MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elioc2 Structured version   Visualization version   GIF version

Theorem elioc2 13309
Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elioc2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))

Proof of Theorem elioc2
StepHypRef Expression
1 rexr 11158 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 elioc1 13287 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
31, 2sylan2 593 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
4 mnfxr 11169 . . . . . . . 8 -∞ ∈ ℝ*
54a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → -∞ ∈ ℝ*)
6 simpll 766 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐴 ∈ ℝ*)
7 simpr1 1195 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶 ∈ ℝ*)
8 mnfle 13034 . . . . . . . 8 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
98ad2antrr 726 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → -∞ ≤ 𝐴)
10 simpr2 1196 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐴 < 𝐶)
115, 6, 7, 9, 10xrlelttrd 13059 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → -∞ < 𝐶)
121ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐵 ∈ ℝ*)
13 pnfxr 11166 . . . . . . . 8 +∞ ∈ ℝ*
1413a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → +∞ ∈ ℝ*)
15 simpr3 1197 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶𝐵)
16 ltpnf 13019 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
1716ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐵 < +∞)
187, 12, 14, 15, 17xrlelttrd 13059 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶 < +∞)
19 xrrebnd 13067 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
207, 19syl 17 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
2111, 18, 20mpbir2and 713 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶 ∈ ℝ)
2221, 10, 153jca 1128 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵))
2322ex 412 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
24 rexr 11158 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
25243anim1i 1152 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵) → (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵))
2623, 25impbid1 225 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
273, 26bitrd 279 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2111   class class class wbr 5091  (class class class)co 7346  cr 11005  +∞cpnf 11143  -∞cmnf 11144  *cxr 11145   < clt 11146  cle 11147  (,]cioc 13246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-ioc 13250
This theorem is referenced by:  iocssre  13327  ef01bndlem  16093  sin01bnd  16094  cos01bnd  16095  cos1bnd  16096  sinltx  16098  sin01gt0  16099  cos01gt0  16100  sin02gt0  16101  sincos1sgn  16102  sincos2sgn  16103  icoopnst  24864  iocopnst  24865  ismbf3d  25583  aaliou3lem2  26279  aaliou3lem3  26280  pilem2  26390  sinhalfpilem  26400  sincosq1lem  26434  coseq0negpitopi  26440  tangtx  26442  sincos4thpi  26450  efif1olem1  26479  efif1olem2  26480  efif1o  26483  efifo  26484  ellogrn  26496  logimclad  26509  ellogdm  26576  logdmnrp  26578  dvloglem  26585  dvlog2lem  26589  asinneg  26824  atans2  26869  ressatans  26872  abvcxp  27554  ostth2  27576  xrge0iifcv  33945  xrge0iifiso  33946  xrge0iifhom  33948  sinccvglem  35714  bj-pinftyccb  37261  bj-pinftynminfty  37267  dvasin  37750  areacirclem4  37757  gtnelioc  45537  limcicciooub  45681  fourierdlem4  46155  fourierdlem26  46177  fourierdlem33  46184  fourierdlem37  46188  fourierdlem65  46215  fourierdlem79  46229  fouriersw  46275  eenglngeehlnmlem1  48775  eenglngeehlnmlem2  48776  io1ii  48958  sepfsepc  48965
  Copyright terms: Public domain W3C validator