| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elioc2 | Structured version Visualization version GIF version | ||
| Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
| Ref | Expression |
|---|---|
| elioc2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11274 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 2 | elioc1 13396 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 4 | mnfxr 11285 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → -∞ ∈ ℝ*) |
| 6 | simpll 766 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐴 ∈ ℝ*) | |
| 7 | simpr1 1194 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ∈ ℝ*) | |
| 8 | mnfle 13144 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) | |
| 9 | 8 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → -∞ ≤ 𝐴) |
| 10 | simpr2 1195 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐴 < 𝐶) | |
| 11 | 5, 6, 7, 9, 10 | xrlelttrd 13169 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → -∞ < 𝐶) |
| 12 | 1 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐵 ∈ ℝ*) |
| 13 | pnfxr 11282 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
| 14 | 13 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → +∞ ∈ ℝ*) |
| 15 | simpr3 1196 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ≤ 𝐵) | |
| 16 | ltpnf 13129 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
| 17 | 16 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐵 < +∞) |
| 18 | 7, 12, 14, 15, 17 | xrlelttrd 13169 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 < +∞) |
| 19 | xrrebnd 13177 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶 ∧ 𝐶 < +∞))) | |
| 20 | 7, 19 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶 ∧ 𝐶 < +∞))) |
| 21 | 11, 18, 20 | mpbir2and 713 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ∈ ℝ) |
| 22 | 21, 10, 15 | 3jca 1128 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 23 | 22 | ex 412 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 24 | rexr 11274 | . . . 4 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*) | |
| 25 | 24 | 3anim1i 1152 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵) → (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) |
| 26 | 23, 25 | impbid1 225 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| 27 | 3, 26 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 class class class wbr 5117 (class class class)co 7400 ℝcr 11121 +∞cpnf 11259 -∞cmnf 11260 ℝ*cxr 11261 < clt 11262 ≤ cle 11263 (,]cioc 13355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-pre-lttri 11196 ax-pre-lttrn 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-po 5559 df-so 5560 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-ioc 13359 |
| This theorem is referenced by: iocssre 13434 ef01bndlem 16189 sin01bnd 16190 cos01bnd 16191 cos1bnd 16192 sinltx 16194 sin01gt0 16195 cos01gt0 16196 sin02gt0 16197 sincos1sgn 16198 sincos2sgn 16199 icoopnst 24874 iocopnst 24875 ismbf3d 25594 aaliou3lem2 26290 aaliou3lem3 26291 pilem2 26401 sinhalfpilem 26410 sincosq1lem 26444 coseq0negpitopi 26450 tangtx 26452 sincos4thpi 26460 efif1olem1 26489 efif1olem2 26490 efif1o 26493 efifo 26494 ellogrn 26506 logimclad 26519 ellogdm 26586 logdmnrp 26588 dvloglem 26595 dvlog2lem 26599 asinneg 26834 atans2 26879 ressatans 26882 abvcxp 27564 ostth2 27586 xrge0iifcv 33894 xrge0iifiso 33895 xrge0iifhom 33897 sinccvglem 35623 bj-pinftyccb 37168 bj-pinftynminfty 37174 dvasin 37657 areacirclem4 37664 gtnelioc 45454 limcicciooub 45602 fourierdlem4 46076 fourierdlem26 46098 fourierdlem33 46105 fourierdlem37 46109 fourierdlem65 46136 fourierdlem79 46150 fouriersw 46196 eenglngeehlnmlem1 48611 eenglngeehlnmlem2 48612 io1ii 48789 sepfsepc 48796 |
| Copyright terms: Public domain | W3C validator |