MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphipval Structured version   Visualization version   GIF version

Theorem cphipval 23529
Description: Value of the inner product expressed by a sum of terms with the norm defined by the inner product. Equation 6.45 of [Ponnusamy] p. 361. (Contributed by NM, 31-Jan-2007.) (Revised by AV, 18-Oct-2021.)
Hypotheses
Ref Expression
cphipfval.x 𝑋 = (Base‘𝑊)
cphipfval.p + = (+g𝑊)
cphipfval.s · = ( ·𝑠𝑊)
cphipfval.n 𝑁 = (norm‘𝑊)
cphipfval.i , = (·𝑖𝑊)
cphipval.f 𝐹 = (Scalar‘𝑊)
cphipval.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cphipval (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) / 4))
Distinct variable groups:   𝑘,𝑁   𝐴,𝑘   𝐵,𝑘   𝑘,𝑋   𝑘,𝐾   𝑘,𝑊   + ,𝑘   · ,𝑘
Allowed substitution hints:   𝐹(𝑘)   , (𝑘)

Proof of Theorem cphipval
StepHypRef Expression
1 cphipfval.x . . 3 𝑋 = (Base‘𝑊)
2 cphipfval.p . . 3 + = (+g𝑊)
3 cphipfval.s . . 3 · = ( ·𝑠𝑊)
4 cphipfval.n . . 3 𝑁 = (norm‘𝑊)
5 cphipfval.i . . 3 , = (·𝑖𝑊)
6 eqid 2795 . . 3 (-g𝑊) = (-g𝑊)
7 cphipval.f . . 3 𝐹 = (Scalar‘𝑊)
8 cphipval.k . . 3 𝐾 = (Base‘𝐹)
91, 2, 3, 4, 5, 6, 7, 8cphipval2 23527 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) / 4))
10 ax-icn 10442 . . . . . . . . . 10 i ∈ ℂ
1110a1i 11 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ ℂ)
12 simp1l 1190 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ ℂPreHil)
13 cphngp 23460 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
14 ngpgrp 22891 . . . . . . . . . . . . . . 15 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
1513, 14syl 17 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ Grp)
1615adantr 481 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ Grp)
17163ad2ant1 1126 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ Grp)
18 simp2 1130 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
19 cphlmod 23461 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod)
20193anim1i 1145 . . . . . . . . . . . . . . 15 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐵𝑋) → (𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋))
21203expa 1111 . . . . . . . . . . . . . 14 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋))
221, 7, 3, 8lmodvscl 19341 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ i ∈ 𝐾𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
2321, 22syl 17 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
24233adant2 1124 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · 𝐵) ∈ 𝑋)
251, 2grpcl 17869 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
2617, 18, 24, 25syl3anc 1364 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (i · 𝐵)) ∈ 𝑋)
271, 5, 4nmsq 23481 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (i · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))))
2812, 26, 27syl2anc 584 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))))
291, 5reipcl 23484 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (i · 𝐵)) ∈ 𝑋) → ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))) ∈ ℝ)
3012, 26, 29syl2anc 584 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))) ∈ ℝ)
3130recnd 10515 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + (i · 𝐵)) , (𝐴 + (i · 𝐵))) ∈ ℂ)
3228, 31eqeltrd 2883 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (i · 𝐵)))↑2) ∈ ℂ)
3311, 32mulcld 10507 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) ∈ ℂ)
3419adantr 481 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ LMod)
35343ad2ant1 1126 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ LMod)
36 cphclm 23476 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
377, 8clmneg1 23369 . . . . . . . . . . . . . . . 16 (𝑊 ∈ ℂMod → -1 ∈ 𝐾)
3836, 37syl 17 . . . . . . . . . . . . . . 15 (𝑊 ∈ ℂPreHil → -1 ∈ 𝐾)
3938adantr 481 . . . . . . . . . . . . . 14 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → -1 ∈ 𝐾)
40393ad2ant1 1126 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → -1 ∈ 𝐾)
41 simp3 1131 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
421, 7, 3, 8lmodvscl 19341 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ -1 ∈ 𝐾𝐵𝑋) → (-1 · 𝐵) ∈ 𝑋)
4335, 40, 41, 42syl3anc 1364 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-1 · 𝐵) ∈ 𝑋)
441, 2grpcl 17869 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (-1 · 𝐵) ∈ 𝑋) → (𝐴 + (-1 · 𝐵)) ∈ 𝑋)
4517, 18, 43, 44syl3anc 1364 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-1 · 𝐵)) ∈ 𝑋)
461, 5, 4nmsq 23481 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (-1 · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) = ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))))
4712, 45, 46syl2anc 584 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) = ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))))
481, 5reipcl 23484 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + (-1 · 𝐵)) ∈ 𝑋) → ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))) ∈ ℝ)
4912, 45, 48syl2anc 584 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + (-1 · 𝐵)) , (𝐴 + (-1 · 𝐵))) ∈ ℝ)
5047, 49eqeltrd 2883 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) ∈ ℝ)
5150recnd 10515 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) ∈ ℂ)
52 addneg1mul 10930 . . . . . . . 8 (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) ∈ ℂ ∧ ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) ∈ ℂ) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))
5333, 51, 52syl2anc 584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))
5436adantr 481 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → 𝑊 ∈ ℂMod)
551, 2, 6, 7, 3clmvsubval 23396 . . . . . . . . . . . 12 ((𝑊 ∈ ℂMod ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)𝐵) = (𝐴 + (-1 · 𝐵)))
5655eqcomd 2801 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-1 · 𝐵)) = (𝐴(-g𝑊)𝐵))
5754, 56syl3an1 1156 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-1 · 𝐵)) = (𝐴(-g𝑊)𝐵))
5857fveq2d 6542 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐴(-g𝑊)𝐵)))
5958oveq1d 7031 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2) = ((𝑁‘(𝐴(-g𝑊)𝐵))↑2))
6059oveq2d 7032 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)))
6153, 60eqtrd 2831 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)))
62 eqid 2795 . . . . . . . . . . . . 13 (invg𝑊) = (invg𝑊)
63543ad2ant1 1126 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → 𝑊 ∈ ℂMod)
64 simp1r 1191 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → i ∈ 𝐾)
651, 7, 3, 62, 8, 63, 41, 64clmvsneg 23387 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((invg𝑊)‘(i · 𝐵)) = (-i · 𝐵))
6665eqcomd 2801 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-i · 𝐵) = ((invg𝑊)‘(i · 𝐵)))
6766oveq2d 7032 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-i · 𝐵)) = (𝐴 + ((invg𝑊)‘(i · 𝐵))))
681, 2, 62, 6grpsubval 17906 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴(-g𝑊)(i · 𝐵)) = (𝐴 + ((invg𝑊)‘(i · 𝐵))))
6918, 24, 68syl2anc 584 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)(i · 𝐵)) = (𝐴 + ((invg𝑊)‘(i · 𝐵))))
7067, 69eqtr4d 2834 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (-i · 𝐵)) = (𝐴(-g𝑊)(i · 𝐵)))
7170fveq2d 6542 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (-i · 𝐵))) = (𝑁‘(𝐴(-g𝑊)(i · 𝐵))))
7271oveq1d 7031 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (-i · 𝐵)))↑2) = ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))
7372oveq2d 7032 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2)) = (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))
7461, 73oveq12d 7034 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
7554anim1i 614 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐵𝑋) → (𝑊 ∈ ℂMod ∧ 𝐵𝑋))
76753adant2 1124 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑊 ∈ ℂMod ∧ 𝐵𝑋))
771, 3clmvs1 23380 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ 𝐵𝑋) → (1 · 𝐵) = 𝐵)
7876, 77syl 17 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · 𝐵) = 𝐵)
7978oveq2d 7032 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + (1 · 𝐵)) = (𝐴 + 𝐵))
8079fveq2d 6542 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴 + (1 · 𝐵))) = (𝑁‘(𝐴 + 𝐵)))
8180oveq1d 7031 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + (1 · 𝐵)))↑2) = ((𝑁‘(𝐴 + 𝐵))↑2))
8281oveq2d 7032 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)) = (1 · ((𝑁‘(𝐴 + 𝐵))↑2)))
831, 2grpcl 17869 . . . . . . . . . . 11 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
8416, 83syl3an1 1156 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
851, 5, 4nmsq 23481 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
8612, 84, 85syl2anc 584 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) = ((𝐴 + 𝐵) , (𝐴 + 𝐵)))
871, 5reipcl 23484 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + 𝐵) ∈ 𝑋) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) ∈ ℝ)
8812, 84, 87syl2anc 584 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) , (𝐴 + 𝐵)) ∈ ℝ)
8986, 88eqeltrd 2883 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) ∈ ℝ)
9089recnd 10515 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴 + 𝐵))↑2) ∈ ℂ)
9190mulid2d 10505 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴 + 𝐵))↑2)) = ((𝑁‘(𝐴 + 𝐵))↑2))
9282, 91eqtrd 2831 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)) = ((𝑁‘(𝐴 + 𝐵))↑2))
