Proof of Theorem uhgrwkspth
Step | Hyp | Ref
| Expression |
1 | | simpl31 1253 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵)) → 𝐹(Walks‘𝐺)𝑃) |
2 | | uhgrwkspthlem1 28121 |
. . . . . . . . . . . . . 14
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (♯‘𝐹) = 1) → Fun ◡𝐹) |
3 | 2 | expcom 414 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐹) =
1 → (𝐹(Walks‘𝐺)𝑃 → Fun ◡𝐹)) |
4 | 3 | 3ad2ant2 1133 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵) → (𝐹(Walks‘𝐺)𝑃 → Fun ◡𝐹)) |
5 | 4 | com12 32 |
. . . . . . . . . . 11
⊢ (𝐹(Walks‘𝐺)𝑃 → ((𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵) → Fun ◡𝐹)) |
6 | 5 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵) → Fun ◡𝐹)) |
7 | 6 | 3ad2ant3 1134 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵) → Fun ◡𝐹)) |
8 | 7 | imp 407 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵)) → Fun ◡𝐹) |
9 | | istrl 28064 |
. . . . . . . 8
⊢ (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun ◡𝐹)) |
10 | 1, 8, 9 | sylanbrc 583 |
. . . . . . 7
⊢ ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵)) → 𝐹(Trails‘𝐺)𝑃) |
11 | | 3simpc 1149 |
. . . . . . . . 9
⊢ ((𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵) → ((♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵)) |
12 | 11 | adantl 482 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵)) → ((♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵)) |
13 | | 3simpc 1149 |
. . . . . . . . . 10
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) |
14 | 13 | 3ad2ant3 1134 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) |
15 | 14 | adantr 481 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵)) → ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) |
16 | | uhgrwkspthlem2 28122 |
. . . . . . . 8
⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ ((♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → Fun ◡𝑃) |
17 | 1, 12, 15, 16 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵)) → Fun ◡𝑃) |
18 | | isspth 28092 |
. . . . . . 7
⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) |
19 | 10, 17, 18 | sylanbrc 583 |
. . . . . 6
⊢ ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵)) → 𝐹(SPaths‘𝐺)𝑃) |
20 | | 3anass 1094 |
. . . . . 6
⊢ ((𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
21 | 19, 15, 20 | sylanbrc 583 |
. . . . 5
⊢ ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵)) → (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) |
22 | | 3simpa 1147 |
. . . . . . 7
⊢ (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
23 | 22 | adantr 481 |
. . . . . 6
⊢ ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))) |
24 | | eqid 2738 |
. . . . . . 7
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
25 | 24 | isspthonpth 28117 |
. . . . . 6
⊢ (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
26 | 23, 25 | syl 17 |
. . . . 5
⊢ ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵)) → (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
27 | 21, 26 | mpbird 256 |
. . . 4
⊢ ((((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) ∧ (𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵)) → 𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃) |
28 | 27 | ex 413 |
. . 3
⊢ (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵) → 𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃)) |
29 | 24 | wlkonprop 28026 |
. . . 4
⊢ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
30 | | 3simpc 1149 |
. . . . 5
⊢ ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) |
31 | 30 | 3anim1i 1151 |
. . . 4
⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
32 | 29, 31 | syl 17 |
. . 3
⊢ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵))) |
33 | 28, 32 | syl11 33 |
. 2
⊢ ((𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → 𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃)) |
34 | | spthonpthon 28119 |
. . 3
⊢ (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → 𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃) |
35 | | pthontrlon 28115 |
. . 3
⊢ (𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃 → 𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃) |
36 | | trlsonwlkon 28078 |
. . 3
⊢ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 → 𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃) |
37 | 34, 35, 36 | 3syl 18 |
. 2
⊢ (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → 𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃) |
38 | 33, 37 | impbid1 224 |
1
⊢ ((𝐺 ∈ 𝑊 ∧ (♯‘𝐹) = 1 ∧ 𝐴 ≠ 𝐵) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ 𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃)) |