MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphipval Structured version   Visualization version   GIF version

Theorem cphipval 25150
Description: Value of the inner product expressed by a sum of terms with the norm defined by the inner product. Equation 6.45 of [Ponnusamy] p. 361. (Contributed by NM, 31-Jan-2007.) (Revised by AV, 18-Oct-2021.)
Hypotheses
Ref Expression
cphipfval.x 𝑋 = (Base‘𝑊)
cphipfval.p + = (+g𝑊)
cphipfval.s · = ( ·𝑠𝑊)
cphipfval.n 𝑁 = (norm‘𝑊)
cphipfval.i , = (·𝑖𝑊)
cphipval.f 𝐹 = (Scalar‘𝑊)
cphipval.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphipval (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) / 4))
Distinct variable groups:   𝑘,𝑁   𝐴,𝑘   𝐵,𝑘   𝑘,𝑋   𝑘,𝐾   𝑘,𝑊   + ,𝑘   · ,𝑘
Allowed substitution hints:   𝐹(𝑘)   , (𝑘)

Proof of Theorem cphipval
StepHypRef Expression
1 cphipfval.x . . 3 𝑋 = (Base‘𝑊)
2 cphipfval.p . . 3 + = (+g𝑊)
3 cphipfval.s . . 3 · = ( ·𝑠𝑊)
4 cphipfval.n . . 3 𝑁 = (norm‘𝑊)
5 cphipfval.i . . 3 , = (·𝑖𝑊)
6 eqid 2730 . . 3 (-g𝑊) = (-g𝑊)
7 cphipval.f . . 3 𝐹 = (Scalar‘𝑊)
8 cphipval.k . . 3 𝐾 = (Base‘𝐹)
91, 2, 3, 4, 5, 6, 7, 8cphipval2 25148 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) / 4))
10 ax-icn 11134 . . . . . . . . . 10 i ∈ ℂ
1110a1i 11 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ ℂ)
12 simp1l 1198 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ ℂPreHil)
13 cphngp 25080 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
14 ngpgrp 24494 . . . . . . . . . . . . . . 15 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
1513, 14syl 17 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ Grp)
1615adantr 480 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ Grp)
17163ad2ant1 1133 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ Grp)
18 simp2 1137 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
19 cphlmod 25081 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
20193anim1i 1152 . . . . . . . . . . . . . . 15 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐵𝑋) → (𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋))
21203expa 1118 . . . . . . . . . . . . . 14 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋))
221, 7, 3, 8lmodvscl 20791 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
2321, 22syl 17 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
24233adant2 1131 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
251, 2grpcl 18880 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
2617, 18, 24, 25syl3anc 1373 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
271, 5, 4nmsq 25101 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (i · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))))
2812, 26, 27syl2anc 584 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))))
291, 5reipcl 25104 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (i · 𝐵)) ∈ 𝑋) → ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))) ∈ ℝ)
3012, 26, 29syl2anc 584 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))) ∈ ℝ)
3130recnd 11209 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))) ∈ ℂ)
3228, 31eqeltrd 2829 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) ∈ ℂ)
3311, 32mulcld 11201 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) ∈ ℂ)
3419adantr 480 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ LMod)
35343ad2ant1 1133 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ LMod)
36 cphclm 25096 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
377, 8clmneg1 24989 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂMod → -1 ∈ 𝐾)
3836, 37syl 17 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂPreHil → -1 ∈ 𝐾)
3938adantr 480 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → -1 ∈ 𝐾)
40393ad2ant1 1133 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → -1 ∈ 𝐾)
41 simp3 1138 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
421, 7, 3, 8lmodvscl 20791 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ -1 ∈ 𝐾𝐵𝑋) → (-1 · 𝐵) ∈ 𝑋)
4335, 40, 41, 42syl3anc 1373 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-1 · 𝐵) ∈ 𝑋)
441, 2grpcl 18880 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (-1 · 𝐵) ∈ 𝑋) → (𝐴 + (-1 · 𝐵)) ∈ 𝑋)
4517, 18, 43, 44syl3anc 1373 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-1 · 𝐵)) ∈ 𝑋)
461, 5, 4nmsq 25101 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (-1 · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) = ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))))
4712, 45, 46syl2anc 584 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) = ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))))
481, 5reipcl 25104 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (-1 · 𝐵)) ∈ 𝑋) → ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))) ∈ ℝ)
4912, 45, 48syl2anc 584 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))) ∈ ℝ)
5047, 49eqeltrd 2829 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) ∈ ℝ)
5150recnd 11209 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) ∈ ℂ)
52 addneg1mul 11627 . . . . . . . 8 (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) ∈ ℂ ∧ ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) ∈ ℂ) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))
