| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elicc2 | Structured version Visualization version GIF version | ||
| Description: Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
| Ref | Expression |
|---|---|
| elicc2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11161 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11161 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | elicc1 13292 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 5 | mnfxr 11172 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → -∞ ∈ ℝ*) |
| 7 | 1 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐴 ∈ ℝ*) |
| 8 | simpr1 1195 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ∈ ℝ*) | |
| 9 | mnflt 13025 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
| 10 | 9 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → -∞ < 𝐴) |
| 11 | simpr2 1196 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐴 ≤ 𝐶) | |
| 12 | 6, 7, 8, 10, 11 | xrltletrd 13063 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → -∞ < 𝐶) |
| 13 | 2 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐵 ∈ ℝ*) |
| 14 | pnfxr 11169 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
| 15 | 14 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → +∞ ∈ ℝ*) |
| 16 | simpr3 1197 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ≤ 𝐵) | |
| 17 | ltpnf 13022 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
| 18 | 17 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐵 < +∞) |
| 19 | 8, 13, 15, 16, 18 | xrlelttrd 13062 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 < +∞) |
| 20 | xrrebnd 13070 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶 ∧ 𝐶 < +∞))) | |
| 21 | 8, 20 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶 ∧ 𝐶 < +∞))) |
| 22 | 12, 19, 21 | mpbir2and 713 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ∈ ℝ) |
| 23 | 22, 11, 16 | 3jca 1128 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 24 | 23 | ex 412 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 25 | rexr 11161 | . . . 4 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*) | |
| 26 | 25 | 3anim1i 1152 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 27 | 24, 26 | impbid1 225 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 28 | 4, 27 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5092 (class class class)co 7349 ℝcr 11008 +∞cpnf 11146 -∞cmnf 11147 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 [,]cicc 13251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-icc 13255 |
| This theorem is referenced by: elicc2i 13315 iccssre 13332 iccsupr 13345 iccneg 13375 iccsplit 13388 iccshftr 13389 iccshftl 13391 iccdil 13393 icccntr 13395 iccf1o 13399 supicc 13404 icco1 15447 iccntr 24708 icccmplem1 24709 icccmplem2 24710 icccmplem3 24711 reconnlem1 24713 reconnlem2 24714 cnmpopc 24820 icoopnst 24834 iocopnst 24835 cnheiborlem 24851 ivthlem2 25351 ivthlem3 25352 ivthicc 25357 evthicc2 25359 ovolficc 25367 ovolicc1 25415 ovolicc2lem2 25417 ovolicc2lem5 25420 ovolicopnf 25423 dyadmaxlem 25496 opnmbllem 25500 volsup2 25504 volcn 25505 mbfi1fseqlem6 25619 itgspliticc 25736 itgsplitioo 25737 ditgcl 25757 ditgswap 25758 ditgsplitlem 25759 ditgsplit 25760 dvlip 25896 dvlip2 25898 dveq0 25903 dvgt0lem1 25905 dvivthlem1 25911 dvne0 25914 dvcnvrelem1 25920 dvcnvrelem2 25921 dvcnvre 25922 dvfsumlem2 25931 dvfsumlem2OLD 25932 ftc1lem1 25940 ftc1lem2 25941 ftc1a 25942 ftc1lem4 25944 ftc2 25949 ftc2ditglem 25950 itgsubstlem 25953 pserulm 26329 loglesqrt 26669 log2tlbnd 26853 ppisval 27012 chtleppi 27119 fsumvma2 27123 chpchtsum 27128 chpub 27129 rplogsumlem2 27394 chpdifbndlem1 27462 pntibndlem2a 27499 pntibndlem2 27500 pntlemj 27512 pntlem3 27518 pntleml 27520 resconn 35223 cvmliftlem10 35271 opnmbllem0 37640 ftc2nc 37686 areacirclem2 37693 areacirclem4 37695 areacirc 37697 isbnd3 37768 isbnd3b 37769 prdsbnd 37777 iccbnd 37824 intlewftc 42038 dvrelog2 42041 aks4d1p1p5 42052 eliccd 45489 eliccre 45490 iccshift 45503 iccsuble 45504 limcicciooub 45622 icccncfext 45872 itgsubsticc 45961 iblcncfioo 45963 itgiccshift 45965 itgperiod 45966 itgsbtaddcnst 45967 fourierdlem42 46134 fourierdlem54 46145 fourierdlem63 46154 fourierdlem65 46156 fourierdlem74 46165 fourierdlem75 46166 fourierdlem82 46173 fourierdlem93 46184 fourierdlem101 46192 fourierdlem104 46195 fourierdlem111 46202 reorelicc 48699 |
| Copyright terms: Public domain | W3C validator |