![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elico2 | Structured version Visualization version GIF version |
Description: Membership in a closed-below, open-above real interval. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
elico2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 10409 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | elico1 12513 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) | |
3 | 1, 2 | sylan 575 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
4 | mnfxr 10421 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → -∞ ∈ ℝ*) |
6 | 1 | ad2antrr 717 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → 𝐴 ∈ ℝ*) |
7 | simpr1 1252 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → 𝐶 ∈ ℝ*) | |
8 | mnflt 12250 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
9 | 8 | ad2antrr 717 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → -∞ < 𝐴) |
10 | simpr2 1254 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → 𝐴 ≤ 𝐶) | |
11 | 5, 6, 7, 9, 10 | xrltletrd 12287 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → -∞ < 𝐶) |
12 | simplr 785 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → 𝐵 ∈ ℝ*) | |
13 | pnfxr 10417 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
14 | 13 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → +∞ ∈ ℝ*) |
15 | simpr3 1256 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → 𝐶 < 𝐵) | |
16 | pnfge 12257 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ* → 𝐵 ≤ +∞) | |
17 | 16 | ad2antlr 718 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → 𝐵 ≤ +∞) |
18 | 7, 12, 14, 15, 17 | xrltletrd 12287 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → 𝐶 < +∞) |
19 | xrrebnd 12294 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶 ∧ 𝐶 < +∞))) | |
20 | 7, 19 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶 ∧ 𝐶 < +∞))) |
21 | 11, 18, 20 | mpbir2and 704 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → 𝐶 ∈ ℝ) |
22 | 21, 10, 15 | 3jca 1162 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) |
23 | 22 | ex 403 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵) → (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
24 | rexr 10409 | . . . 4 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*) | |
25 | 24 | 3anim1i 1195 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵) → (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵)) |
26 | 23, 25 | impbid1 217 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
27 | 3, 26 | bitrd 271 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 < 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1111 ∈ wcel 2164 class class class wbr 4875 (class class class)co 6910 ℝcr 10258 +∞cpnf 10395 -∞cmnf 10396 ℝ*cxr 10397 < clt 10398 ≤ cle 10399 [,)cico 12472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-pre-lttri 10333 ax-pre-lttrn 10334 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-po 5265 df-so 5266 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-ico 12476 |
This theorem is referenced by: icossre 12549 elicopnf 12565 icoshft 12592 modelico 12982 muladdmodid 13012 icodiamlt 14558 fprodge0 15103 fprodge1 15105 rge0srg 20184 metustexhalf 22738 cnbl0 22954 icoopnst 23115 iocopnst 23116 icopnfcnv 23118 icopnfhmeo 23119 iccpnfcnv 23120 psercnlem2 24584 psercnlem1 24585 psercn 24586 abelth 24601 tanord1 24690 tanord 24691 efopnlem1 24808 logtayl 24812 rlimcnp 25112 rlimcnp2 25113 dchrvmasumlem2 25607 dchrvmasumiflem1 25610 pntlemb 25706 pnt 25723 ubico 30080 xrge0slmod 30385 voliune 30833 volfiniune 30834 dya2icoseg 30880 sibfinima 30942 relowlpssretop 33756 tan2h 33943 itg2addnclem2 34004 binomcxplemdvbinom 39391 binomcxplemcvg 39392 binomcxplemnotnn0 39394 limciccioolb 40646 fourierdlem32 41148 fourierdlem43 41159 fourierdlem63 41178 fourierdlem79 41194 fouriersw 41240 expnegico01 43173 dignnld 43262 eenglngeehlnmlem1 43305 |
Copyright terms: Public domain | W3C validator |