Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem14 Structured version   Visualization version   GIF version

Theorem paddasslem14 39815
Description: Lemma for paddass 39820. Remove 𝑝𝑧, 𝑥𝑦, and ¬ 𝑟 (𝑥 𝑦) from antecedent of paddasslem10 39811, using paddasslem11 39812, paddasslem12 39813, and paddasslem13 39814. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l = (le‘𝐾)
paddasslem.j = (join‘𝐾)
paddasslem.a 𝐴 = (Atoms‘𝐾)
paddasslem.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddasslem14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))

Proof of Theorem paddasslem14
StepHypRef Expression
1 paddasslem.l . . . . . . . . 9 = (le‘𝐾)
2 paddasslem.j . . . . . . . . 9 = (join‘𝐾)
3 paddasslem.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
4 paddasslem.p . . . . . . . . 9 + = (+𝑃𝐾)
51, 2, 3, 4paddasslem11 39812 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑧𝑍) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
653ad2antr3 1189 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
76ex 412 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑥𝑋𝑦𝑌𝑧𝑍) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
87adantrd 491 . . . . 5 (((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
98a1d 25 . . . 4 (((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))
109exp31 419 . . 3 (𝐾 ∈ HL → (𝑝 = 𝑧 → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))))
11 3simpb 1148 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑝𝑧𝑥 = 𝑦) → (𝐾 ∈ HL ∧ 𝑥 = 𝑦))
12113anim1i 1151 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑝𝑧𝑥 = 𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) → ((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)))
13 3simpc 1149 . . . . . . . . 9 ((𝑥𝑋𝑦𝑌𝑧𝑍) → (𝑦𝑌𝑧𝑍))
1413anim1i 615 . . . . . . . 8 (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → ((𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))))
151, 2, 3, 4paddasslem12 39813 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
1612, 14, 15syl2an 596 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥 = 𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
17163exp1 1351 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝑧𝑥 = 𝑦) → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
18173expia 1120 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝𝑧) → (𝑥 = 𝑦 → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))))
19 3simpa 1147 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) → (𝐾 ∈ HL ∧ 𝑝𝑧))
20193anim1i 1151 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) → ((𝐾 ∈ HL ∧ 𝑝𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)))
21 3simpa 1147 . . . . . . . . . . . . . 14 ((𝑥𝑋𝑦𝑌𝑧𝑍) → (𝑥𝑋𝑦𝑌))
22 3simpa 1147 . . . . . . . . . . . . . 14 ((𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)) → (𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟)))
2321, 22anim12i 613 . . . . . . . . . . . . 13 (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → ((𝑥𝑋𝑦𝑌) ∧ (𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟))))
241, 2, 3, 4paddasslem13 39814 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌) ∧ (𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
2520, 23, 24syl2an 596 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
2625expr 456 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → ((𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
27263expd 1352 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → (𝑟 (𝑥 𝑦) → (𝑝 (𝑥 𝑟) → (𝑟 (𝑦 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
281, 2, 3, 4paddasslem10 39811 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
2928expr 456 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → ((¬ 𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
30293expd 1352 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → (¬ 𝑟 (𝑥 𝑦) → (𝑝 (𝑥 𝑟) → (𝑟 (𝑦 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
3127, 30pm2.61d 179 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → (𝑝 (𝑥 𝑟) → (𝑟 (𝑦 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))
3231impd 410 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → ((𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
3332expimpd 453 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
34333exp 1118 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
35343expia 1120 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝𝑧) → (𝑥𝑦 → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))))
3618, 35pm2.61dne 3025 . . . 4 ((𝐾 ∈ HL ∧ 𝑝𝑧) → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
3736ex 412 . . 3 (𝐾 ∈ HL → (𝑝𝑧 → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))))
3810, 37pm2.61dne 3025 . 2 (𝐾 ∈ HL → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
39383imp1 1346 1 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wss 3962   class class class wbr 5147  cfv 6562  (class class class)co 7430  lecple 17304  joincjn 18368  Atomscatm 39244  HLchlt 39331  +𝑃cpadd 39777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-proset 18351  df-poset 18370  df-plt 18387  df-lub 18403  df-glb 18404  df-join 18405  df-meet 18406  df-p0 18482  df-lat 18489  df-clat 18556  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-padd 39778
This theorem is referenced by:  paddasslem15  39816
  Copyright terms: Public domain W3C validator