![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spthonpthon | Structured version Visualization version GIF version |
Description: A simple path between two vertices is a path between these vertices. (Contributed by AV, 24-Jan-2021.) |
Ref | Expression |
---|---|
spthonpthon | ⊢ (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → 𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2824 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
2 | 1 | spthonprop 27046 | . . 3 ⊢ (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) |
3 | 3simpc 1188 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) | |
4 | 3 | 3anim1i 1197 | . . 3 ⊢ (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃))) |
6 | spthispth 27027 | . . . . 5 ⊢ (𝐹(SPaths‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) | |
7 | 6 | anim2i 612 | . . . 4 ⊢ ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃)) |
8 | 7 | 3ad2ant3 1171 | . . 3 ⊢ (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃)) |
9 | 1 | ispthson 27043 | . . . 4 ⊢ (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃))) |
10 | 9 | 3adant3 1168 | . . 3 ⊢ (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃)) → (𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(Paths‘𝐺)𝑃))) |
11 | 8, 10 | mpbird 249 | . 2 ⊢ (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ∧ 𝐹(SPaths‘𝐺)𝑃)) → 𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃) |
12 | 5, 11 | syl 17 | 1 ⊢ (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → 𝐹(𝐴(PathsOn‘𝐺)𝐵)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1113 ∈ wcel 2166 Vcvv 3413 class class class wbr 4872 ‘cfv 6122 (class class class)co 6904 Vtxcvtx 26293 TrailsOnctrlson 26991 Pathscpths 27013 SPathscspths 27014 PathsOncpthson 27015 SPathsOncspthson 27016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-ifp 1092 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-int 4697 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-1st 7427 df-2nd 7428 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-1o 7825 df-er 8008 df-map 8123 df-pm 8124 df-en 8222 df-dom 8223 df-sdom 8224 df-fin 8225 df-card 9077 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-nn 11350 df-n0 11618 df-z 11704 df-uz 11968 df-fz 12619 df-fzo 12760 df-hash 13410 df-word 13574 df-wlks 26896 df-trls 26992 df-pths 27017 df-spths 27018 df-pthson 27019 df-spthson 27020 |
This theorem is referenced by: uhgrwkspth 27056 usgr2wlkspth 27060 wspthneq1eq2 27158 frgrconngr 27674 |
Copyright terms: Public domain | W3C validator |