9374, 92oveq12d 7034 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
94 nnuz 12130 . . . . . 6 ℕ = (ℤ‘1)
95 df-4 11550 . . . . . 6 4 = (3 + 1)
96 oveq2 7024 . . . . . . . 8 (𝑘 = 4 → (i↑𝑘) = (i↑4))
97 i4 13417 . . . . . . . 8 (i↑4) = 1
9896, 97syl6eq 2847 . . . . . . 7 (𝑘 = 4 → (i↑𝑘) = 1)
9998oveq1d 7031 . . . . . . . . . 10 (𝑘 = 4 → ((i↑𝑘) · 𝐵) = (1 · 𝐵))
10099oveq2d 7032 . . . . . . . . 9 (𝑘 = 4 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (1 · 𝐵)))
101100fveq2d 6542 . . . . . . . 8 (𝑘 = 4 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (1 · 𝐵))))
102101oveq1d 7031 . . . . . . 7 (𝑘 = 4 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))
10398, 102oveq12d 7034 . . . . . 6 (𝑘 = 4 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)))
10410a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ → i ∈ ℂ)
105 nnnn0 11752 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
106104, 105expcld 13360 . . . . . . . 8 (𝑘 ∈ ℕ → (i↑𝑘) ∈ ℂ)
107106adantl 482 . . . . . . 7 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ ℂ)
10812adantr 481 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑊 ∈ ℂPreHil)
10917adantr 481 . . . . . . . . . 10 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑊 ∈ Grp)
11018adantr 481 . . . . . . . . . 10 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝐴𝑋)
11135adantr 481 . . . . . . . . . . 11 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑊 ∈ LMod)
11236anim1i 614 . . . . . . . . . . . . 13 ((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) → (𝑊 ∈ ℂMod ∧ i ∈ 𝐾))
1131123ad2ant1 1126 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝑊 ∈ ℂMod ∧ i ∈ 𝐾))
1147, 8cmodscexp 23408 . . . . . . . . . . . 12 (((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ 𝐾)
115113, 114sylan 580 . . . . . . . . . . 11 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ 𝐾)
11641adantr 481 . . . . . . . . . . 11 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝐵𝑋)
1171, 7, 3, 8lmodvscl 19341 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (i↑𝑘) ∈ 𝐾𝐵𝑋) → ((i↑𝑘) · 𝐵) ∈ 𝑋)
118111, 115, 116, 117syl3anc 1364 . . . . . . . . . 10 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · 𝐵) ∈ 𝑋)
1191, 2grpcl 17869 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ ((i↑𝑘) · 𝐵) ∈ 𝑋) → (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋)
120109, 110, 118, 119syl3anc 1364 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋)
1211, 5, 4nmsq 23481 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))))
122108, 120, 121syl2anc 584 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))))
1231, 5reipcl 23484 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℝ)
124108, 120, 123syl2anc 584 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℝ)
125124recnd 10515 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℂ)
126122, 125eqeltrd 2883 . . . . . . 7 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) ∈ ℂ)
127107, 126mulcld 10507 . . . . . 6 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) ∈ ℂ)
128 df-3 11549 . . . . . . 7 3 = (2 + 1)
129 oveq2 7024 . . . . . . . . 9 (𝑘 = 3 → (i↑𝑘) = (i↑3))
130 i3 13416 . . . . . . . . 9 (i↑3) = -i
131129, 130syl6eq 2847 . . . . . . . 8 (𝑘 = 3 → (i↑𝑘) = -i)
132131oveq1d 7031 . . . . . . . . . . 11 (𝑘 = 3 → ((i↑𝑘) · 𝐵) = (-i · 𝐵))
133132oveq2d 7032 . . . . . . . . . 10 (𝑘 = 3 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (-i · 𝐵)))
134133fveq2d 6542 . . . . . . . . 9 (𝑘 = 3 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (-i · 𝐵))))
135134oveq1d 7031 . . . . . . . 8 (𝑘 = 3 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))
136131, 135oveq12d 7034 . . . . . . 7 (𝑘 = 3 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2)))
13710a1i 11 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → i ∈ ℂ)
138105adantl 482 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
139137, 138expcld 13360 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → (i↑𝑘) ∈ ℂ)
140123recnd 10515 . . . . . . . . . 10 ((𝑊 ∈ ℂPreHil ∧ (𝐴 + ((i↑𝑘) · 𝐵)) ∈ 𝑋) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℂ)
141108, 120, 140syl2anc 584 . . . . . . . . 9 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝐴 + ((i↑𝑘) · 𝐵)) , (𝐴 + ((i↑𝑘) · 𝐵))) ∈ ℂ)
142122, 141eqeltrd 2883 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) ∈ ℂ)
143139, 142mulcld 10507 . . . . . . 7 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) ∈ ℂ)
144 df-2 11548 . . . . . . . 8 2 = (1 + 1)
145 oveq2 7024 . . . . . . . . . 10 (𝑘 = 2 → (i↑𝑘) = (i↑2))
146 i2 13415 . . . . . . . . . 10 (i↑2) = -1
147145, 146syl6eq 2847 . . . . . . . . 9 (𝑘 = 2 → (i↑𝑘) = -1)
148147oveq1d 7031 . . . . . . . . . . . 12 (𝑘 = 2 → ((i↑𝑘) · 𝐵) = (-1 · 𝐵))
149148oveq2d 7032 . . . . . . . . . . 11 (𝑘 = 2 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (-1 · 𝐵)))
150149fveq2d 6542 . . . . . . . . . 10 (𝑘 = 2 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (-1 · 𝐵))))
151150oveq1d 7031 . . . . . . . . 9 (𝑘 = 2 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))
152147, 151oveq12d 7034 . . . . . . . 8 (𝑘 = 2 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))
153139, 126mulcld 10507 . . . . . . . 8 ((((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝑘 ∈ ℕ) → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) ∈ ℂ)
154 1z 11861 . . . . . . . . . 10 1 ∈ ℤ
155 oveq2 7024 . . . . . . . . . . . . 13 (𝑘 = 1 → (i↑𝑘) = (i↑1))
156 exp1 13285 . . . . . . . . . . . . . 14 (i ∈ ℂ → (i↑1) = i)
15710, 156ax-mp 5 . . . . . . . . . . . . 13 (i↑1) = i
158155, 157syl6eq 2847 . . . . . . . . . . . 12 (𝑘 = 1 → (i↑𝑘) = i)
159158oveq1d 7031 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((i↑𝑘) · 𝐵) = (i · 𝐵))
160159oveq2d 7032 . . . . . . . . . . . . . 14 (𝑘 = 1 → (𝐴 + ((i↑𝑘) · 𝐵)) = (𝐴 + (i · 𝐵)))
161160fveq2d 6542 . . . . . . . . . . . . 13 (𝑘 = 1 → (𝑁‘(𝐴 + ((i↑𝑘) · 𝐵))) = (𝑁‘(𝐴 + (i · 𝐵))))
162161oveq1d 7031 . . . . . . . . . . . 12 (𝑘 = 1 → ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2) = ((𝑁‘(𝐴 + (i · 𝐵)))↑2))
163158, 162oveq12d 7034 . . . . . . . . . . 11 (𝑘 = 1 → ((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)))
164163fsum1 14935 . . . . . . . . . 10 ((1 ∈ ℤ ∧ (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) ∈ ℂ) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)))
165154, 33, 164sylancr 587 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)))
166 1nn 11497 . . . . . . . . 9 1 ∈ ℕ
167165, 166jctil 520 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (1 ∈ ℕ ∧ Σ𝑘 ∈ (1...1)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2))))
168 eqidd 2796 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))))
16994, 144, 152, 153, 167, 168fsump1i 14957 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (2 ∈ ℕ ∧ Σ𝑘 ∈ (1...2)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2)))))
170 eqidd 2796 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))))
17194, 128, 136, 143, 169, 170fsump1i 14957 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (3 ∈ ℕ ∧ Σ𝑘 ∈ (1...3)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2)))))
172 eqidd 2796 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))))
17394, 95, 103, 127, 171, 172fsump1i 14957 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (4 ∈ ℕ ∧ Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2)))))
174173simprd 496 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) + (-1 · ((𝑁‘(𝐴 + (-1 · 𝐵)))↑2))) + (-i · ((𝑁‘(𝐴 + (-i · 𝐵)))↑2))) + (1 · ((𝑁‘(𝐴 + (1 · 𝐵)))↑2))))
1751, 6grpsubcl 17936 . . . . . . . . . . . 12 ((𝑊 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)𝐵) ∈ 𝑋)
17616, 175syl3an1 1156 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)𝐵) ∈ 𝑋)
1771, 5, 4nmsq 23481 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) = ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)))
17812, 176, 177syl2anc 584 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) = ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)))
1791, 5reipcl 23484 . . . . . . . . . . 11 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)𝐵) ∈ 𝑋) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) ∈ ℝ)
18012, 176, 179syl2anc 584 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴(-g𝑊)𝐵) , (𝐴(-g𝑊)𝐵)) ∈ ℝ)
181178, 180eqeltrd 2883 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) ∈ ℝ)
182181recnd 10515 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)𝐵))↑2) ∈ ℂ)
18390, 182subcld 10845 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) ∈ ℂ)
1841, 6grpsubcl 17936 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ 𝐴𝑋 ∧ (i · 𝐵) ∈ 𝑋) → (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋)
18517, 18, 24, 184syl3anc 1364 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋)
1861, 5, 4nmsq 23481 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) = ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))))
18712, 185, 186syl2anc 584 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) = ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))))
1881, 5reipcl 23484 . . . . . . . . . . . 12 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)(i · 𝐵)) ∈ 𝑋) → ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))) ∈ ℝ)
