![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elicc2 | Structured version Visualization version GIF version |
Description: Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
elicc2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11304 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 11304 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | elicc1 13427 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
5 | mnfxr 11315 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → -∞ ∈ ℝ*) |
7 | 1 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐴 ∈ ℝ*) |
8 | simpr1 1193 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ∈ ℝ*) | |
9 | mnflt 13162 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
10 | 9 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → -∞ < 𝐴) |
11 | simpr2 1194 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐴 ≤ 𝐶) | |
12 | 6, 7, 8, 10, 11 | xrltletrd 13199 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → -∞ < 𝐶) |
13 | 2 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐵 ∈ ℝ*) |
14 | pnfxr 11312 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
15 | 14 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → +∞ ∈ ℝ*) |
16 | simpr3 1195 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ≤ 𝐵) | |
17 | ltpnf 13159 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
18 | 17 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐵 < +∞) |
19 | 8, 13, 15, 16, 18 | xrlelttrd 13198 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 < +∞) |
20 | xrrebnd 13206 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶 ∧ 𝐶 < +∞))) | |
21 | 8, 20 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶 ∧ 𝐶 < +∞))) |
22 | 12, 19, 21 | mpbir2and 713 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ∈ ℝ) |
23 | 22, 11, 16 | 3jca 1127 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
24 | 23 | ex 412 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
25 | rexr 11304 | . . . 4 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*) | |
26 | 25 | 3anim1i 1151 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
27 | 24, 26 | impbid1 225 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
28 | 4, 27 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 class class class wbr 5147 (class class class)co 7430 ℝcr 11151 +∞cpnf 11289 -∞cmnf 11290 ℝ*cxr 11291 < clt 11292 ≤ cle 11293 [,]cicc 13386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-pre-lttri 11226 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-icc 13390 |
This theorem is referenced by: elicc2i 13449 iccssre 13465 iccsupr 13478 iccneg 13508 iccsplit 13521 iccshftr 13522 iccshftl 13524 iccdil 13526 icccntr 13528 iccf1o 13532 supicc 13537 icco1 15572 iccntr 24856 icccmplem1 24857 icccmplem2 24858 icccmplem3 24859 reconnlem1 24861 reconnlem2 24862 cnmpopc 24968 icoopnst 24982 iocopnst 24983 cnheiborlem 24999 ivthlem2 25500 ivthlem3 25501 ivthicc 25506 evthicc2 25508 ovolficc 25516 ovolicc1 25564 ovolicc2lem2 25566 ovolicc2lem5 25569 ovolicopnf 25572 dyadmaxlem 25645 opnmbllem 25649 volsup2 25653 volcn 25654 mbfi1fseqlem6 25769 itgspliticc 25886 itgsplitioo 25887 ditgcl 25907 ditgswap 25908 ditgsplitlem 25909 ditgsplit 25910 dvlip 26046 dvlip2 26048 dveq0 26053 dvgt0lem1 26055 dvivthlem1 26061 dvne0 26064 dvcnvrelem1 26070 dvcnvrelem2 26071 dvcnvre 26072 dvfsumlem2 26081 dvfsumlem2OLD 26082 ftc1lem1 26090 ftc1lem2 26091 ftc1a 26092 ftc1lem4 26094 ftc2 26099 ftc2ditglem 26100 itgsubstlem 26103 pserulm 26479 loglesqrt 26818 log2tlbnd 27002 ppisval 27161 chtleppi 27268 fsumvma2 27272 chpchtsum 27277 chpub 27278 rplogsumlem2 27543 chpdifbndlem1 27611 pntibndlem2a 27648 pntibndlem2 27649 pntlemj 27661 pntlem3 27667 pntleml 27669 resconn 35230 cvmliftlem10 35278 opnmbllem0 37642 ftc2nc 37688 areacirclem2 37695 areacirclem4 37697 areacirc 37699 isbnd3 37770 isbnd3b 37771 prdsbnd 37779 iccbnd 37826 intlewftc 42042 dvrelog2 42045 aks4d1p1p5 42056 eliccd 45456 eliccre 45457 iccshift 45470 iccsuble 45471 limcicciooub 45592 icccncfext 45842 itgsubsticc 45931 iblcncfioo 45933 itgiccshift 45935 itgperiod 45936 itgsbtaddcnst 45937 fourierdlem42 46104 fourierdlem54 46115 fourierdlem63 46124 fourierdlem65 46126 fourierdlem74 46135 fourierdlem75 46136 fourierdlem82 46143 fourierdlem93 46154 fourierdlem101 46162 fourierdlem104 46165 fourierdlem111 46172 reorelicc 48559 |
Copyright terms: Public domain | W3C validator |