Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem14 Structured version   Visualization version   GIF version

 Description: Lemma for paddass 37079. Remove 𝑝 ≠ 𝑧, 𝑥 ≠ 𝑦, and ¬ 𝑟 ≤ (𝑥 ∨ 𝑦) from antecedent of paddasslem10 37070, using paddasslem11 37071, paddasslem12 37072, and paddasslem13 37073. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
Assertion
Ref Expression
paddasslem14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))

StepHypRef Expression
1 paddasslem.l . . . . . . . . 9 = (le‘𝐾)
2 paddasslem.j . . . . . . . . 9 = (join‘𝐾)
3 paddasslem.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
4 paddasslem.p . . . . . . . . 9 + = (+𝑃𝐾)
51, 2, 3, 4paddasslem11 37071 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑧𝑍) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
653ad2antr3 1187 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
76ex 416 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑥𝑋𝑦𝑌𝑧𝑍) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
87adantrd 495 . . . . 5 (((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
98a1d 25 . . . 4 (((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))
109exp31 423 . . 3 (𝐾 ∈ HL → (𝑝 = 𝑧 → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))))
11 3simpb 1146 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑝𝑧𝑥 = 𝑦) → (𝐾 ∈ HL ∧ 𝑥 = 𝑦))
12113anim1i 1149 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑝𝑧𝑥 = 𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) → ((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)))
13 3simpc 1147 . . . . . . . . 9 ((𝑥𝑋𝑦𝑌𝑧𝑍) → (𝑦𝑌𝑧𝑍))
1413anim1i 617 . . . . . . . 8 (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → ((𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))))
151, 2, 3, 4paddasslem12 37072 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
1612, 14, 15syl2an 598 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥 = 𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
17163exp1 1349 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝑧𝑥 = 𝑦) → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
18173expia 1118 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝𝑧) → (𝑥 = 𝑦 → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))))
19 3simpa 1145 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) → (𝐾 ∈ HL ∧ 𝑝𝑧))
20193anim1i 1149 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) → ((𝐾 ∈ HL ∧ 𝑝𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)))
21 3simpa 1145 . . . . . . . . . . . . . 14 ((𝑥𝑋𝑦𝑌𝑧𝑍) → (𝑥𝑋𝑦𝑌))
22 3simpa 1145 . . . . . . . . . . . . . 14 ((𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)) → (𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟)))
2321, 22anim12i 615 . . . . . . . . . . . . 13 (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → ((𝑥𝑋𝑦𝑌) ∧ (𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟))))
241, 2, 3, 4paddasslem13 37073 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌) ∧ (𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
2520, 23, 24syl2an 598 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
2625expr 460 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → ((𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
27263expd 1350 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → (𝑟 (𝑥 𝑦) → (𝑝 (𝑥 𝑟) → (𝑟 (𝑦 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
281, 2, 3, 4paddasslem10 37070 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
2928expr 460 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → ((¬ 𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
30293expd 1350 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → (¬ 𝑟 (𝑥 𝑦) → (𝑝 (𝑥 𝑟) → (𝑟 (𝑦 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
3127, 30pm2.61d 182 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → (𝑝 (𝑥 𝑟) → (𝑟 (𝑦 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))
3231impd 414 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → ((𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
3332expimpd 457 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
34333exp 1116 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
35343expia 1118 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝𝑧) → (𝑥𝑦 → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))))
3618, 35pm2.61dne 3100 . . . 4 ((𝐾 ∈ HL ∧ 𝑝𝑧) → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
3736ex 416 . . 3 (𝐾 ∈ HL → (𝑝𝑧 → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))))
3810, 37pm2.61dne 3100 . 2 (𝐾 ∈ HL → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
39383imp1 1344 1 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3014   ⊆ wss 3919   class class class wbr 5052  ‘cfv 6343  (class class class)co 7149  lecple 16572  joincjn 17554  Atomscatm 36504  HLchlt 36591  +𝑃cpadd 37036 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7684  df-2nd 7685  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-lat 17656  df-clat 17718  df-oposet 36417  df-ol 36419  df-oml 36420  df-covers 36507  df-ats 36508  df-atl 36539  df-cvlat 36563  df-hlat 36592  df-padd 37037 This theorem is referenced by:  paddasslem15  37075
 Copyright terms: Public domain W3C validator