| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nncan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| nncan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsub2 11519 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = (𝐴 + (𝐵 − 𝐴))) | |
| 2 | 1 | 3anidm12 1420 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = (𝐴 + (𝐵 − 𝐴))) |
| 3 | pncan3 11498 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) | |
| 4 | 2, 3 | eqtrd 2769 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 (class class class)co 7413 ℂcc 11135 + caddc 11140 − cmin 11474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-ltxr 11282 df-sub 11476 |
| This theorem is referenced by: nnncan1 11527 nncand 11607 elz2 12614 fzrev2 13610 fzrevral 13634 fzrevral2 13635 bccmpl 14331 revrev 14788 fsumrev 15798 geolim2 15890 dvdssub2 16321 efgredleme 19730 psrcom 21943 psropprmul 22188 icccvx 24918 lebnumii 24935 pcorevlem 24996 pcorev2 24998 pi1xfrcnv 25027 efcvx 26430 cosne0 26508 logtayl 26639 logtayl2 26641 logccv 26642 acoscos 26873 sinacos 26885 cvxcl 26965 scvxcvx 26966 basellem5 27065 logfacbnd3 27204 bposlem1 27265 gausslemma2dlem1a 27346 lgsquadlem2 27362 chtppilimlem2 27455 rplogsumlem1 27465 rpvmasumlem 27468 brbtwn2 28851 ax5seglem1 28874 resconn 35226 dvasin 37686 fouriersw 46218 subsubelfzo0 47311 minusmod5ne 47324 |
| Copyright terms: Public domain | W3C validator |