MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc2 Structured version   Visualization version   GIF version

Theorem elicc2 13321
Description: Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elicc2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))

Proof of Theorem elicc2
StepHypRef Expression
1 rexr 11197 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 11197 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 elicc1 13300 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
41, 2, 3syl2an 596 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
5 mnfxr 11208 . . . . . . . 8 -∞ ∈ ℝ*
65a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → -∞ ∈ ℝ*)
71ad2antrr 724 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐴 ∈ ℝ*)
8 simpr1 1194 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶 ∈ ℝ*)
9 mnflt 13036 . . . . . . . 8 (𝐴 ∈ ℝ → -∞ < 𝐴)
109ad2antrr 724 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → -∞ < 𝐴)
11 simpr2 1195 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐴𝐶)
126, 7, 8, 10, 11xrltletrd 13072 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → -∞ < 𝐶)
132ad2antlr 725 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐵 ∈ ℝ*)
14 pnfxr 11205 . . . . . . . 8 +∞ ∈ ℝ*
1514a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → +∞ ∈ ℝ*)
16 simpr3 1196 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶𝐵)
17 ltpnf 13033 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
1817ad2antlr 725 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐵 < +∞)
198, 13, 15, 16, 18xrlelttrd 13071 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶 < +∞)
20 xrrebnd 13079 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
218, 20syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
2212, 19, 21mpbir2and 711 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶 ∈ ℝ)
2322, 11, 163jca 1128 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))
2423ex 413 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
25 rexr 11197 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
26253anim1i 1152 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵))
2724, 26impbid1 224 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
284, 27bitrd 278 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wcel 2106   class class class wbr 5103  (class class class)co 7353  cr 11046  +∞cpnf 11182  -∞cmnf 11183  *cxr 11184   < clt 11185  cle 11186  [,]cicc 13259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-cnex 11103  ax-resscn 11104  ax-pre-lttri 11121  ax-pre-lttrn 11122
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-po 5543  df-so 5544  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8644  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-icc 13263
This theorem is referenced by:  elicc2i  13322  iccssre  13338  iccsupr  13351  iccneg  13381  iccsplit  13394  iccshftr  13395  iccshftl  13397  iccdil  13399  icccntr  13401  iccf1o  13405  supicc  13410  icco1  15414  iccntr  24168  icccmplem1  24169  icccmplem2  24170  icccmplem3  24171  reconnlem1  24173  reconnlem2  24174  cnmpopc  24275  icoopnst  24286  iocopnst  24287  cnheiborlem  24301  ivthlem2  24800  ivthlem3  24801  ivthicc  24806  evthicc2  24808  ovolficc  24816  ovolicc1  24864  ovolicc2lem2  24866  ovolicc2lem5  24869  ovolicopnf  24872  dyadmaxlem  24945  opnmbllem  24949  volsup2  24953  volcn  24954  mbfi1fseqlem6  25069  itgspliticc  25185  itgsplitioo  25186  ditgcl  25206  ditgswap  25207  ditgsplitlem  25208  ditgsplit  25209  dvlip  25341  dvlip2  25343  dveq0  25348  dvgt0lem1  25350  dvivthlem1  25356  dvne0  25359  dvcnvrelem1  25365  dvcnvrelem2  25366  dvcnvre  25367  dvfsumlem2  25375  ftc1lem1  25383  ftc1lem2  25384  ftc1a  25385  ftc1lem4  25387  ftc2  25392  ftc2ditglem  25393  itgsubstlem  25396  pserulm  25765  loglesqrt  26095  log2tlbnd  26279  ppisval  26437  chtleppi  26542  fsumvma2  26546  chpchtsum  26551  chpub  26552  rplogsumlem2  26817  chpdifbndlem1  26885  pntibndlem2a  26922  pntibndlem2  26923  pntlemj  26935  pntlem3  26941  pntleml  26943  resconn  33709  cvmliftlem10  33757  opnmbllem0  36081  ftc2nc  36127  areacirclem2  36134  areacirclem4  36136  areacirc  36138  isbnd3  36210  isbnd3b  36211  prdsbnd  36219  iccbnd  36266  intlewftc  40485  dvrelog2  40488  aks4d1p1p5  40499  eliccd  43674  eliccre  43675  iccshift  43688  iccsuble  43689  limcicciooub  43810  icccncfext  44060  itgsubsticc  44149  iblcncfioo  44151  itgiccshift  44153  itgperiod  44154  itgsbtaddcnst  44155  fourierdlem42  44322  fourierdlem54  44333  fourierdlem63  44342  fourierdlem65  44344  fourierdlem74  44353  fourierdlem75  44354  fourierdlem82  44361  fourierdlem93  44372  fourierdlem101  44380  fourierdlem104  44383  fourierdlem111  44390  reorelicc  46728
  Copyright terms: Public domain W3C validator