18912, 185, 188syl2anc 584 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴(-g𝑊)(i · 𝐵)) , (𝐴(-g𝑊)(i · 𝐵))) ∈ ℝ)
190187, 189eqeltrd 2883 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) ∈ ℝ)
191190recnd 10515 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2) ∈ ℂ)
19232, 191subcld 10845 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) ∈ ℂ)
19311, 192mulcld 10507 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) ∈ ℂ)
194183, 193addcomd 10689 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2))))
195193, 182, 90subadd23d 10867 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + ((𝑁‘(𝐴 + 𝐵))↑2)) = ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + (((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2))))
19611, 32, 191subdid 10944 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
197196oveq1d 7031 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)))
19811, 191mulcld 10507 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) ∈ ℂ)
19933, 198, 182sub32d 10877 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
200197, 199eqtrd 2831 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
201200oveq1d 7031 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + ((𝑁‘(𝐴 + 𝐵))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
202194, 195, 2013eqtr2d 2837 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
20333, 182subcld 10845 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) ∈ ℂ)
204203, 198negsubd 10851 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
20511, 191mulneg1d 10941 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) = -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))
206205eqcomd 2801 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)) = (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))
207206oveq2d 7032 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + -(i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
208204, 207eqtr3d 2833 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) = (((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))))
209208oveq1d 7031 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) − (i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
210202, 209eqtrd 2831 . . . 4 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = ((((i · ((𝑁‘(𝐴 + (i · 𝐵)))↑2)) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (-i · ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2))) + ((𝑁‘(𝐴 + 𝐵))↑2)))
21193, 174, 2103eqtr4rd 2842 . . 3 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → ((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) = Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)))
212211oveq1d 7031 . 2 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (((((𝑁‘(𝐴 + 𝐵))↑2) − ((𝑁‘(𝐴(-g𝑊)𝐵))↑2)) + (i · (((𝑁‘(𝐴 + (i · 𝐵)))↑2) − ((𝑁‘(𝐴(-g𝑊)(i · 𝐵)))↑2)))) / 4) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) / 4))
2139, 212eqtrd 2831 1 (((𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾) ∧ 𝐴𝑋𝐵𝑋) → (𝐴 , 𝐵) = (Σ𝑘 ∈ (1...4)((i↑𝑘) · ((𝑁‘(𝐴 + ((i↑𝑘) · 𝐵)))↑2)) / 4))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2081  cfv 6225  (class class class)co 7016  cc 10381  cr 10382  1c1 10384  ici 10385   + caddc 10386   · cmul 10388  cmin 10717  -cneg 10718   / cdiv 11145  cn 11486  2c2 11540  3c3 11541  4c4 11542  0cn0 11745  cz 11829  ...cfz 12742  cexp 13279  Σcsu 14876  Basecbs 16312  +gcplusg 16394  Scalarcsca 16397   ·𝑠 cvsca 16398  ·𝑖cip 16399  Grpcgrp 17861  invgcminusg 17862  -gcsg 17863  LModclmod 19324  normcnm 22869  NrmGrpcngp 22870  ℂModcclm 23349  ℂPreHilccph 23453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-tpos 7743  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-sum 14877  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-0g 16544  df-topgen 16546  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-mhm 17774  df-submnd 17775  df-grp 17864  df-minusg 17865  df-sbg 17866  df-mulg 17982  df-subg 18030  df-ghm 18097  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-ring 18989  df-cring 18990  df-oppr 19063  df-dvdsr 19081  df-unit 19082  df-rnghom 19157  df-drng 19194  df-subrg 19223  df-staf 19306  df-srng 19307  df-lmod 19326  df-lmhm 19484  df-lvec 19565  df-sra 19634  df-rgmod 19635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-cnfld 20228  df-phl 20452  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-xms 22613  df-ms 22614  df-nm 22875  df-ngp 22876  df-nlm 22879  df-clm 23350  df-cph 23455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator