MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc2 Structured version   Visualization version   GIF version

Theorem elicc2 13379
Description: Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elicc2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))

Proof of Theorem elicc2
StepHypRef Expression
1 rexr 11227 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 11227 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 elicc1 13357 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
41, 2, 3syl2an 596 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
5 mnfxr 11238 . . . . . . . 8 -∞ ∈ ℝ*
65a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → -∞ ∈ ℝ*)
71ad2antrr 726 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐴 ∈ ℝ*)
8 simpr1 1195 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶 ∈ ℝ*)
9 mnflt 13090 . . . . . . . 8 (𝐴 ∈ ℝ → -∞ < 𝐴)
109ad2antrr 726 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → -∞ < 𝐴)
11 simpr2 1196 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐴𝐶)
126, 7, 8, 10, 11xrltletrd 13128 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → -∞ < 𝐶)
132ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐵 ∈ ℝ*)
14 pnfxr 11235 . . . . . . . 8 +∞ ∈ ℝ*
1514a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → +∞ ∈ ℝ*)
16 simpr3 1197 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶𝐵)
17 ltpnf 13087 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
1817ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐵 < +∞)
198, 13, 15, 16, 18xrlelttrd 13127 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶 < +∞)
20 xrrebnd 13135 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
218, 20syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
2212, 19, 21mpbir2and 713 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶 ∈ ℝ)
2322, 11, 163jca 1128 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))
2423ex 412 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
25 rexr 11227 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
26253anim1i 1152 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵))
2724, 26impbid1 225 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
284, 27bitrd 279 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5110  (class class class)co 7390  cr 11074  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  [,]cicc 13316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-icc 13320
This theorem is referenced by:  elicc2i  13380  iccssre  13397  iccsupr  13410  iccneg  13440  iccsplit  13453  iccshftr  13454  iccshftl  13456  iccdil  13458  icccntr  13460  iccf1o  13464  supicc  13469  icco1  15513  iccntr  24717  icccmplem1  24718  icccmplem2  24719  icccmplem3  24720  reconnlem1  24722  reconnlem2  24723  cnmpopc  24829  icoopnst  24843  iocopnst  24844  cnheiborlem  24860  ivthlem2  25360  ivthlem3  25361  ivthicc  25366  evthicc2  25368  ovolficc  25376  ovolicc1  25424  ovolicc2lem2  25426  ovolicc2lem5  25429  ovolicopnf  25432  dyadmaxlem  25505  opnmbllem  25509  volsup2  25513  volcn  25514  mbfi1fseqlem6  25628  itgspliticc  25745  itgsplitioo  25746  ditgcl  25766  ditgswap  25767  ditgsplitlem  25768  ditgsplit  25769  dvlip  25905  dvlip2  25907  dveq0  25912  dvgt0lem1  25914  dvivthlem1  25920  dvne0  25923  dvcnvrelem1  25929  dvcnvrelem2  25930  dvcnvre  25931  dvfsumlem2  25940  dvfsumlem2OLD  25941  ftc1lem1  25949  ftc1lem2  25950  ftc1a  25951  ftc1lem4  25953  ftc2  25958  ftc2ditglem  25959  itgsubstlem  25962  pserulm  26338  loglesqrt  26678  log2tlbnd  26862  ppisval  27021  chtleppi  27128  fsumvma2  27132  chpchtsum  27137  chpub  27138  rplogsumlem2  27403  chpdifbndlem1  27471  pntibndlem2a  27508  pntibndlem2  27509  pntlemj  27521  pntlem3  27527  pntleml  27529  resconn  35240  cvmliftlem10  35288  opnmbllem0  37657  ftc2nc  37703  areacirclem2  37710  areacirclem4  37712  areacirc  37714  isbnd3  37785  isbnd3b  37786  prdsbnd  37794  iccbnd  37841  intlewftc  42056  dvrelog2  42059  aks4d1p1p5  42070  eliccd  45509  eliccre  45510  iccshift  45523  iccsuble  45524  limcicciooub  45642  icccncfext  45892  itgsubsticc  45981  iblcncfioo  45983  itgiccshift  45985  itgperiod  45986  itgsbtaddcnst  45987  fourierdlem42  46154  fourierdlem54  46165  fourierdlem63  46174  fourierdlem65  46176  fourierdlem74  46185  fourierdlem75  46186  fourierdlem82  46193  fourierdlem93  46204  fourierdlem101  46212  fourierdlem104  46215  fourierdlem111  46222  reorelicc  48703
  Copyright terms: Public domain W3C validator