MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2wlkspth Structured version   Visualization version   GIF version

Theorem usgr2wlkspth 29739
Description: In a simple graph, any walk of length 2 between two different vertices is a simple path. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 27-Jan-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
usgr2wlkspth ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃))

Proof of Theorem usgr2wlkspth
StepHypRef Expression
1 simpl31 1255 . . . . . . . 8 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → 𝐹(Walks‘𝐺)𝑃)
2 simp2 1137 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝑃‘0) = 𝐴)
3 simp3 1138 . . . . . . . . . . . . . 14 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝑃‘(♯‘𝐹)) = 𝐵)
42, 3neeq12d 2986 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ 𝐴𝐵))
54bicomd 223 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))
653anbi3d 1444 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵) ↔ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))))
7 usgr2wlkspthlem1 29737 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → Fun 𝐹)
87ex 412 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → Fun 𝐹))
983ad2ant1 1133 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → Fun 𝐹))
106, 9sylbid 240 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵) → Fun 𝐹))
11103ad2ant3 1135 . . . . . . . . 9 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵) → Fun 𝐹))
1211imp 406 . . . . . . . 8 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → Fun 𝐹)
13 istrl 29675 . . . . . . . 8 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
141, 12, 13sylanbrc 583 . . . . . . 7 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → 𝐹(Trails‘𝐺)𝑃)
15 usgr2wlkspthlem2 29738 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))) → Fun 𝑃)
1615ex 412 . . . . . . . . . . 11 (𝐹(Walks‘𝐺)𝑃 → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → Fun 𝑃))
17163ad2ant1 1133 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))) → Fun 𝑃))
186, 17sylbid 240 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵) → Fun 𝑃))
19183ad2ant3 1135 . . . . . . . 8 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵) → Fun 𝑃))
2019imp 406 . . . . . . 7 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → Fun 𝑃)
21 isspth 29702 . . . . . . 7 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
2214, 20, 21sylanbrc 583 . . . . . 6 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → 𝐹(SPaths‘𝐺)𝑃)
23 3simpc 1150 . . . . . . . 8 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))
24233ad2ant3 1135 . . . . . . 7 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))
2524adantr 480 . . . . . 6 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))
26 3anass 1094 . . . . . 6 ((𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
2722, 25, 26sylanbrc 583 . . . . 5 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))
28 3simpa 1148 . . . . . . 7 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
2928adantr 480 . . . . . 6 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
30 eqid 2729 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
3130isspthonpth 29729 . . . . . 6 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
3229, 31syl 17 . . . . 5 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
3327, 32mpbird 257 . . . 4 ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵)) → 𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃)
3433ex 412 . . 3 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵) → 𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃))
3530wlkonprop 29637 . . . 4 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
36 3simpc 1150 . . . . 5 ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
37363anim1i 1152 . . . 4 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
3835, 37syl 17 . . 3 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
3934, 38syl11 33 . 2 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃))
40 spthonpthon 29731 . . 3 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃)
41 pthontrlon 29727 . . 3 (𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃)
42 trlsonwlkon 29688 . . 3 (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃)
4340, 41, 423syl 18 . 2 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃)
4439, 43impbid1 225 1 ((𝐺 ∈ USGraph ∧ (♯‘𝐹) = 2 ∧ 𝐴𝐵) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444   class class class wbr 5102  ccnv 5630  Fun wfun 6493  cfv 6499  (class class class)co 7369  0cc0 11044  2c2 12217  chash 14271  Vtxcvtx 28976  USGraphcusgr 29129  Walkscwlks 29577  WalksOncwlkson 29578  Trailsctrls 29669  TrailsOnctrlson 29670  SPathscspths 29691  PathsOncpthson 29692  SPathsOncspthson 29693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-s2 14790  df-s3 14791  df-edg 29028  df-uhgr 29038  df-upgr 29062  df-umgr 29063  df-uspgr 29130  df-usgr 29131  df-wlks 29580  df-wlkson 29581  df-trls 29671  df-trlson 29672  df-pths 29694  df-spths 29695  df-pthson 29696  df-spthson 29697
This theorem is referenced by:  usgr2trlspth  29741  wpthswwlks2on  29941
  Copyright terms: Public domain W3C validator