![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elicc2 | Structured version Visualization version GIF version |
Description: Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
elicc2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11260 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 11260 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | elicc1 13368 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
4 | 1, 2, 3 | syl2an 597 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
5 | mnfxr 11271 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → -∞ ∈ ℝ*) |
7 | 1 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐴 ∈ ℝ*) |
8 | simpr1 1195 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ∈ ℝ*) | |
9 | mnflt 13103 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
10 | 9 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → -∞ < 𝐴) |
11 | simpr2 1196 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐴 ≤ 𝐶) | |
12 | 6, 7, 8, 10, 11 | xrltletrd 13140 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → -∞ < 𝐶) |
13 | 2 | ad2antlr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐵 ∈ ℝ*) |
14 | pnfxr 11268 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
15 | 14 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → +∞ ∈ ℝ*) |
16 | simpr3 1197 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ≤ 𝐵) | |
17 | ltpnf 13100 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
18 | 17 | ad2antlr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐵 < +∞) |
19 | 8, 13, 15, 16, 18 | xrlelttrd 13139 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 < +∞) |
20 | xrrebnd 13147 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶 ∧ 𝐶 < +∞))) | |
21 | 8, 20 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶 ∧ 𝐶 < +∞))) |
22 | 12, 19, 21 | mpbir2and 712 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ∈ ℝ) |
23 | 22, 11, 16 | 3jca 1129 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
24 | 23 | ex 414 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
25 | rexr 11260 | . . . 4 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*) | |
26 | 25 | 3anim1i 1153 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
27 | 24, 26 | impbid1 224 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
28 | 4, 27 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 class class class wbr 5149 (class class class)co 7409 ℝcr 11109 +∞cpnf 11245 -∞cmnf 11246 ℝ*cxr 11247 < clt 11248 ≤ cle 11249 [,]cicc 13327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-icc 13331 |
This theorem is referenced by: elicc2i 13390 iccssre 13406 iccsupr 13419 iccneg 13449 iccsplit 13462 iccshftr 13463 iccshftl 13465 iccdil 13467 icccntr 13469 iccf1o 13473 supicc 13478 icco1 15484 iccntr 24337 icccmplem1 24338 icccmplem2 24339 icccmplem3 24340 reconnlem1 24342 reconnlem2 24343 cnmpopc 24444 icoopnst 24455 iocopnst 24456 cnheiborlem 24470 ivthlem2 24969 ivthlem3 24970 ivthicc 24975 evthicc2 24977 ovolficc 24985 ovolicc1 25033 ovolicc2lem2 25035 ovolicc2lem5 25038 ovolicopnf 25041 dyadmaxlem 25114 opnmbllem 25118 volsup2 25122 volcn 25123 mbfi1fseqlem6 25238 itgspliticc 25354 itgsplitioo 25355 ditgcl 25375 ditgswap 25376 ditgsplitlem 25377 ditgsplit 25378 dvlip 25510 dvlip2 25512 dveq0 25517 dvgt0lem1 25519 dvivthlem1 25525 dvne0 25528 dvcnvrelem1 25534 dvcnvrelem2 25535 dvcnvre 25536 dvfsumlem2 25544 ftc1lem1 25552 ftc1lem2 25553 ftc1a 25554 ftc1lem4 25556 ftc2 25561 ftc2ditglem 25562 itgsubstlem 25565 pserulm 25934 loglesqrt 26266 log2tlbnd 26450 ppisval 26608 chtleppi 26713 fsumvma2 26717 chpchtsum 26722 chpub 26723 rplogsumlem2 26988 chpdifbndlem1 27056 pntibndlem2a 27093 pntibndlem2 27094 pntlemj 27106 pntlem3 27112 pntleml 27114 resconn 34268 cvmliftlem10 34316 gg-dvfsumlem2 35214 opnmbllem0 36572 ftc2nc 36618 areacirclem2 36625 areacirclem4 36627 areacirc 36629 isbnd3 36700 isbnd3b 36701 prdsbnd 36709 iccbnd 36756 intlewftc 40974 dvrelog2 40977 aks4d1p1p5 40988 eliccd 44265 eliccre 44266 iccshift 44279 iccsuble 44280 limcicciooub 44401 icccncfext 44651 itgsubsticc 44740 iblcncfioo 44742 itgiccshift 44744 itgperiod 44745 itgsbtaddcnst 44746 fourierdlem42 44913 fourierdlem54 44924 fourierdlem63 44933 fourierdlem65 44935 fourierdlem74 44944 fourierdlem75 44945 fourierdlem82 44952 fourierdlem93 44963 fourierdlem101 44971 fourierdlem104 44974 fourierdlem111 44981 reorelicc 47444 |
Copyright terms: Public domain | W3C validator |