![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sinhpcosh | Structured version Visualization version GIF version |
Description: Prove that (sinh‘𝐴) + (cosh‘𝐴) = (exp‘𝐴) using the conventional hyperbolic trigonometric functions. (Contributed by David A. Wheeler, 27-May-2015.) |
Ref | Expression |
---|---|
sinhpcosh | ⊢ (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = (exp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sinhval-named 43279 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (sinh‘𝐴) = ((sin‘(i · 𝐴)) / i)) | |
2 | sinhval 15220 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((sin‘(i · 𝐴)) / i) = (((exp‘𝐴) − (exp‘-𝐴)) / 2)) | |
3 | 1, 2 | eqtrd 2833 | . . . 4 ⊢ (𝐴 ∈ ℂ → (sinh‘𝐴) = (((exp‘𝐴) − (exp‘-𝐴)) / 2)) |
4 | coshval-named 43280 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cosh‘𝐴) = (cos‘(i · 𝐴))) | |
5 | coshval 15221 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘(i · 𝐴)) = (((exp‘𝐴) + (exp‘-𝐴)) / 2)) | |
6 | 4, 5 | eqtrd 2833 | . . . 4 ⊢ (𝐴 ∈ ℂ → (cosh‘𝐴) = (((exp‘𝐴) + (exp‘-𝐴)) / 2)) |
7 | 3, 6 | oveq12d 6896 | . . 3 ⊢ (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2))) |
8 | 2cn 11388 | . . . 4 ⊢ 2 ∈ ℂ | |
9 | 2ne0 11424 | . . . 4 ⊢ 2 ≠ 0 | |
10 | efcl 15149 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | |
11 | negcl 10572 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
12 | efcl 15149 | . . . . . . . 8 ⊢ (-𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ) | |
13 | 11, 12 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (exp‘-𝐴) ∈ ℂ) |
14 | 10, 13 | addcld 10348 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ) |
15 | 10, 13 | subcld 10684 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ) |
16 | divdir 11002 | . . . . . . 7 ⊢ ((((exp‘𝐴) − (exp‘-𝐴)) ∈ ℂ ∧ ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2))) | |
17 | 15, 16 | syl3an1 1203 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ ((exp‘𝐴) + (exp‘-𝐴)) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2))) |
18 | 14, 17 | syl3an2 1204 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2))) |
19 | 18 | 3anidm12 1543 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2))) |
20 | 8, 9, 19 | mpanr12 697 | . . 3 ⊢ (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((((exp‘𝐴) − (exp‘-𝐴)) / 2) + (((exp‘𝐴) + (exp‘-𝐴)) / 2))) |
21 | 10 | 2timesd 11563 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (2 · (exp‘𝐴)) = ((exp‘𝐴) + (exp‘𝐴))) |
22 | 10, 13, 10 | nppcand 10709 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + (exp‘𝐴)) + (exp‘-𝐴)) = ((exp‘𝐴) + (exp‘𝐴))) |
23 | 15, 10, 13 | addassd 10351 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + (exp‘𝐴)) + (exp‘-𝐴)) = (((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴)))) |
24 | 21, 22, 23 | 3eqtr2rd 2840 | . . . 4 ⊢ (𝐴 ∈ ℂ → (((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) = (2 · (exp‘𝐴))) |
25 | 24 | oveq1d 6893 | . . 3 ⊢ (𝐴 ∈ ℂ → ((((exp‘𝐴) − (exp‘-𝐴)) + ((exp‘𝐴) + (exp‘-𝐴))) / 2) = ((2 · (exp‘𝐴)) / 2)) |
26 | 7, 20, 25 | 3eqtr2d 2839 | . 2 ⊢ (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = ((2 · (exp‘𝐴)) / 2)) |
27 | 8 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → 2 ∈ ℂ) |
28 | 9 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℂ → 2 ≠ 0) |
29 | 10, 27, 28 | divcan3d 11098 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 · (exp‘𝐴)) / 2) = (exp‘𝐴)) |
30 | 26, 29 | eqtrd 2833 | 1 ⊢ (𝐴 ∈ ℂ → ((sinh‘𝐴) + (cosh‘𝐴)) = (exp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ‘cfv 6101 (class class class)co 6878 ℂcc 10222 0cc0 10224 ici 10226 + caddc 10227 · cmul 10229 − cmin 10556 -cneg 10557 / cdiv 10976 2c2 11368 expce 15128 sincsin 15130 cosccos 15131 sinhcsinh 43273 coshccosh 43274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 ax-addf 10303 ax-mulf 10304 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-pm 8098 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-n0 11581 df-z 11667 df-uz 11931 df-rp 12075 df-ico 12430 df-fz 12581 df-fzo 12721 df-fl 12848 df-seq 13056 df-exp 13115 df-fac 13314 df-hash 13371 df-shft 14148 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-limsup 14543 df-clim 14560 df-rlim 14561 df-sum 14758 df-ef 15134 df-sin 15136 df-cos 15137 df-sinh 43276 df-cosh 43277 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |