MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elico2 Structured version   Visualization version   GIF version

Theorem elico2 13347
Description: Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elico2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))

Proof of Theorem elico2
StepHypRef Expression
1 rexr 11196 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 elico1 13325 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
31, 2sylan 580 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
4 mnfxr 11207 . . . . . . . 8 -∞ ∈ ℝ*
54a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → -∞ ∈ ℝ*)
61ad2antrr 726 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐴 ∈ ℝ*)
7 simpr1 1195 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐶 ∈ ℝ*)
8 mnflt 13059 . . . . . . . 8 (𝐴 ∈ ℝ → -∞ < 𝐴)
98ad2antrr 726 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → -∞ < 𝐴)
10 simpr2 1196 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐴𝐶)
115, 6, 7, 9, 10xrltletrd 13097 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → -∞ < 𝐶)
12 simplr 768 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐵 ∈ ℝ*)
13 pnfxr 11204 . . . . . . . 8 +∞ ∈ ℝ*
1413a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → +∞ ∈ ℝ*)
15 simpr3 1197 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐶 < 𝐵)
16 pnfge 13066 . . . . . . . 8 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
1716ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐵 ≤ +∞)
187, 12, 14, 15, 17xrltletrd 13097 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐶 < +∞)
19 xrrebnd 13104 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
207, 19syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
2111, 18, 20mpbir2and 713 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → 𝐶 ∈ ℝ)
2221, 10, 153jca 1128 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵))
2322ex 412 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
24 rexr 11196 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
25243anim1i 1152 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵) → (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵))
2623, 25impbid1 225 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
273, 26bitrd 279 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶 < 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5102  (class class class)co 7369  cr 11043  +∞cpnf 11181  -∞cmnf 11182  *cxr 11183   < clt 11184  cle 11185  [,)cico 13284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-ico 13288
This theorem is referenced by:  icossre  13365  elicopnf  13382  icoshft  13410  modelico  13819  muladdmodid  13851  icodiamlt  15380  fprodge0  15935  fprodge1  15937  rge0srg  21331  metustexhalf  24420  cnbl0  24637  icoopnst  24812  iocopnst  24813  icopnfcnv  24816  icopnfhmeo  24817  iccpnfcnv  24818  psercnlem2  26310  psercnlem1  26311  psercn  26312  abelth  26327  cosq34lt1  26412  tanord1  26422  tanord  26423  efopnlem1  26541  logtayl  26545  rlimcnp  26851  rlimcnp2  26852  dchrvmasumlem2  27385  dchrvmasumiflem1  27388  pntlemb  27484  pnt  27501  ubico  32671  xrge0slmod  33292  voliune  34192  volfiniune  34193  dya2icoseg  34241  sibfinima  34303  relowlpssretop  37325  tan2h  37579  itg2addnclem2  37639  binomcxplemdvbinom  44315  binomcxplemcvg  44316  binomcxplemnotnn0  44318  limciccioolb  45592  fourierdlem32  46110  fourierdlem43  46121  fourierdlem63  46140  fourierdlem79  46156  fouriersw  46202  expnegico01  48480  dignnld  48565  eenglngeehlnmlem1  48699  i0oii  48881  sepfsepc  48889
  Copyright terms: Public domain W3C validator