MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgr2wlkspth Structured version   Visualization version   GIF version

Theorem usgr2wlkspth 29005
Description: In a simple graph, any walk of length 2 between two different vertices is a simple path. (Contributed by Alexander van der Vekens, 2-Mar-2018.) (Revised by AV, 27-Jan-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
usgr2wlkspth ((𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡) β†’ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐡)𝑃 ↔ 𝐹(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑃))

Proof of Theorem usgr2wlkspth
StepHypRef Expression
1 simpl31 1254 . . . . . . . 8 ((((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)) ∧ (𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡)) β†’ 𝐹(Walksβ€˜πΊ)𝑃)
2 simp2 1137 . . . . . . . . . . . . . 14 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡) β†’ (π‘ƒβ€˜0) = 𝐴)
3 simp3 1138 . . . . . . . . . . . . . 14 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡) β†’ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)
42, 3neeq12d 3002 . . . . . . . . . . . . 13 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡) β†’ ((π‘ƒβ€˜0) β‰  (π‘ƒβ€˜(β™―β€˜πΉ)) ↔ 𝐴 β‰  𝐡))
54bicomd 222 . . . . . . . . . . . 12 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡) β†’ (𝐴 β‰  𝐡 ↔ (π‘ƒβ€˜0) β‰  (π‘ƒβ€˜(β™―β€˜πΉ))))
653anbi3d 1442 . . . . . . . . . . 11 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡) β†’ ((𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡) ↔ (𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ (π‘ƒβ€˜0) β‰  (π‘ƒβ€˜(β™―β€˜πΉ)))))
7 usgr2wlkspthlem1 29003 . . . . . . . . . . . . 13 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ (π‘ƒβ€˜0) β‰  (π‘ƒβ€˜(β™―β€˜πΉ)))) β†’ Fun ◑𝐹)
87ex 413 . . . . . . . . . . . 12 (𝐹(Walksβ€˜πΊ)𝑃 β†’ ((𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ (π‘ƒβ€˜0) β‰  (π‘ƒβ€˜(β™―β€˜πΉ))) β†’ Fun ◑𝐹))
983ad2ant1 1133 . . . . . . . . . . 11 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡) β†’ ((𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ (π‘ƒβ€˜0) β‰  (π‘ƒβ€˜(β™―β€˜πΉ))) β†’ Fun ◑𝐹))
106, 9sylbid 239 . . . . . . . . . 10 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡) β†’ ((𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡) β†’ Fun ◑𝐹))
11103ad2ant3 1135 . . . . . . . . 9 (((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)) β†’ ((𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡) β†’ Fun ◑𝐹))
1211imp 407 . . . . . . . 8 ((((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)) ∧ (𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡)) β†’ Fun ◑𝐹)
13 istrl 28942 . . . . . . . 8 (𝐹(Trailsβ€˜πΊ)𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ Fun ◑𝐹))
141, 12, 13sylanbrc 583 . . . . . . 7 ((((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)) ∧ (𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡)) β†’ 𝐹(Trailsβ€˜πΊ)𝑃)
15 usgr2wlkspthlem2 29004 . . . . . . . . . . . 12 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ (π‘ƒβ€˜0) β‰  (π‘ƒβ€˜(β™―β€˜πΉ)))) β†’ Fun ◑𝑃)
1615ex 413 . . . . . . . . . . 11 (𝐹(Walksβ€˜πΊ)𝑃 β†’ ((𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ (π‘ƒβ€˜0) β‰  (π‘ƒβ€˜(β™―β€˜πΉ))) β†’ Fun ◑𝑃))
17163ad2ant1 1133 . . . . . . . . . 10 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡) β†’ ((𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ (π‘ƒβ€˜0) β‰  (π‘ƒβ€˜(β™―β€˜πΉ))) β†’ Fun ◑𝑃))
186, 17sylbid 239 . . . . . . . . 9 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡) β†’ ((𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡) β†’ Fun ◑𝑃))
19183ad2ant3 1135 . . . . . . . 8 (((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)) β†’ ((𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡) β†’ Fun ◑𝑃))
2019imp 407 . . . . . . 7 ((((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)) ∧ (𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡)) β†’ Fun ◑𝑃)
21 isspth 28970 . . . . . . 7 (𝐹(SPathsβ€˜πΊ)𝑃 ↔ (𝐹(Trailsβ€˜πΊ)𝑃 ∧ Fun ◑𝑃))
2214, 20, 21sylanbrc 583 . . . . . 6 ((((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)) ∧ (𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡)) β†’ 𝐹(SPathsβ€˜πΊ)𝑃)
23 3simpc 1150 . . . . . . . 8 ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡) β†’ ((π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡))
24233ad2ant3 1135 . . . . . . 7 (((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)) β†’ ((π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡))
2524adantr 481 . . . . . 6 ((((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)) ∧ (𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡)) β†’ ((π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡))
26 3anass 1095 . . . . . 6 ((𝐹(SPathsβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡) ↔ (𝐹(SPathsβ€˜πΊ)𝑃 ∧ ((π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)))
2722, 25, 26sylanbrc 583 . . . . 5 ((((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)) ∧ (𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡)) β†’ (𝐹(SPathsβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡))
28 3simpa 1148 . . . . . . 7 (((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)) β†’ ((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
2928adantr 481 . . . . . 6 ((((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)) ∧ (𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡)) β†’ ((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
30 eqid 2732 . . . . . . 7 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
3130isspthonpth 28995 . . . . . 6 (((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) β†’ (𝐹(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑃 ↔ (𝐹(SPathsβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)))
3229, 31syl 17 . . . . 5 ((((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)) ∧ (𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡)) β†’ (𝐹(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑃 ↔ (𝐹(SPathsβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)))
3327, 32mpbird 256 . . . 4 ((((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)) ∧ (𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡)) β†’ 𝐹(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑃)
3433ex 413 . . 3 (((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)) β†’ ((𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡) β†’ 𝐹(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑃))
3530wlkonprop 28904 . . . 4 (𝐹(𝐴(WalksOnβ€˜πΊ)𝐡)𝑃 β†’ ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)))
36 3simpc 1150 . . . . 5 ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) β†’ (𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)))
37363anim1i 1152 . . . 4 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)) β†’ ((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)))
3835, 37syl 17 . . 3 (𝐹(𝐴(WalksOnβ€˜πΊ)𝐡)𝑃 β†’ ((𝐴 ∈ (Vtxβ€˜πΊ) ∧ 𝐡 ∈ (Vtxβ€˜πΊ)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = 𝐴 ∧ (π‘ƒβ€˜(β™―β€˜πΉ)) = 𝐡)))
3934, 38syl11 33 . 2 ((𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡) β†’ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐡)𝑃 β†’ 𝐹(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑃))
40 spthonpthon 28997 . . 3 (𝐹(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑃 β†’ 𝐹(𝐴(PathsOnβ€˜πΊ)𝐡)𝑃)
41 pthontrlon 28993 . . 3 (𝐹(𝐴(PathsOnβ€˜πΊ)𝐡)𝑃 β†’ 𝐹(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑃)
42 trlsonwlkon 28956 . . 3 (𝐹(𝐴(TrailsOnβ€˜πΊ)𝐡)𝑃 β†’ 𝐹(𝐴(WalksOnβ€˜πΊ)𝐡)𝑃)
4340, 41, 423syl 18 . 2 (𝐹(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑃 β†’ 𝐹(𝐴(WalksOnβ€˜πΊ)𝐡)𝑃)
4439, 43impbid1 224 1 ((𝐺 ∈ USGraph ∧ (β™―β€˜πΉ) = 2 ∧ 𝐴 β‰  𝐡) β†’ (𝐹(𝐴(WalksOnβ€˜πΊ)𝐡)𝑃 ↔ 𝐹(𝐴(SPathsOnβ€˜πΊ)𝐡)𝑃))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  Vcvv 3474   class class class wbr 5147  β—‘ccnv 5674  Fun wfun 6534  β€˜cfv 6540  (class class class)co 7405  0cc0 11106  2c2 12263  β™―chash 14286  Vtxcvtx 28245  USGraphcusgr 28398  Walkscwlks 28842  WalksOncwlkson 28843  Trailsctrls 28936  TrailsOnctrlson 28937  SPathscspths 28959  PathsOncpthson 28960  SPathsOncspthson 28961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-concat 14517  df-s1 14542  df-s2 14795  df-s3 14796  df-edg 28297  df-uhgr 28307  df-upgr 28331  df-umgr 28332  df-uspgr 28399  df-usgr 28400  df-wlks 28845  df-wlkson 28846  df-trls 28938  df-trlson 28939  df-pths 28962  df-spths 28963  df-pthson 28964  df-spthson 28965
This theorem is referenced by:  usgr2trlspth  29007  wpthswwlks2on  29204
  Copyright terms: Public domain W3C validator