MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elioc2 Structured version   Visualization version   GIF version

Theorem elioc2 13417
Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
elioc2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))

Proof of Theorem elioc2
StepHypRef Expression
1 rexr 11274 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
2 elioc1 13396 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
31, 2sylan2 593 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)))
4 mnfxr 11285 . . . . . . . 8 -∞ ∈ ℝ*
54a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → -∞ ∈ ℝ*)
6 simpll 766 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐴 ∈ ℝ*)
7 simpr1 1194 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶 ∈ ℝ*)
8 mnfle 13144 . . . . . . . 8 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
98ad2antrr 726 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → -∞ ≤ 𝐴)
10 simpr2 1195 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐴 < 𝐶)
115, 6, 7, 9, 10xrlelttrd 13169 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → -∞ < 𝐶)
121ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐵 ∈ ℝ*)
13 pnfxr 11282 . . . . . . . 8 +∞ ∈ ℝ*
1413a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → +∞ ∈ ℝ*)
15 simpr3 1196 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶𝐵)
16 ltpnf 13129 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
1716ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐵 < +∞)
187, 12, 14, 15, 17xrlelttrd 13169 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶 < +∞)
19 xrrebnd 13177 . . . . . . 7 (𝐶 ∈ ℝ* → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
207, 19syl 17 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ↔ (-∞ < 𝐶𝐶 < +∞)))
2111, 18, 20mpbir2and 713 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → 𝐶 ∈ ℝ)
2221, 10, 153jca 1128 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵)) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵))
2322ex 412 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵) → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
24 rexr 11274 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
25243anim1i 1152 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵) → (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵))
2623, 25impbid1 225 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
273, 26bitrd 279 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2107   class class class wbr 5117  (class class class)co 7400  cr 11121  +∞cpnf 11259  -∞cmnf 11260  *cxr 11261   < clt 11262  cle 11263  (,]cioc 13355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-pre-lttri 11196  ax-pre-lttrn 11197
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-po 5559  df-so 5560  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-ioc 13359
This theorem is referenced by:  iocssre  13434  ef01bndlem  16189  sin01bnd  16190  cos01bnd  16191  cos1bnd  16192  sinltx  16194  sin01gt0  16195  cos01gt0  16196  sin02gt0  16197  sincos1sgn  16198  sincos2sgn  16199  icoopnst  24874  iocopnst  24875  ismbf3d  25594  aaliou3lem2  26290  aaliou3lem3  26291  pilem2  26401  sinhalfpilem  26410  sincosq1lem  26444  coseq0negpitopi  26450  tangtx  26452  sincos4thpi  26460  efif1olem1  26489  efif1olem2  26490  efif1o  26493  efifo  26494  ellogrn  26506  logimclad  26519  ellogdm  26586  logdmnrp  26588  dvloglem  26595  dvlog2lem  26599  asinneg  26834  atans2  26879  ressatans  26882  abvcxp  27564  ostth2  27586  xrge0iifcv  33894  xrge0iifiso  33895  xrge0iifhom  33897  sinccvglem  35623  bj-pinftyccb  37168  bj-pinftynminfty  37174  dvasin  37657  areacirclem4  37664  gtnelioc  45454  limcicciooub  45602  fourierdlem4  46076  fourierdlem26  46098  fourierdlem33  46105  fourierdlem37  46109  fourierdlem65  46136  fourierdlem79  46150  fouriersw  46196  eenglngeehlnmlem1  48611  eenglngeehlnmlem2  48612  io1ii  48789  sepfsepc  48796
  Copyright terms: Public domain W3C validator