Step | Hyp | Ref
| Expression |
1 | | simpl31 1254 |
. . . . . . . 8
β’ ((((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ π΄ β π΅)) β πΉ(WalksβπΊ)π) |
2 | | simp2 1137 |
. . . . . . . . . . . . . 14
β’ ((πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β (πβ0) = π΄) |
3 | | simp3 1138 |
. . . . . . . . . . . . . 14
β’ ((πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β (πβ(β―βπΉ)) = π΅) |
4 | 2, 3 | neeq12d 3002 |
. . . . . . . . . . . . 13
β’ ((πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β ((πβ0) β (πβ(β―βπΉ)) β π΄ β π΅)) |
5 | 4 | bicomd 222 |
. . . . . . . . . . . 12
β’ ((πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β (π΄ β π΅ β (πβ0) β (πβ(β―βπΉ)))) |
6 | 5 | 3anbi3d 1442 |
. . . . . . . . . . 11
β’ ((πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β ((πΊ β USGraph β§ (β―βπΉ) = 2 β§ π΄ β π΅) β (πΊ β USGraph β§ (β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ))))) |
7 | | usgr2wlkspthlem1 29003 |
. . . . . . . . . . . . 13
β’ ((πΉ(WalksβπΊ)π β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ)))) β Fun β‘πΉ) |
8 | 7 | ex 413 |
. . . . . . . . . . . 12
β’ (πΉ(WalksβπΊ)π β ((πΊ β USGraph β§ (β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ))) β Fun β‘πΉ)) |
9 | 8 | 3ad2ant1 1133 |
. . . . . . . . . . 11
β’ ((πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β ((πΊ β USGraph β§ (β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ))) β Fun β‘πΉ)) |
10 | 6, 9 | sylbid 239 |
. . . . . . . . . 10
β’ ((πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β ((πΊ β USGraph β§ (β―βπΉ) = 2 β§ π΄ β π΅) β Fun β‘πΉ)) |
11 | 10 | 3ad2ant3 1135 |
. . . . . . . . 9
β’ (((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β ((πΊ β USGraph β§ (β―βπΉ) = 2 β§ π΄ β π΅) β Fun β‘πΉ)) |
12 | 11 | imp 407 |
. . . . . . . 8
β’ ((((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ π΄ β π΅)) β Fun β‘πΉ) |
13 | | istrl 28942 |
. . . . . . . 8
β’ (πΉ(TrailsβπΊ)π β (πΉ(WalksβπΊ)π β§ Fun β‘πΉ)) |
14 | 1, 12, 13 | sylanbrc 583 |
. . . . . . 7
β’ ((((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ π΄ β π΅)) β πΉ(TrailsβπΊ)π) |
15 | | usgr2wlkspthlem2 29004 |
. . . . . . . . . . . 12
β’ ((πΉ(WalksβπΊ)π β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ)))) β Fun β‘π) |
16 | 15 | ex 413 |
. . . . . . . . . . 11
β’ (πΉ(WalksβπΊ)π β ((πΊ β USGraph β§ (β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ))) β Fun β‘π)) |
17 | 16 | 3ad2ant1 1133 |
. . . . . . . . . 10
β’ ((πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β ((πΊ β USGraph β§ (β―βπΉ) = 2 β§ (πβ0) β (πβ(β―βπΉ))) β Fun β‘π)) |
18 | 6, 17 | sylbid 239 |
. . . . . . . . 9
β’ ((πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β ((πΊ β USGraph β§ (β―βπΉ) = 2 β§ π΄ β π΅) β Fun β‘π)) |
19 | 18 | 3ad2ant3 1135 |
. . . . . . . 8
β’ (((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β ((πΊ β USGraph β§ (β―βπΉ) = 2 β§ π΄ β π΅) β Fun β‘π)) |
20 | 19 | imp 407 |
. . . . . . 7
β’ ((((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ π΄ β π΅)) β Fun β‘π) |
21 | | isspth 28970 |
. . . . . . 7
β’ (πΉ(SPathsβπΊ)π β (πΉ(TrailsβπΊ)π β§ Fun β‘π)) |
22 | 14, 20, 21 | sylanbrc 583 |
. . . . . 6
β’ ((((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ π΄ β π΅)) β πΉ(SPathsβπΊ)π) |
23 | | 3simpc 1150 |
. . . . . . . 8
β’ ((πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β ((πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) |
24 | 23 | 3ad2ant3 1135 |
. . . . . . 7
β’ (((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β ((πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) |
25 | 24 | adantr 481 |
. . . . . 6
β’ ((((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ π΄ β π΅)) β ((πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) |
26 | | 3anass 1095 |
. . . . . 6
β’ ((πΉ(SPathsβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β (πΉ(SPathsβπΊ)π β§ ((πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅))) |
27 | 22, 25, 26 | sylanbrc 583 |
. . . . 5
β’ ((((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ π΄ β π΅)) β (πΉ(SPathsβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) |
28 | | 3simpa 1148 |
. . . . . . 7
β’ (((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β ((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V))) |
29 | 28 | adantr 481 |
. . . . . 6
β’ ((((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ π΄ β π΅)) β ((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V))) |
30 | | eqid 2732 |
. . . . . . 7
β’
(VtxβπΊ) =
(VtxβπΊ) |
31 | 30 | isspthonpth 28995 |
. . . . . 6
β’ (((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V)) β (πΉ(π΄(SPathsOnβπΊ)π΅)π β (πΉ(SPathsβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅))) |
32 | 29, 31 | syl 17 |
. . . . 5
β’ ((((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ π΄ β π΅)) β (πΉ(π΄(SPathsOnβπΊ)π΅)π β (πΉ(SPathsβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅))) |
33 | 27, 32 | mpbird 256 |
. . . 4
β’ ((((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β§ (πΊ β USGraph β§ (β―βπΉ) = 2 β§ π΄ β π΅)) β πΉ(π΄(SPathsOnβπΊ)π΅)π) |
34 | 33 | ex 413 |
. . 3
β’ (((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β ((πΊ β USGraph β§ (β―βπΉ) = 2 β§ π΄ β π΅) β πΉ(π΄(SPathsOnβπΊ)π΅)π)) |
35 | 30 | wlkonprop 28904 |
. . . 4
β’ (πΉ(π΄(WalksOnβπΊ)π΅)π β ((πΊ β V β§ π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅))) |
36 | | 3simpc 1150 |
. . . . 5
β’ ((πΊ β V β§ π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β (π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ))) |
37 | 36 | 3anim1i 1152 |
. . . 4
β’ (((πΊ β V β§ π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β ((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅))) |
38 | 35, 37 | syl 17 |
. . 3
β’ (πΉ(π΄(WalksOnβπΊ)π΅)π β ((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅))) |
39 | 34, 38 | syl11 33 |
. 2
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2 β§
π΄ β π΅) β (πΉ(π΄(WalksOnβπΊ)π΅)π β πΉ(π΄(SPathsOnβπΊ)π΅)π)) |
40 | | spthonpthon 28997 |
. . 3
β’ (πΉ(π΄(SPathsOnβπΊ)π΅)π β πΉ(π΄(PathsOnβπΊ)π΅)π) |
41 | | pthontrlon 28993 |
. . 3
β’ (πΉ(π΄(PathsOnβπΊ)π΅)π β πΉ(π΄(TrailsOnβπΊ)π΅)π) |
42 | | trlsonwlkon 28956 |
. . 3
β’ (πΉ(π΄(TrailsOnβπΊ)π΅)π β πΉ(π΄(WalksOnβπΊ)π΅)π) |
43 | 40, 41, 42 | 3syl 18 |
. 2
β’ (πΉ(π΄(SPathsOnβπΊ)π΅)π β πΉ(π΄(WalksOnβπΊ)π΅)π) |
44 | 39, 43 | impbid1 224 |
1
β’ ((πΊ β USGraph β§
(β―βπΉ) = 2 β§
π΄ β π΅) β (πΉ(π΄(WalksOnβπΊ)π΅)π β πΉ(π΄(SPathsOnβπΊ)π΅)π)) |