5333, 51, 52syl2anc 584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))
5436adantr 480 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ ℂMod)
551, 2, 6, 7, 3clmvsubval 25016 . . . . . . . . . . . 12 ((𝑊 ∈ ℂMod ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)𝐵) = (𝐴 + (-1 · 𝐵)))
5655eqcomd 2736 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-1 · 𝐵)) = (𝐴(-g𝑊)𝐵))
5754, 56syl3an1 1163 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-1 · 𝐵)) = (𝐴(-g𝑊)𝐵))
5857fveq2d 6865 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐴(-g𝑊)𝐵)))
5958oveq1d 7405 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) = ((𝑁‘(𝐴(-g𝑊)𝐵))↑2))
6059oveq2d 7406 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)))
6153, 60eqtrd 2765 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)))
62 eqid 2730 . . . . . . . . . . . . 13 (invg𝑊) = (invg𝑊)
63543ad2ant1 1133 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ ℂMod)
64 simp1r 1199 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ 𝐾)
651, 7, 3, 62, 8, 63, 41, 64clmvsneg 25007 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((invg𝑊)‘(i · 𝐵)) = (-i · 𝐵))
6665eqcomd 2736 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-i · 𝐵) = ((invg𝑊)‘(i · 𝐵)))
6766oveq2d 7406 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-i · 𝐵)) = (𝐴 + ((invg𝑊)‘(i · 𝐵))))
681, 2, 62, 6grpsubval 18924 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴(-g𝑊)(i · 𝐵)) = (𝐴 + ((invg𝑊)‘(i · 𝐵))))
6918, 24, 68syl2anc 584 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)(i · 𝐵)) = (𝐴 + ((invg𝑊)‘(i · 𝐵))))
7067, 69eqtr4d 2768 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-i · 𝐵)) = (𝐴(-g𝑊)(i · 𝐵)))
7170fveq2d 6865 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (-i · 𝐵))) = (𝑁‘(𝐴(-g𝑊)(i · 𝐵))))
7271oveq1d 7405 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-i · 𝐵)))↑2) = ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))
7372oveq2d 7406 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2)) = (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))
7461, 73oveq12d 7408 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
7554anim1i 615 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (𝑊 ∈ ℂMod ∧ 𝐵𝑋))
76753adant2 1131 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑊 ∈ ℂMod ∧ 𝐵𝑋))
771, 3clmvs1 25000 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ 𝐵𝑋) → (1 · 𝐵) = 𝐵)
7876, 77syl 17 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · 𝐵) = 𝐵)
7978oveq2d 7406 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (1 · 𝐵)) = (𝐴 + 𝐵))
8079fveq2d 6865 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (1 · 𝐵))) = (𝑁‘(𝐴 + 𝐵)))
8180oveq1d 7405 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (1 · 𝐵)))↑2) = ((𝑁‘(𝐴 + 𝐵))↑2))
8281oveq2d 7406 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)) = (1 · ((𝑁‘(𝐴 + 𝐵))↑2)))
831, 2grpcl 18880 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
8416, 83syl3an1 1163 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
851, 5, 4nmsq 25101 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
8612, 84, 85syl2anc 584 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
871, 5reipcl 25104 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑋) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) ∈ ℝ)
8812, 84, 87syl2anc 584 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) ∈ ℝ)
8986, 88eqeltrd 2829 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) ∈ ℝ)
9089recnd 11209 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) ∈ ℂ)
9190mullidd 11199 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴 + 𝐵))↑2)) = ((𝑁‘(𝐴 + 𝐵))↑2))
9282, 91eqtrd 2765 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)) = ((𝑁‘(𝐴 + 𝐵))↑2))
9374, 92oveq12d 7408 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
94 nnuz 12843 . . . . . 6 ℕ = (ℤ‘1)
95 df-4 12258 . . . . . 6 4 = (3 + 1)
96 oveq2 7398 . . . . . . . 8 (𝑘 = 4 → (i↑𝑘) = (i↑4))
97 i4 14176 . . . . . . . 8 (i↑4) = 1
9896, 97eqtrdi 2781 . . . . . . 7 (𝑘 = 4 → (i↑𝑘) = 1)
9998oveq1d 7405 . . . . . . . . . 10 (𝑘 = 4 → ((i↑𝑘) · 𝐵) = (1 · 𝐵))
10099oveq2d 7406 . . . . . . . . 9 (𝑘 = 4 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (1 · 𝐵)))
101100fveq2d 6865 . . . . . . . 8 (𝑘 = 4 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (1 · 𝐵))))
102101oveq1d 7405 . . . . . . 7 (𝑘 = 4 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))
10398, 102oveq12d 7408 . . . . . 6 (𝑘 = 4 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)))
10410a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ → i ∈ ℂ)
105 nnnn0 12456 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
106104, 105expcld 14118 . . . . . . . 8 (𝑘 ∈ ℕ → (i↑𝑘) ∈ ℂ)
107106adantl 481 . . . . . . 7 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ ℂ)
10812adantr 480 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑊 ∈ ℂPreHil)
10917adantr 480 . . . . . . . . . 10 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑊 ∈ Grp)
11018adantr 480 . . . . . . . . . 10 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝐴𝑋)
11135adantr 480 . . . . . . . . . . 11 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑊 ∈ LMod)
11236anim1i 615 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → (𝑊 ∈ ℂMod ∧ i ∈ 𝐾))
1131123ad2ant1 1133 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑊 ∈ ℂMod ∧ i ∈ 𝐾))
1147, 8cmodscexp 25028 . . . . . . . . . . . 12 (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ 𝐾)
115113, 114sylan 580 . . . . . . . . . . 11 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ 𝐾)
11641adantr 480 . . . . . . . . . . 11 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝐵𝑋)
1171, 7, 3, 8lmodvscl 20791 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (i↑𝑘) ∈ 𝐾𝐵𝑋) → ((i↑𝑘) · 𝐵) ∈ 𝑋)
118111, 115, 116, 117syl3anc 1373 . . . . . . . . . 10 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · 𝐵) ∈ 𝑋)
1191, 2grpcl 18880 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ ((i↑𝑘) · 𝐵) ∈ 𝑋) → (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋)
120109, 110, 118, 119syl3anc 1373 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋)
1211, 5, 4nmsq 25101 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))))
122108, 120, 121syl2anc 584 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))))
1231, 5reipcl 25104 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℝ)
124108, 120, 123syl2anc 584 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℝ)
125124recnd 11209 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℂ)
126122, 125eqeltrd 2829 . . . . . . 7 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) ∈ ℂ)
127107, 126mulcld 11201 . . . . . 6 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) ∈ ℂ)
128 df-3 12257 . . . . . . 7 3 = (2 + 1)
129 oveq2 7398 . . . . . . . . 9 (𝑘 = 3 → (i↑𝑘) = (i↑3))
130 i3 14175 . . . . . . . . 9 (i↑3) = -i
131129, 130eqtrdi 2781 . . . . . . . 8 (𝑘 = 3 → (i↑𝑘) = -i)
132131oveq1d 7405 . . . . . . . . . . 11 (𝑘 = 3 → ((i↑𝑘) · 𝐵) = (-i · 𝐵))
133132oveq2d 7406 . . . . . . . . . 10 (𝑘 = 3 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (-i · 𝐵)))
134133fveq2d 6865 . . . . . . . . 9 (𝑘 = 3 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (-i · 𝐵))))
135134oveq1d 7405 . . . . . . . 8 (𝑘 = 3 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))
136131, 135oveq12d 7408 . . . . . . 7 (𝑘 = 3 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2)))
13710a1i 11 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → i ∈ ℂ)
138105adantl 481 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
139137, 138expcld 14118 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ ℂ)
140123recnd 11209 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℂ)
141108, 120, 140syl2anc 584 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℂ)
142122, 141eqeltrd 2829 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) ∈ ℂ)
143139, 142mulcld 11201 . . . . . . 7 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) ∈ ℂ)
144 df-2 12256 . . . . . . . 8 2 = (1 + 1)
145 oveq2 7398 . . . . . . . . . 10 (𝑘 = 2 → (i↑𝑘) = (i↑2))
146 i2 14174 . . . . . . . . . 10 (i↑2) = -1
147145, 146eqtrdi 2781 . . . . . . . . 9 (𝑘 = 2 → (i↑𝑘) = -1)
148147oveq1d 7405 . . . . . . . . . . . 12 (𝑘 = 2 → ((i↑𝑘) · 𝐵) = (-1 · 𝐵))
149148oveq2d 7406 . . . . . . . . . . 11 (𝑘 = 2 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (-1 · 𝐵)))
150149fveq2d 6865 . . . . . . . . . 10 (𝑘 = 2 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (-1 · 𝐵))))
151150oveq1d 7405 . . . . . . . . 9 (𝑘 = 2 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))
152147, 151oveq12d 7408 . . . . . . . 8 (𝑘 = 2 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))
153139, 126mulcld 11201 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) ∈ ℂ)
154 1z 12570 . . . . . . . . . 10 1 ∈ ℤ
155 oveq2 7398 . . . . . . . . . . . . 13 (𝑘 = 1 → (i↑𝑘) = (i↑1))
156 exp1 14039 . . . . . . . . . . . . . 14 (i ∈ ℂ → (i↑1) = i)
15710, 156ax-mp 5 . . . . . . . . . . . . 13 (i↑1) = i
158155, 157eqtrdi 2781 . . . . . . . . . . . 12 (𝑘 = 1 → (i↑𝑘) = i)
159158oveq1d 7405 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((i↑𝑘) · 𝐵) = (i · 𝐵))
160159oveq2d 7406 . . . . . . . . . . . . . 14 (𝑘 = 1 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (i · 𝐵)))
161160fveq2d 6865 . . . . . . . . . . . . 13 (𝑘 = 1 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (i · 𝐵))))
162161oveq1d 7405 . . . . . . . . . . . 12 (𝑘 = 1 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (i · 𝐵)))↑2))
163158, 162oveq12d 7408 . . . . . . . . . . 11 (𝑘 = 1 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)))
164163fsum1 15720 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) ∈ ℂ) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)))
165154, 33, 164sylancr 587 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)))
166 1nn 12204 . . . . . . . . 9 1 ∈ ℕ
167165, 166jctil 519 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 ∈ ℕ ∧ Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2))))
168 eqidd 2731 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))))
16994, 144, 152, 153, 167, 168fsump1i 15742 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (2 ∈ ℕ ∧ Σ𝑘 ∈ (1...2)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))))
170 eqidd 2731 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))))
17194, 128, 136, 143, 169, 170fsump1i 15742 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (3 ∈ ℕ ∧ Σ𝑘 ∈ (1...3)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2)))))
172 eqidd 2731 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))))
17394, 95, 103, 127, 171, 172fsump1i 15742 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (4 ∈ ℕ ∧ Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)))))
174173simprd 495 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))))
1751, 6grpsubcl 18959 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)𝐵) ∈ 𝑋)
17616, 175syl3an1 1163 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)𝐵) ∈ 𝑋)
1771, 5, 4nmsq 25101 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) = ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)))
17812, 176, 177syl2anc 584 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) = ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)))
1791, 5reipcl 25104 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑋) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) ∈ ℝ)
18012, 176, 179syl2anc 584 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) ∈ ℝ)
181178, 180eqeltrd 2829 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) ∈ ℝ)
182181recnd 11209 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) ∈ ℂ)
18390, 182subcld 11540 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) ∈ ℂ)
1841, 6grpsubcl 18959 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋)
18517, 18, 24, 184syl3anc 1373 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋)
1861, 5, 4nmsq 25101 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) = ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))))
18712, 185, 186syl2anc 584 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) = ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))))
1881, 5reipcl 25104 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋) → ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))) ∈ ℝ)
18912, 185, 188syl2anc 584 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))) ∈ ℝ)
190187, 189eqeltrd 2829 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) ∈ ℝ)
191190recnd 11209 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) ∈ ℂ)
19232, 191subcld 11540 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) ∈ ℂ)
19311, 192mulcld 11201 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) ∈ ℂ)
194183, 193addcomd 11383 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2))))
195193, 182, 90subadd23d 11562 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + ((𝑁‘(𝐴 + 𝐵))↑2)) = ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2))))
19611, 32, 191subdid 11641 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
197196oveq1d 7405 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)))
19811, 191mulcld 11201 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) ∈ ℂ)
19933, 198, 182sub32d 11572 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
200197, 199eqtrd 2765 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
201200oveq1d 7405 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + ((𝑁‘(𝐴 + 𝐵))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
202194, 195, 2013eqtr2d 2771 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
20333, 182subcld 11540 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) ∈ ℂ)
204203, 198negsubd 11546 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
20511, 191mulneg1d 11638 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) = -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))
206205eqcomd 2736 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) = (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))
207206oveq2d 7406 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
208204, 207eqtr3d 2767 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
209208oveq1d 7405 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
210202, 209eqtrd 2765 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
21193, 174, 2103eqtr4rd 2776 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)))
212211oveq1d 7405 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) / 4))
2139, 212eqtrd 2765 1 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  1c1 11076  ici 11077   + caddc 11078   · cmul 11080  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  3c3 12249  4c4 12250  0cn0 12449  cz 12536  ...cfz 13475  cexp 14033  Σcsu 15659  Basecbs 17186  +gcplusg 17227  Scalarcsca 17230   ·𝑠 cvsca 17231  ·𝑖cip 17232  Grpcgrp 18872  invgcminusg 18873  -gcsg 18874  LModclmod 20773  normcnm 24471  NrmGrpcngp 24472  ℂModcclm 24969  ℂPreHilccph 25073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-topgen 17413  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-rhm 20388  df-subrg 20486  df-drng 20647  df-staf 20755  df-srng 20756  df-lmod 20775  df-lmhm 20936  df-lvec 21017  df-sra 21087  df-rgmod 21088  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-phl 21542  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-xms 24215  df-ms 24216  df-nm 24477  df-ngp 24478  df-nlm 24481  df-clm 24970  df-cph 25075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator