MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nncan Structured version   Visualization version   GIF version

Theorem nncan 10714
Description: Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
nncan ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴𝐵)) = 𝐵)

Proof of Theorem nncan
StepHypRef Expression
1 subsub2 10713 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴𝐵)) = (𝐴 + (𝐵𝐴)))
213anidm12 1400 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴𝐵)) = (𝐴 + (𝐵𝐴)))
3 pncan3 10692 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
42, 3eqtrd 2807 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  (class class class)co 6974  cc 10331   + caddc 10336  cmin 10668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-po 5322  df-so 5323  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-ltxr 10477  df-sub 10670
This theorem is referenced by:  nnncan1  10721  nncand  10801  elz2  11809  fzrev2  12785  fzrevral  12806  fzrevral2  12807  bccmpl  13482  revrev  13984  fsumrev  14992  geolim2  15085  dvdssub2  15509  efgredleme  18640  psrcom  19915  psropprmul  20124  icccvx  23272  lebnumii  23288  pcorevlem  23348  pcorev2  23350  pi1xfrcnv  23379  efcvx  24755  cosne0  24830  logtayl  24959  logtayl2  24961  logccv  24962  acoscos  25187  sinacos  25199  cvxcl  25279  scvxcvx  25280  basellem5  25379  logfacbnd3  25516  bposlem1  25577  gausslemma2dlem1a  25658  lgsquadlem2  25674  chtppilimlem2  25767  rplogsumlem1  25777  rpvmasumlem  25780  brbtwn2  26409  ax5seglem1  26432  resconn  32115  dvasin  34456  fouriersw  41979  subsubelfzo0  42964
  Copyright terms: Public domain W3C validator