prove that (sinh‘𝐴) + (cosh‘𝐴) = (exp‘𝐴) using the conventional hyperbolic trigonometric functions. (Contributed by David A. Wheeler, 27-May-2015.)
Assertion
Ref Expression
sinhpcosh (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = (exp‘𝐴))

Proof of Theorem sinhpcosh
StepHypRef Expression
1 sinhval-named 44855 . . . . 5 (𝐴 ∈ ℂ → (sinh‘𝐴) = ((sin‘(i · 𝐴)) / i))
2 sinhval 15507 . . . . 5 (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
31, 2eqtrd 2856 . . . 4 (𝐴 ∈ ℂ → (sinh‘𝐴) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
4 coshval-named 44856 . . . . 5 (𝐴 ∈ ℂ → (cosh‘𝐴) = (cos‘(i · 𝐴)))
5 coshval 15508 . . . . 5 (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
64, 5eqtrd 2856 . . . 4 (𝐴 ∈ ℂ → (cosh‘𝐴) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
73, 6oveq12d 7174 . . 3 (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
8 2cn 11713 . . . 4 2 ∈ ℂ
9 2ne0 11742 . . . 4 2 ≠ 0
10 efcl 15436 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
11 negcl 10886 . . . . . . . 8 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
12 efcl 15436 . . . . . . . 8 (-𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
1311, 12syl 17 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
1410, 13addcld 10660 . . . . . 6 (𝐴 ∈ ℂ → ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ)
1510, 13subcld 10997 . . . . . . 7 (𝐴 ∈ ℂ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ)
16 divdir 11323 . . . . . . 7 ((((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ ∧ ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
1715, 16syl3an1 1159 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
1814, 17syl3an2 1160 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
19183anidm12 1415 . . . 4 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
208, 9, 19mpanr12 703 . . 3 (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
21102timesd 11881 . . . . 5 (𝐴 ∈ ℂ → (2 · (exp‘𝐴)) = ((exp‘𝐴) + (exp‘𝐴)))
2210, 13, 10nppcand 11022 . . . . 5 (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + (exp‘𝐴)) + (exp‘-𝐴)) = ((exp‘𝐴) + (exp‘𝐴)))
2315, 10, 13addassd 10663 . . . . 5 (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + (exp‘𝐴)) + (exp‘-𝐴)) = (((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))))
2421, 22, 233eqtr2rd 2863 . . . 4 (𝐴 ∈ ℂ → (((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) = (2 · (exp‘𝐴)))
2524oveq1d 7171 . . 3 (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((2 · (exp‘𝐴)) / 2))
267, 20, 253eqtr2d 2862 . 2 (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = ((2 · (exp‘𝐴)) / 2))
278a1i 11 . . 3 (𝐴 ∈ ℂ → 2 ∈ ℂ)
289a1i 11 . . 3 (𝐴 ∈ ℂ → 2 ≠ 0)
2910, 27, 28divcan3d 11421 . 2 (𝐴 ∈ ℂ → ((2 · (exp‘𝐴)) / 2) = (exp‘𝐴))
3026, 29eqtrd 2856 1 (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537  ici 10539   + caddc 10540   · cmul 10542  cmin 10870  -cneg 10871   / cdiv 11297  2c2 11693  expce 15415  sincsin 15417  cosccos 15418  sinhcsinh 44849  coshccosh 44850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-fac 13635  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-sinh 44852  df-cosh 44853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator