MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphipval Structured version   Visualization version   GIF version

Theorem cphipval 23846
Description: Value of the inner product expressed by a sum of terms with the norm defined by the inner product. Equation 6.45 of [Ponnusamy] p. 361. (Contributed by NM, 31-Jan-2007.) (Revised by AV, 18-Oct-2021.)
Hypotheses
Ref Expression
cphipfval.x 𝑋 = (Base‘𝑊)
cphipfval.p + = (+g𝑊)
cphipfval.s · = ( ·𝑠𝑊)
cphipfval.n 𝑁 = (norm‘𝑊)
cphipfval.i , = (·𝑖𝑊)
cphipval.f 𝐹 = (Scalar‘𝑊)
cphipval.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphipval (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) / 4))
Distinct variable groups:   𝑘,𝑁   𝐴,𝑘   𝐵,𝑘   𝑘,𝑋   𝑘,𝐾   𝑘,𝑊   + ,𝑘   · ,𝑘
Allowed substitution hints:   𝐹(𝑘)   , (𝑘)

Proof of Theorem cphipval
StepHypRef Expression
1 cphipfval.x . . 3 𝑋 = (Base‘𝑊)
2 cphipfval.p . . 3 + = (+g𝑊)
3 cphipfval.s . . 3 · = ( ·𝑠𝑊)
4 cphipfval.n . . 3 𝑁 = (norm‘𝑊)
5 cphipfval.i . . 3 , = (·𝑖𝑊)
6 eqid 2821 . . 3 (-g𝑊) = (-g𝑊)
7 cphipval.f . . 3 𝐹 = (Scalar‘𝑊)
8 cphipval.k . . 3 𝐾 = (Base‘𝐹)
91, 2, 3, 4, 5, 6, 7, 8cphipval2 23844 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) / 4))
10 ax-icn 10596 . . . . . . . . . 10 i ∈ ℂ
1110a1i 11 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ ℂ)
12 simp1l 1193 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ ℂPreHil)
13 cphngp 23777 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
14 ngpgrp 23208 . . . . . . . . . . . . . . 15 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
1513, 14syl 17 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ Grp)
1615adantr 483 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ Grp)
17163ad2ant1 1129 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ Grp)
18 simp2 1133 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
19 cphlmod 23778 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
20193anim1i 1148 . . . . . . . . . . . . . . 15 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐵𝑋) → (𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋))
21203expa 1114 . . . . . . . . . . . . . 14 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋))
221, 7, 3, 8lmodvscl 19651 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
2321, 22syl 17 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
24233adant2 1127 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
251, 2grpcl 18111 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
2617, 18, 24, 25syl3anc 1367 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
271, 5, 4nmsq 23798 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (i · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))))
2812, 26, 27syl2anc 586 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))))
291, 5reipcl 23801 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (i · 𝐵)) ∈ 𝑋) → ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))) ∈ ℝ)
3012, 26, 29syl2anc 586 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))) ∈ ℝ)
3130recnd 10669 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))) ∈ ℂ)
3228, 31eqeltrd 2913 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) ∈ ℂ)
3311, 32mulcld 10661 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) ∈ ℂ)
3419adantr 483 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ LMod)
35343ad2ant1 1129 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ LMod)
36 cphclm 23793 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
377, 8clmneg1 23686 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂMod → -1 ∈ 𝐾)
3836, 37syl 17 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂPreHil → -1 ∈ 𝐾)
3938adantr 483 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → -1 ∈ 𝐾)
40393ad2ant1 1129 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → -1 ∈ 𝐾)
41 simp3 1134 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
421, 7, 3, 8lmodvscl 19651 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ -1 ∈ 𝐾𝐵𝑋) → (-1 · 𝐵) ∈ 𝑋)
4335, 40, 41, 42syl3anc 1367 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-1 · 𝐵) ∈ 𝑋)
441, 2grpcl 18111 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (-1 · 𝐵) ∈ 𝑋) → (𝐴 + (-1 · 𝐵)) ∈ 𝑋)
4517, 18, 43, 44syl3anc 1367 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-1 · 𝐵)) ∈ 𝑋)
461, 5, 4nmsq 23798 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (-1 · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) = ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))))
4712, 45, 46syl2anc 586 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) = ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))))
481, 5reipcl 23801 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (-1 · 𝐵)) ∈ 𝑋) → ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))) ∈ ℝ)
4912, 45, 48syl2anc 586 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))) ∈ ℝ)
5047, 49eqeltrd 2913 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) ∈ ℝ)
5150recnd 10669 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) ∈ ℂ)
52 addneg1mul 11082 . . . . . . . 8 (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) ∈ ℂ ∧ ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) ∈ ℂ) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))
5333, 51, 52syl2anc 586 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))
5436adantr 483 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ ℂMod)
551, 2, 6, 7, 3clmvsubval 23713 . . . . . . . . . . . 12 ((𝑊 ∈ ℂMod ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)𝐵) = (𝐴 + (-1 · 𝐵)))
5655eqcomd 2827 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-1 · 𝐵)) = (𝐴(-g𝑊)𝐵))
5754, 56syl3an1 1159 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-1 · 𝐵)) = (𝐴(-g𝑊)𝐵))
5857fveq2d 6674 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐴(-g𝑊)𝐵)))
5958oveq1d 7171 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) = ((𝑁‘(𝐴(-g𝑊)𝐵))↑2))
6059oveq2d 7172 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)))
6153, 60eqtrd 2856 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)))
62 eqid 2821 . . . . . . . . . . . . 13 (invg𝑊) = (invg𝑊)
63543ad2ant1 1129 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ ℂMod)
64 simp1r 1194 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ 𝐾)
651, 7, 3, 62, 8, 63, 41, 64clmvsneg 23704 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((invg𝑊)‘(i · 𝐵)) = (-i · 𝐵))
6665eqcomd 2827 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-i · 𝐵) = ((invg𝑊)‘(i · 𝐵)))
6766oveq2d 7172 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-i · 𝐵)) = (𝐴 + ((invg𝑊)‘(i · 𝐵))))
681, 2, 62, 6grpsubval 18149 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴(-g𝑊)(i · 𝐵)) = (𝐴 + ((invg𝑊)‘(i · 𝐵))))
6918, 24, 68syl2anc 586 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)(i · 𝐵)) = (𝐴 + ((invg𝑊)‘(i · 𝐵))))
7067, 69eqtr4d 2859 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-i · 𝐵)) = (𝐴(-g𝑊)(i · 𝐵)))
7170fveq2d 6674 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (-i · 𝐵))) = (𝑁‘(𝐴(-g𝑊)(i · 𝐵))))
7271oveq1d 7171 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-i · 𝐵)))↑2) = ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))
7372oveq2d 7172 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2)) = (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))
7461, 73oveq12d 7174 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
7554anim1i 616 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (𝑊 ∈ ℂMod ∧ 𝐵𝑋))
76753adant2 1127 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑊 ∈ ℂMod ∧ 𝐵𝑋))
771, 3clmvs1 23697 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ 𝐵𝑋) → (1 · 𝐵) = 𝐵)
7876, 77syl 17 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · 𝐵) = 𝐵)
7978oveq2d 7172 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (1 · 𝐵)) = (𝐴 + 𝐵))
8079fveq2d 6674 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (1 · 𝐵))) = (𝑁‘(𝐴 + 𝐵)))
8180oveq1d 7171 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (1 · 𝐵)))↑2) = ((𝑁‘(𝐴 + 𝐵))↑2))
8281oveq2d 7172 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)) = (1 · ((𝑁‘(𝐴 + 𝐵))↑2)))
831, 2grpcl 18111 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
8416, 83syl3an1 1159 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
851, 5, 4nmsq 23798 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
8612, 84, 85syl2anc 586 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
871, 5reipcl 23801 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑋) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) ∈ ℝ)
8812, 84, 87syl2anc 586 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) ∈ ℝ)
8986, 88eqeltrd 2913 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) ∈ ℝ)
9089recnd 10669 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) ∈ ℂ)
9190mulid2d 10659 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴 + 𝐵))↑2)) = ((𝑁‘(𝐴 + 𝐵))↑2))
9282, 91eqtrd 2856 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)) = ((𝑁‘(𝐴 + 𝐵))↑2))
9374, 92oveq12d 7174 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
94 nnuz 12282 . . . . . 6 ℕ = (ℤ‘1)
95 df-4 11703 . . . . . 6 4 = (3 + 1)
96 oveq2 7164 . . . . . . . 8 (𝑘 = 4 → (i↑𝑘) = (i↑4))
97 i4 13568 . . . . . . . 8 (i↑4) = 1
9896, 97syl6eq 2872 . . . . . . 7 (𝑘 = 4 → (i↑𝑘) = 1)
9998oveq1d 7171 . . . . . . . . . 10 (𝑘 = 4 → ((i↑𝑘) · 𝐵) = (1 · 𝐵))
10099oveq2d 7172 . . . . . . . . 9 (𝑘 = 4 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (1 · 𝐵)))
101100fveq2d 6674 . . . . . . . 8 (𝑘 = 4 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (1 · 𝐵))))
102101oveq1d 7171 . . . . . . 7 (𝑘 = 4 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))
10398, 102oveq12d 7174 . . . . . 6 (𝑘 = 4 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)))
10410a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ → i ∈ ℂ)
105 nnnn0 11905 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
106104, 105expcld 13511 . . . . . . . 8 (𝑘 ∈ ℕ → (i↑𝑘) ∈ ℂ)
107106adantl 484 . . . . . . 7 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ ℂ)
10812adantr 483 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑊 ∈ ℂPreHil)
10917adantr 483 . . . . . . . . . 10 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑊 ∈ Grp)
11018adantr 483 . . . . . . . . . 10 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝐴𝑋)
11135adantr 483 . . . . . . . . . . 11 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑊 ∈ LMod)
11236anim1i 616 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → (𝑊 ∈ ℂMod ∧ i ∈ 𝐾))
1131123ad2ant1 1129 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑊 ∈ ℂMod ∧ i ∈ 𝐾))
1147, 8cmodscexp 23725 . . . . . . . . . . . 12 (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ 𝐾)
115113, 114sylan 582 . . . . . . . . . . 11 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ 𝐾)
11641adantr 483 . . . . . . . . . . 11 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝐵𝑋)
1171, 7, 3, 8lmodvscl 19651 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (i↑𝑘) ∈ 𝐾𝐵𝑋) → ((i↑𝑘) · 𝐵) ∈ 𝑋)
118111, 115, 116, 117syl3anc 1367 . . . . . . . . . 10 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · 𝐵) ∈ 𝑋)
1191, 2grpcl 18111 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ ((i↑𝑘) · 𝐵) ∈ 𝑋) → (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋)
120109, 110, 118, 119syl3anc 1367 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋)
1211, 5, 4nmsq 23798 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))))
122108, 120, 121syl2anc 586 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))))
1231, 5reipcl 23801 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℝ)
124108, 120, 123syl2anc 586 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℝ)
125124recnd 10669 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℂ)
126122, 125eqeltrd 2913 . . . . . . 7 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) ∈ ℂ)
127107, 126mulcld 10661 . . . . . 6 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) ∈ ℂ)
128 df-3 11702 . . . . . . 7 3 = (2 + 1)
129 oveq2 7164 . . . . . . . . 9 (𝑘 = 3 → (i↑𝑘) = (i↑3))
130 i3 13567 . . . . . . . . 9 (i↑3) = -i
131129, 130syl6eq 2872 . . . . . . . 8 (𝑘 = 3 → (i↑𝑘) = -i)
132131oveq1d 7171 . . . . . . . . . . 11 (𝑘 = 3 → ((i↑𝑘) · 𝐵) = (-i · 𝐵))
133132oveq2d 7172 . . . . . . . . . 10 (𝑘 = 3 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (-i · 𝐵)))
134133fveq2d 6674 . . . . . . . . 9 (𝑘 = 3 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (-i · 𝐵))))
135134oveq1d 7171 . . . . . . . 8 (𝑘 = 3 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))
136131, 135oveq12d 7174 . . . . . . 7 (𝑘 = 3 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2)))
13710a1i 11 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → i ∈ ℂ)
138105adantl 484 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
139137, 138expcld 13511 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ ℂ)
140123recnd 10669 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℂ)
141108, 120, 140syl2anc 586 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℂ)
142122, 141eqeltrd 2913 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) ∈ ℂ)
143139, 142mulcld 10661 . . . . . . 7 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) ∈ ℂ)
144 df-2 11701 . . . . . . . 8 2 = (1 + 1)
145 oveq2 7164 . . . . . . . . . 10 (𝑘 = 2 → (i↑𝑘) = (i↑2))
146 i2 13566 . . . . . . . . . 10 (i↑2) = -1
147145, 146syl6eq 2872 . . . . . . . . 9 (𝑘 = 2 → (i↑𝑘) = -1)
148147oveq1d 7171 . . . . . . . . . . . 12 (𝑘 = 2 → ((i↑𝑘) · 𝐵) = (-1 · 𝐵))
149148oveq2d 7172 . . . . . . . . . . 11 (𝑘 = 2 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (-1 · 𝐵)))
150149fveq2d 6674 . . . . . . . . . 10 (𝑘 = 2 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (-1 · 𝐵))))
151150oveq1d 7171 . . . . . . . . 9 (𝑘 = 2 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))
152147, 151oveq12d 7174 . . . . . . . 8 (𝑘 = 2 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))
153139, 126mulcld 10661 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) ∈ ℂ)
154 1z 12013 . . . . . . . . . 10 1 ∈ ℤ
155 oveq2 7164 . . . . . . . . . . . . 13 (𝑘 = 1 → (i↑𝑘) = (i↑1))
156 exp1 13436 . . . . . . . . . . . . . 14 (i ∈ ℂ → (i↑1) = i)
15710, 156ax-mp 5 . . . . . . . . . . . . 13 (i↑1) = i
158155, 157syl6eq 2872 . . . . . . . . . . . 12 (𝑘 = 1 → (i↑𝑘) = i)
159158oveq1d 7171 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((i↑𝑘) · 𝐵) = (i · 𝐵))
160159oveq2d 7172 . . . . . . . . . . . . . 14 (𝑘 = 1 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (i · 𝐵)))
161160fveq2d 6674 . . . . . . . . . . . . 13 (𝑘 = 1 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (i · 𝐵))))
162161oveq1d 7171 . . . . . . . . . . . 12 (𝑘 = 1 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (i · 𝐵)))↑2))
163158, 162oveq12d 7174 . . . . . . . . . . 11 (𝑘 = 1 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)))
164163fsum1 15102 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) ∈ ℂ) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)))
165154, 33, 164sylancr 589 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)))
166 1nn 11649 . . . . . . . . 9 1 ∈ ℕ
167165, 166jctil 522 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 ∈ ℕ ∧ Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2))))
168 eqidd 2822 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))))
16994, 144, 152, 153, 167, 168fsump1i 15124 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (2 ∈ ℕ ∧ Σ𝑘 ∈ (1...2)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))))
170 eqidd 2822 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))))
17194, 128, 136, 143, 169, 170fsump1i 15124 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (3 ∈ ℕ ∧ Σ𝑘 ∈ (1...3)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2)))))
172 eqidd 2822 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))))
17394, 95, 103, 127, 171, 172fsump1i 15124 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (4 ∈ ℕ ∧ Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)))))
174173simprd 498 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))))
1751, 6grpsubcl 18179 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)𝐵) ∈ 𝑋)
17616, 175syl3an1 1159 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)𝐵) ∈ 𝑋)
1771, 5, 4nmsq 23798 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) = ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)))
17812, 176, 177syl2anc 586 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) = ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)))
1791, 5reipcl 23801 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑋) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) ∈ ℝ)
18012, 176, 179syl2anc 586 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) ∈ ℝ)
181178, 180eqeltrd 2913 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) ∈ ℝ)
182181recnd 10669 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) ∈ ℂ)
18390, 182subcld 10997 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) ∈ ℂ)
1841, 6grpsubcl 18179 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋)
18517, 18, 24, 184syl3anc 1367 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋)
1861, 5, 4nmsq 23798 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) = ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))))
18712, 185, 186syl2anc 586 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) = ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))))
1881, 5reipcl 23801 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋) → ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))) ∈ ℝ)
18912, 185, 188syl2anc 586 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))) ∈ ℝ)
190187, 189eqeltrd 2913 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) ∈ ℝ)
191190recnd 10669 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) ∈ ℂ)
19232, 191subcld 10997 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) ∈ ℂ)
19311, 192mulcld 10661 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) ∈ ℂ)
194183, 193addcomd 10842 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2))))
195193, 182, 90subadd23d 11019 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + ((𝑁‘(𝐴 + 𝐵))↑2)) = ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2))))
19611, 32, 191subdid 11096 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
197196oveq1d 7171 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)))
19811, 191mulcld 10661 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) ∈ ℂ)
19933, 198, 182sub32d 11029 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
200197, 199eqtrd 2856 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
201200oveq1d 7171 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + ((𝑁‘(𝐴 + 𝐵))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
202194, 195, 2013eqtr2d 2862 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
20333, 182subcld 10997 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) ∈ ℂ)
204203, 198negsubd 11003 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
20511, 191mulneg1d 11093 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) = -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))
206205eqcomd 2827 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) = (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))
207206oveq2d 7172 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
208204, 207eqtr3d 2858 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
209208oveq1d 7171 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
210202, 209eqtrd 2856 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
21193, 174, 2103eqtr4rd 2867 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)))
212211oveq1d 7171 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) / 4))
2139, 212eqtrd 2856 1 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  1c1 10538  ici 10539   + caddc 10540   · cmul 10542  cmin 10870  -cneg 10871   / cdiv 11297  cn 11638  2c2 11693  3c3 11694  4c4 11695  0cn0 11898  cz 11982  ...cfz 12893  cexp 13430  Σcsu 15042  Basecbs 16483  +gcplusg 16565  Scalarcsca 16568   ·𝑠 cvsca 16569  ·𝑖cip 16570  Grpcgrp 18103  invgcminusg 18104  -gcsg 18105  LModclmod 19634  normcnm 23186  NrmGrpcngp 23187  ℂModcclm 23666  ℂPreHilccph 23770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-0g 16715  df-topgen 16717  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-rnghom 19467  df-drng 19504  df-subrg 19533  df-staf 19616  df-srng 19617  df-lmod 19636  df-lmhm 19794  df-lvec 19875  df-sra 19944  df-rgmod 19945  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-phl 20770  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-xms 22930  df-ms 22931  df-nm 23192  df-ngp 23193  df-nlm 23196  df-clm 23667  df-cph 23772
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator