Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sinhpcosh Structured version   Visualization version   GIF version

Theorem sinhpcosh 49354
Description: Prove that (sinh‘𝐴) + (cosh‘𝐴) = (exp‘𝐴) using the conventional hyperbolic trigonometric functions. (Contributed by David A. Wheeler, 27-May-2015.)
Assertion
Ref Expression
sinhpcosh (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = (exp‘𝐴))

Proof of Theorem sinhpcosh
StepHypRef Expression
1 sinhval-named 49350 . . . . 5 (𝐴 ∈ ℂ → (sinh‘𝐴) = ((sin‘(i · 𝐴)) / i))
2 sinhval 16173 . . . . 5 (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
31, 2eqtrd 2769 . . . 4 (𝐴 ∈ ℂ → (sinh‘𝐴) = (((exp‘𝐴) − (exp‘-𝐴)) / 2))
4 coshval-named 49351 . . . . 5 (𝐴 ∈ ℂ → (cosh‘𝐴) = (cos‘(i · 𝐴)))
5 coshval 16174 . . . . 5 (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
64, 5eqtrd 2769 . . . 4 (𝐴 ∈ ℂ → (cosh‘𝐴) = (((exp‘𝐴) + (exp‘-𝐴)) / 2))
73, 6oveq12d 7431 . . 3 (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
8 2cn 12323 . . . 4 2 ∈ ℂ
9 2ne0 12352 . . . 4 2 ≠ 0
10 efcl 16101 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
11 negcl 11490 . . . . . . . 8 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
12 efcl 16101 . . . . . . . 8 (-𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
1311, 12syl 17 . . . . . . 7 (𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ)
1410, 13addcld 11262 . . . . . 6 (𝐴 ∈ ℂ → ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ)
1510, 13subcld 11602 . . . . . . 7 (𝐴 ∈ ℂ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ)
16 divdir 11929 . . . . . . 7 ((((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ ∧ ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
1715, 16syl3an1 1163 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
1814, 17syl3an2 1164 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
19183anidm12 1420 . . . 4 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
208, 9, 19mpanr12 705 . . 3 (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2)))
21102timesd 12492 . . . . 5 (𝐴 ∈ ℂ → (2 · (exp‘𝐴)) = ((exp‘𝐴) + (exp‘𝐴)))
2210, 13, 10nppcand 11627 . . . . 5 (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + (exp‘𝐴)) + (exp‘-𝐴)) = ((exp‘𝐴) + (exp‘𝐴)))
2315, 10, 13addassd 11265 . . . . 5 (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + (exp‘𝐴)) + (exp‘-𝐴)) = (((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))))
2421, 22, 233eqtr2rd 2776 . . . 4 (𝐴 ∈ ℂ → (((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) = (2 · (exp‘𝐴)))
2524oveq1d 7428 . . 3 (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((2 · (exp‘𝐴)) / 2))
267, 20, 253eqtr2d 2775 . 2 (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = ((2 · (exp‘𝐴)) / 2))
278a1i 11 . . 3 (𝐴 ∈ ℂ → 2 ∈ ℂ)
289a1i 11 . . 3 (𝐴 ∈ ℂ → 2 ≠ 0)
2910, 27, 28divcan3d 12030 . 2 (𝐴 ∈ ℂ → ((2 · (exp‘𝐴)) / 2) = (exp‘𝐴))
3026, 29eqtrd 2769 1 (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = (exp‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  cfv 6541  (class class class)co 7413  cc 11135  0cc0 11137  ici 11139   + caddc 11140   · cmul 11142  cmin 11474  -cneg 11475   / cdiv 11902  2c2 12303  expce 16080  sincsin 16082  cosccos 16083  sinhcsinh 49344  coshccosh 49345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-ico 13375  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-fac 14296  df-hash 14353  df-shft 15089  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-limsup 15490  df-clim 15507  df-rlim 15508  df-sum 15706  df-ef 16086  df-sin 16088  df-cos 16089  df-sinh 49347  df-cosh 49348
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator