![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elico2 | Structured version Visualization version GIF version |
Description: Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
elico2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11336 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | elico1 13450 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | |
3 | 1, 2 | sylan 579 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
4 | mnfxr 11347 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → -∞ ∈ ℝ*) |
6 | 1 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → 𝐴 ∈ ℝ*) |
7 | simpr1 1194 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → 𝐶 ∈ ℝ*) | |
8 | mnflt 13186 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
9 | 8 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → -∞ < 𝐴) |
10 | simpr2 1195 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → 𝐴 ≤ 𝐶) | |
11 | 5, 6, 7, 9, 10 | xrltletrd 13223 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → -∞ < 𝐶) |
12 | simplr 768 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → 𝐵 ∈ ℝ*) | |
13 | pnfxr 11344 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
14 | 13 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → +∞ ∈ ℝ*) |
15 | simpr3 1196 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → 𝐶 < 𝐵) | |
16 | pnfge 13193 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ* → 𝐵 ≤ +∞) | |
17 | 16 | ad2antlr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → 𝐵 ≤ +∞) |
18 | 7, 12, 14, 15, 17 | xrltletrd 13223 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → 𝐶 < +∞) |
19 | xrrebnd 13230 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶 ∧ 𝐶 < +∞))) | |
20 | 7, 19 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶 ∧ 𝐶 < +∞))) |
21 | 11, 18, 20 | mpbir2and 712 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → 𝐶 ∈ ℝ) |
22 | 21, 10, 15 | 3jca 1128 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) |
23 | 22 | ex 412 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵) → (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
24 | rexr 11336 | . . . 4 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*) | |
25 | 24 | 3anim1i 1152 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵) → (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) |
26 | 23, 25 | impbid1 225 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
27 | 3, 26 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 +∞cpnf 11321 -∞cmnf 11322 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 [,)cico 13409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ico 13413 |
This theorem is referenced by: icossre 13488 elicopnf 13505 icoshft 13533 modelico 13932 muladdmodid 13962 icodiamlt 15484 fprodge0 16041 fprodge1 16043 rge0srg 21479 metustexhalf 24590 cnbl0 24815 icoopnst 24988 iocopnst 24989 icopnfcnv 24992 icopnfhmeo 24993 iccpnfcnv 24994 psercnlem2 26486 psercnlem1 26487 psercn 26488 abelth 26503 cosq34lt1 26587 tanord1 26597 tanord 26598 efopnlem1 26716 logtayl 26720 rlimcnp 27026 rlimcnp2 27027 dchrvmasumlem2 27560 dchrvmasumiflem1 27563 pntlemb 27659 pnt 27676 ubico 32780 xrge0slmod 33341 voliune 34193 volfiniune 34194 dya2icoseg 34242 sibfinima 34304 relowlpssretop 37330 tan2h 37572 itg2addnclem2 37632 binomcxplemdvbinom 44322 binomcxplemcvg 44323 binomcxplemnotnn0 44325 limciccioolb 45542 fourierdlem32 46060 fourierdlem43 46071 fourierdlem63 46090 fourierdlem79 46106 fouriersw 46152 expnegico01 48247 dignnld 48337 eenglngeehlnmlem1 48471 i0oii 48599 sepfsepc 48607 |
Copyright terms: Public domain | W3C validator |