MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicc2 Structured version   Visualization version   GIF version

Theorem elicc2 12526
Description: Membership in a closed real interval. (Contributed by Paul Chapman, 21-Sep-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elicc2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))

Proof of Theorem elicc2
StepHypRef Expression
1 rexr 10402 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 10402 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 elicc1 12507 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
41, 2, 3syl2an 591 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
5 mnfxr 10414 . . . . . . . 8 -∞ ∈ ℝ*
65a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → -∞ ∈ ℝ*)
71ad2antrr 719 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐴 ∈ ℝ*)
8 simpr1 1254 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶 ∈ ℝ*)
9 mnflt 12243 . . . . . . . 8 (𝐴 ∈ ℝ → -∞ < 𝐴)
109ad2antrr 719 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → -∞ < 𝐴)
11 simpr2 1256 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐴𝐶)
126, 7, 8, 10, 11xrltletrd 12280 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → -∞ < 𝐶)
132ad2antlr 720 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐵 ∈ ℝ*)
14 pnfxr 10410 . . . . . . . 8 +∞ ∈ ℝ*
1514a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → +∞ ∈ ℝ*)
16 simpr3 1258 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶𝐵)
17 ltpnf 12240 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
1817ad2antlr 720 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐵 < +∞)
198, 13, 15, 16, 18xrlelttrd 12279 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶 < +∞)
20 xrrebnd 12287 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
218, 20syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
2212, 19, 21mpbir2and 706 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → 𝐶 ∈ ℝ)
2322, 11, 163jca 1164 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵))
2423ex 403 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) → (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
25 rexr 10402 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
26253anim1i 1197 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵))
2724, 26impbid1 217 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
284, 27bitrd 271 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113  wcel 2166   class class class wbr 4873  (class class class)co 6905  cr 10251  +∞cpnf 10388  -∞cmnf 10389  *cxr 10390   < clt 10391  cle 10392  [,]cicc 12466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-pre-lttri 10326  ax-pre-lttrn 10327
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-po 5263  df-so 5264  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-icc 12470
This theorem is referenced by:  elicc2i  12527  iccssre  12543  iccsupr  12555  iccneg  12584  iccsplit  12598  iccshftr  12599  iccshftl  12601  iccdil  12603  icccntr  12605  iccf1o  12609  supicc  12613  icco1  14648  iccntr  22994  icccmplem1  22995  icccmplem2  22996  icccmplem3  22997  reconnlem1  22999  reconnlem2  23000  cnmpt2pc  23097  icoopnst  23108  iocopnst  23109  cnheiborlem  23123  ivthlem2  23618  ivthlem3  23619  ivthicc  23624  evthicc2  23626  ovolficc  23634  ovolicc1  23682  ovolicc2lem2  23684  ovolicc2lem5  23687  ovolicopnf  23690  dyadmaxlem  23763  opnmbllem  23767  volsup2  23771  volcn  23772  mbfi1fseqlem6  23886  itgspliticc  24002  itgsplitioo  24003  ditgcl  24021  ditgswap  24022  ditgsplitlem  24023  ditgsplit  24024  dvlip  24155  dvlip2  24157  dveq0  24162  dvgt0lem1  24164  dvivthlem1  24170  dvne0  24173  dvcnvrelem1  24179  dvcnvrelem2  24180  dvcnvre  24181  dvfsumlem2  24189  ftc1lem1  24197  ftc1lem2  24198  ftc1a  24199  ftc1lem4  24201  ftc2  24206  ftc2ditglem  24207  itgsubstlem  24210  pserulm  24575  loglesqrt  24901  log2tlbnd  25085  ppisval  25243  chtleppi  25348  fsumvma2  25352  chpchtsum  25357  chpub  25358  rplogsumlem2  25587  chpdifbndlem1  25655  pntibndlem2a  25692  pntibndlem2  25693  pntlemj  25705  pntlem3  25711  pntleml  25713  resconn  31774  cvmliftlem10  31822  opnmbllem0  33989  ftc2nc  34037  areacirclem2  34044  areacirclem4  34046  areacirc  34048  isbnd3  34125  isbnd3b  34126  prdsbnd  34134  iccbnd  34181  eliccd  40525  eliccre  40527  iccshift  40540  iccsuble  40541  limcicciooub  40664  icccncfext  40895  itgsubsticc  40986  iblcncfioo  40988  itgiccshift  40990  itgperiod  40991  itgsbtaddcnst  40992  fourierdlem42  41160  fourierdlem54  41171  fourierdlem63  41180  fourierdlem65  41182  fourierdlem74  41191  fourierdlem75  41192  fourierdlem82  41199  fourierdlem93  41210  fourierdlem101  41218  fourierdlem104  41221  fourierdlem111  41228  reorelicc  43277
  Copyright terms: Public domain W3C validator