Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem14 Structured version   Visualization version   GIF version

Theorem paddasslem14 39834
Description: Lemma for paddass 39839. Remove 𝑝𝑧, 𝑥𝑦, and ¬ 𝑟 (𝑥 𝑦) from antecedent of paddasslem10 39830, using paddasslem11 39831, paddasslem12 39832, and paddasslem13 39833. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l = (le‘𝐾)
paddasslem.j = (join‘𝐾)
paddasslem.a 𝐴 = (Atoms‘𝐾)
paddasslem.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddasslem14 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))

Proof of Theorem paddasslem14
StepHypRef Expression
1 paddasslem.l . . . . . . . . 9 = (le‘𝐾)
2 paddasslem.j . . . . . . . . 9 = (join‘𝐾)
3 paddasslem.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
4 paddasslem.p . . . . . . . . 9 + = (+𝑃𝐾)
51, 2, 3, 4paddasslem11 39831 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ 𝑧𝑍) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
653ad2antr3 1191 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
76ex 412 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑥𝑋𝑦𝑌𝑧𝑍) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
87adantrd 491 . . . . 5 (((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
98a1d 25 . . . 4 (((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))
109exp31 419 . . 3 (𝐾 ∈ HL → (𝑝 = 𝑧 → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))))
11 3simpb 1149 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑝𝑧𝑥 = 𝑦) → (𝐾 ∈ HL ∧ 𝑥 = 𝑦))
12113anim1i 1152 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑝𝑧𝑥 = 𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) → ((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)))
13 3simpc 1150 . . . . . . . . 9 ((𝑥𝑋𝑦𝑌𝑧𝑍) → (𝑦𝑌𝑧𝑍))
1413anim1i 615 . . . . . . . 8 (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → ((𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))))
151, 2, 3, 4paddasslem12 39832 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
1612, 14, 15syl2an 596 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥 = 𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
17163exp1 1353 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝑧𝑥 = 𝑦) → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
18173expia 1121 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝𝑧) → (𝑥 = 𝑦 → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))))
19 3simpa 1148 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) → (𝐾 ∈ HL ∧ 𝑝𝑧))
20193anim1i 1152 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) → ((𝐾 ∈ HL ∧ 𝑝𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)))
21 3simpa 1148 . . . . . . . . . . . . . 14 ((𝑥𝑋𝑦𝑌𝑧𝑍) → (𝑥𝑋𝑦𝑌))
22 3simpa 1148 . . . . . . . . . . . . . 14 ((𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)) → (𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟)))
2321, 22anim12i 613 . . . . . . . . . . . . 13 (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → ((𝑥𝑋𝑦𝑌) ∧ (𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟))))
241, 2, 3, 4paddasslem13 39833 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑝𝑧) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌) ∧ (𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
2520, 23, 24syl2an 596 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
2625expr 456 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → ((𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
27263expd 1354 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → (𝑟 (𝑥 𝑦) → (𝑝 (𝑥 𝑟) → (𝑟 (𝑦 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
281, 2, 3, 4paddasslem10 39830 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
2928expr 456 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → ((¬ 𝑟 (𝑥 𝑦) ∧ 𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
30293expd 1354 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → (¬ 𝑟 (𝑥 𝑦) → (𝑝 (𝑥 𝑟) → (𝑟 (𝑦 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
3127, 30pm2.61d 179 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → (𝑝 (𝑥 𝑟) → (𝑟 (𝑦 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))
3231impd 410 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ (𝑥𝑋𝑦𝑌𝑧𝑍)) → ((𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
3332expimpd 453 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))
34333exp 1119 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑝𝑧𝑥𝑦) → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
35343expia 1121 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝𝑧) → (𝑥𝑦 → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))))
3618, 35pm2.61dne 3012 . . . 4 ((𝐾 ∈ HL ∧ 𝑝𝑧) → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
3736ex 412 . . 3 (𝐾 ∈ HL → (𝑝𝑧 → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))))
3810, 37pm2.61dne 3012 . 2 (𝐾 ∈ HL → ((𝑋𝐴𝑌𝐴𝑍𝐴) → ((𝑝𝐴𝑟𝐴) → (((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))
39383imp1 1348 1 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑟𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wss 3917   class class class wbr 5110  cfv 6514  (class class class)co 7390  lecple 17234  joincjn 18279  Atomscatm 39263  HLchlt 39350  +𝑃cpadd 39796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-padd 39797
This theorem is referenced by:  paddasslem15  39835
  Copyright terms: Public domain W3C validator