MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2wlkspth Structured version   Visualization version   GIF version

Theorem usgr2wlkspth 29737
Description: In a simple graph, any walk of length 2 between two different vertices is a simple path. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 27-Jan-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
usgr2wlkspth ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃))

Proof of Theorem usgr2wlkspth
StepHypRef Expression
1 simpl31 1255 . . . . . . . 8 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → 𝐹(Walks‘𝐺)𝑃)
2 simp2 1137 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝑃‘0) = 𝐴)
3 simp3 1138 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝑃‘(♯‘𝐹)) = 𝐵)
42, 3neeq12d 2989 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ 𝐴𝐵))
54bicomd 223 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))
653anbi3d 1444 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵) ↔ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))))
7 usgr2wlkspthlem1 29735 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → Fun 𝐹)
87ex 412 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → Fun 𝐹))
983ad2ant1 1133 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → Fun 𝐹))
106, 9sylbid 240 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵) → Fun 𝐹))
11103ad2ant3 1135 . . . . . . . . 9 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵) → Fun 𝐹))
1211imp 406 . . . . . . . 8 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → Fun 𝐹)
13 istrl 29673 . . . . . . . 8 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
141, 12, 13sylanbrc 583 . . . . . . 7 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → 𝐹(Trails‘𝐺)𝑃)
15 usgr2wlkspthlem2 29736 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → Fun 𝑃)
1615ex 412 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → Fun 𝑃))
17163ad2ant1 1133 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → Fun 𝑃))
186, 17sylbid 240 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵) → Fun 𝑃))
19183ad2ant3 1135 . . . . . . . 8 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵) → Fun 𝑃))
2019imp 406 . . . . . . 7 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → Fun 𝑃)
21 isspth 29700 . . . . . . 7 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
2214, 20, 21sylanbrc 583 . . . . . 6 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → 𝐹(SPaths‘𝐺)𝑃)
23 3simpc 1150 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))
24233ad2ant3 1135 . . . . . . 7 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))
2524adantr 480 . . . . . 6 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))
26 3anass 1094 . . . . . 6 ((𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
2722, 25, 26sylanbrc 583 . . . . 5 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))
28 3simpa 1148 . . . . . . 7 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
2928adantr 480 . . . . . 6 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
30 eqid 2731 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
3130isspthonpth 29727 . . . . . 6 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
3229, 31syl 17 . . . . 5 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
3327, 32mpbird 257 . . . 4 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → 𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃)
3433ex 412 . . 3 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵) → 𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃))
3530wlkonprop 29635 . . . 4 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
36 3simpc 1150 . . . . 5 ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
37363anim1i 1152 . . . 4 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
3835, 37syl 17 . . 3 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
3934, 38syl11 33 . 2 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃))
40 spthonpthon 29729 . . 3 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃)
41 pthontrlon 29725 . . 3 (𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃)
42 trlsonwlkon 29686 . . 3 (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃)
4340, 41, 423syl 18 . 2 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃)
4439, 43impbid1 225 1 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436   class class class wbr 5089  ccnv 5613  Fun wfun 6475  cfv 6481  (class class class)co 7346  0cc0 11006  2c2 12180  chash 14237  Vtxcvtx 28974  USGraphcusgr 29127  Walkscwlks 29575  WalksOncwlkson 29576  Trailsctrls 29667  TrailsOnctrlson 29668  SPathscspths 29689  PathsOncpthson 29690  SPathsOncspthson 29691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14504  df-s2 14755  df-s3 14756  df-edg 29026  df-uhgr 29036  df-upgr 29060  df-umgr 29061  df-uspgr 29128  df-usgr 29129  df-wlks 29578  df-wlkson 29579  df-trls 29669  df-trlson 29670  df-pths 29692  df-spths 29693  df-pthson 29694  df-spthson 29695
This theorem is referenced by:  usgr2trlspth  29739  wpthswwlks2on  29942
  Copyright terms: Public domain W3C validator