![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elioc2 | Structured version Visualization version GIF version |
Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
elioc2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11260 | . . 3 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
2 | elioc1 13366 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
3 | 1, 2 | sylan2 594 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
4 | mnfxr 11271 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → -∞ ∈ ℝ*) |
6 | simpll 766 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐴 ∈ ℝ*) | |
7 | simpr1 1195 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ∈ ℝ*) | |
8 | mnfle 13114 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ* → -∞ ≤ 𝐴) | |
9 | 8 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → -∞ ≤ 𝐴) |
10 | simpr2 1196 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐴 < 𝐶) | |
11 | 5, 6, 7, 9, 10 | xrlelttrd 13139 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → -∞ < 𝐶) |
12 | 1 | ad2antlr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐵 ∈ ℝ*) |
13 | pnfxr 11268 | . . . . . . . 8 ⊢ +∞ ∈ ℝ* | |
14 | 13 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → +∞ ∈ ℝ*) |
15 | simpr3 1197 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ≤ 𝐵) | |
16 | ltpnf 13100 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
17 | 16 | ad2antlr 726 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐵 < +∞) |
18 | 7, 12, 14, 15, 17 | xrlelttrd 13139 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 < +∞) |
19 | xrrebnd 13147 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶 ∧ 𝐶 < +∞))) | |
20 | 7, 19 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶 ∧ 𝐶 < +∞))) |
21 | 11, 18, 20 | mpbir2and 712 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → 𝐶 ∈ ℝ) |
22 | 21, 10, 15 | 3jca 1129 | . . . 4 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) |
23 | 22 | ex 414 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
24 | rexr 11260 | . . . 4 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*) | |
25 | 24 | 3anim1i 1153 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵) → (𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵)) |
26 | 23, 25 | impbid1 224 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ* ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
27 | 3, 26 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 ≤ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 class class class wbr 5149 (class class class)co 7409 ℝcr 11109 +∞cpnf 11245 -∞cmnf 11246 ℝ*cxr 11247 < clt 11248 ≤ cle 11249 (,]cioc 13325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-ioc 13329 |
This theorem is referenced by: iocssre 13404 ef01bndlem 16127 sin01bnd 16128 cos01bnd 16129 cos1bnd 16130 sinltx 16132 sin01gt0 16133 cos01gt0 16134 sin02gt0 16135 sincos1sgn 16136 sincos2sgn 16137 icoopnst 24455 iocopnst 24456 ismbf3d 25171 aaliou3lem2 25856 aaliou3lem3 25857 pilem2 25964 sinhalfpilem 25973 sincosq1lem 26007 coseq0negpitopi 26013 tangtx 26015 sincos4thpi 26023 efif1olem1 26051 efif1olem2 26052 efif1o 26055 efifo 26056 ellogrn 26068 logimclad 26081 ellogdm 26147 logdmnrp 26149 dvloglem 26156 dvlog2lem 26160 asinneg 26391 atans2 26436 ressatans 26439 abvcxp 27118 ostth2 27140 xrge0iifcv 32914 xrge0iifiso 32915 xrge0iifhom 32917 sinccvglem 34657 bj-pinftyccb 36102 bj-pinftynminfty 36108 dvasin 36572 areacirclem4 36579 gtnelioc 44204 limcicciooub 44353 fourierdlem4 44827 fourierdlem26 44849 fourierdlem33 44856 fourierdlem37 44860 fourierdlem65 44887 fourierdlem79 44901 fouriersw 44947 eenglngeehlnmlem1 47423 eenglngeehlnmlem2 47424 io1ii 47553 sepfsepc 47560 |
Copyright terms: Public domain | W3C validator |