MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nncan Structured version   Visualization version   GIF version

Theorem nncan 11510
Description: Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
nncan ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴𝐵)) = 𝐵)

Proof of Theorem nncan
StepHypRef Expression
1 subsub2 11509 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴𝐵)) = (𝐴 + (𝐵𝐴)))
213anidm12 1421 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴𝐵)) = (𝐴 + (𝐵𝐴)))
3 pncan3 11488 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵𝐴)) = 𝐵)
42, 3eqtrd 2770 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴𝐵)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  (class class class)co 7403  cc 11125   + caddc 11130  cmin 11464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-ltxr 11272  df-sub 11466
This theorem is referenced by:  nnncan1  11517  nncand  11597  elz2  12604  fzrev2  13603  fzrevral  13627  fzrevral2  13628  bccmpl  14325  revrev  14783  fsumrev  15793  geolim2  15885  dvdssub2  16318  efgredleme  19722  psrcom  21926  psropprmul  22171  icccvx  24897  lebnumii  24914  pcorevlem  24975  pcorev2  24977  pi1xfrcnv  25006  efcvx  26409  cosne0  26488  logtayl  26619  logtayl2  26621  logccv  26622  acoscos  26853  sinacos  26865  cvxcl  26945  scvxcvx  26946  basellem5  27045  logfacbnd3  27184  bposlem1  27245  gausslemma2dlem1a  27326  lgsquadlem2  27342  chtppilimlem2  27435  rplogsumlem1  27445  rpvmasumlem  27448  brbtwn2  28830  ax5seglem1  28853  resconn  35214  dvasin  37674  fouriersw  46208  subsubelfzo0  47303  minusmod5ne  47326
  Copyright terms: Public domain W3C validator