Proof of Theorem paddasslem14
Step | Hyp | Ref
| Expression |
1 | | paddasslem.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
2 | | paddasslem.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
3 | | paddasslem.a |
. . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) |
4 | | paddasslem.p |
. . . . . . . . 9
⊢ + =
(+𝑃‘𝐾) |
5 | 1, 2, 3, 4 | paddasslem11 37771 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) ∧ 𝑧 ∈ 𝑍) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) |
6 | 5 | 3ad2antr3 1188 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) |
7 | 6 | ex 412 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))) |
8 | 7 | adantrd 491 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))) |
9 | 8 | a1d 25 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑝 = 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))) |
10 | 9 | exp31 419 |
. . 3
⊢ (𝐾 ∈ HL → (𝑝 = 𝑧 → ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → ((𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))) |
11 | | 3simpb 1147 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 = 𝑦) → (𝐾 ∈ HL ∧ 𝑥 = 𝑦)) |
12 | 11 | 3anim1i 1150 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) → ((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴))) |
13 | | 3simpc 1148 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) → (𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍)) |
14 | 13 | anim1i 614 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) |
15 | 1, 2, 3, 4 | paddasslem12 37772 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) |
16 | 12, 14, 15 | syl2an 595 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 = 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) |
17 | 16 | 3exp1 1350 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 = 𝑦) → ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → ((𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))) |
18 | 17 | 3expia 1119 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧) → (𝑥 = 𝑦 → ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → ((𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))) |
19 | | 3simpa 1146 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦) → (𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧)) |
20 | 19 | 3anim1i 1150 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) → ((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴))) |
21 | | 3simpa 1146 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) |
22 | | 3simpa 1146 |
. . . . . . . . . . . . . 14
⊢ ((𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) → (𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑝 ≤ (𝑥 ∨ 𝑟))) |
23 | 21, 22 | anim12i 612 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ (𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑝 ≤ (𝑥 ∨ 𝑟)))) |
24 | 1, 2, 3, 4 | paddasslem13 37773 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) ∧ (𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑝 ≤ (𝑥 ∨ 𝑟)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) |
25 | 20, 23, 24 | syl2an 595 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) |
26 | 25 | expr 456 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍)) → ((𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))) |
27 | 26 | 3expd 1351 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍)) → (𝑟 ≤ (𝑥 ∨ 𝑦) → (𝑝 ≤ (𝑥 ∨ 𝑟) → (𝑟 ≤ (𝑦 ∨ 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))) |
28 | 1, 2, 3, 4 | paddasslem10 37770 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) |
29 | 28 | expr 456 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍)) → ((¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))) |
30 | 29 | 3expd 1351 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍)) → (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) → (𝑝 ≤ (𝑥 ∨ 𝑟) → (𝑟 ≤ (𝑦 ∨ 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))) |
31 | 27, 30 | pm2.61d 179 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍)) → (𝑝 ≤ (𝑥 ∨ 𝑟) → (𝑟 ≤ (𝑦 ∨ 𝑧) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))) |
32 | 31 | impd 410 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍)) → ((𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))) |
33 | 32 | expimpd 453 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦) ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) → (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))) |
34 | 33 | 3exp 1117 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦) → ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → ((𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))) |
35 | 34 | 3expia 1119 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧) → (𝑥 ≠ 𝑦 → ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → ((𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))) |
36 | 18, 35 | pm2.61dne 3030 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑝 ≠ 𝑧) → ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → ((𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))) |
37 | 36 | ex 412 |
. . 3
⊢ (𝐾 ∈ HL → (𝑝 ≠ 𝑧 → ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → ((𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)))))) |
38 | 10, 37 | pm2.61dne 3030 |
. 2
⊢ (𝐾 ∈ HL → ((𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) → ((𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) → (((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))))) |
39 | 38 | 3imp1 1345 |
1
⊢ (((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) ∧ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ∧ 𝑧 ∈ 𝑍) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧)))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍)) |