![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sinhpcosh | Structured version Visualization version GIF version |
Description: Prove that (sinh‘𝐴) + (cosh‘𝐴) = (exp‘𝐴) using the conventional hyperbolic trigonometric functions. (Contributed by David A. Wheeler, 27-May-2015.) |
Ref | Expression |
---|---|
sinhpcosh | ⊢ (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = (exp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sinhval-named 47945 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (sinh‘𝐴) = ((sin‘(i · 𝐴)) / i)) | |
2 | sinhval 16104 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2)) | |
3 | 1, 2 | eqtrd 2771 | . . . 4 ⊢ (𝐴 ∈ ℂ → (sinh‘𝐴) = (((exp‘𝐴) − (exp‘-𝐴)) / 2)) |
4 | coshval-named 47946 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cosh‘𝐴) = (cos‘(i · 𝐴))) | |
5 | coshval 16105 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2)) | |
6 | 4, 5 | eqtrd 2771 | . . . 4 ⊢ (𝐴 ∈ ℂ → (cosh‘𝐴) = (((exp‘𝐴) + (exp‘-𝐴)) / 2)) |
7 | 3, 6 | oveq12d 7430 | . . 3 ⊢ (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2))) |
8 | 2cn 12294 | . . . 4 ⊢ 2 ∈ ℂ | |
9 | 2ne0 12323 | . . . 4 ⊢ 2 ≠ 0 | |
10 | efcl 16033 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | |
11 | negcl 11467 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
12 | efcl 16033 | . . . . . . . 8 ⊢ (-𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ) | |
13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ) |
14 | 10, 13 | addcld 11240 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ) |
15 | 10, 13 | subcld 11578 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ) |
16 | divdir 11904 | . . . . . . 7 ⊢ ((((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ ∧ ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2))) | |
17 | 15, 16 | syl3an1 1162 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2))) |
18 | 14, 17 | syl3an2 1163 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2))) |
19 | 18 | 3anidm12 1418 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2))) |
20 | 8, 9, 19 | mpanr12 702 | . . 3 ⊢ (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2))) |
21 | 10 | 2timesd 12462 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (2 · (exp‘𝐴)) = ((exp‘𝐴) + (exp‘𝐴))) |
22 | 10, 13, 10 | nppcand 11603 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + (exp‘𝐴)) + (exp‘-𝐴)) = ((exp‘𝐴) + (exp‘𝐴))) |
23 | 15, 10, 13 | addassd 11243 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + (exp‘𝐴)) + (exp‘-𝐴)) = (((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴)))) |
24 | 21, 22, 23 | 3eqtr2rd 2778 | . . . 4 ⊢ (𝐴 ∈ ℂ → (((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) = (2 · (exp‘𝐴))) |
25 | 24 | oveq1d 7427 | . . 3 ⊢ (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((2 · (exp‘𝐴)) / 2)) |
26 | 7, 20, 25 | 3eqtr2d 2777 | . 2 ⊢ (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = ((2 · (exp‘𝐴)) / 2)) |
27 | 8 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → 2 ∈ ℂ) |
28 | 9 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → 2 ≠ 0) |
29 | 10, 27, 28 | divcan3d 12002 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 · (exp‘𝐴)) / 2) = (exp‘𝐴)) |
30 | 26, 29 | eqtrd 2771 | 1 ⊢ (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = (exp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ‘cfv 6543 (class class class)co 7412 ℂcc 11114 0cc0 11116 ici 11118 + caddc 11119 · cmul 11121 − cmin 11451 -cneg 11452 / cdiv 11878 2c2 12274 expce 16012 sincsin 16014 cosccos 16015 sinhcsinh 47939 coshccosh 47940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-pm 8829 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-ico 13337 df-fz 13492 df-fzo 13635 df-fl 13764 df-seq 13974 df-exp 14035 df-fac 14241 df-hash 14298 df-shft 15021 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-limsup 15422 df-clim 15439 df-rlim 15440 df-sum 15640 df-ef 16018 df-sin 16020 df-cos 16021 df-sinh 47942 df-cosh 47943 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |