MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrngringnsg Structured version   Visualization version   GIF version

Theorem subrngringnsg 20479
Description: A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.)
Assertion
Ref Expression
subrngringnsg (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅))

Proof of Theorem subrngringnsg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 20478 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
2 subrngrcl 20477 . . . . . . . . 9 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
3 rngabl 20086 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
42, 3syl 17 . . . . . . . 8 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Abel)
543anim1i 1150 . . . . . . 7 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)))
653expb 1118 . . . . . 6 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)))
7 eqid 2727 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2727 . . . . . . 7 (+g𝑅) = (+g𝑅)
97, 8ablcom 19745 . . . . . 6 ((𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) = (𝑦(+g𝑅)𝑥))
106, 9syl 17 . . . . 5 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑦(+g𝑅)𝑥))
1110eleq1d 2813 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦) ∈ 𝐴 ↔ (𝑦(+g𝑅)𝑥) ∈ 𝐴))
1211biimpd 228 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦) ∈ 𝐴 → (𝑦(+g𝑅)𝑥) ∈ 𝐴))
1312ralrimivva 3195 . 2 (𝐴 ∈ (SubRng‘𝑅) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) ∈ 𝐴 → (𝑦(+g𝑅)𝑥) ∈ 𝐴))
147, 8isnsg2 19102 . 2 (𝐴 ∈ (NrmSGrp‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) ∈ 𝐴 → (𝑦(+g𝑅)𝑥) ∈ 𝐴)))
151, 13, 14sylanbrc 582 1 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056  cfv 6542  (class class class)co 7414  Basecbs 17171  +gcplusg 17224  SubGrpcsubg 19066  NrmSGrpcnsg 19067  Abelcabl 19727  Rngcrng 20083  SubRngcsubrng 20471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417  df-subg 19069  df-nsg 19070  df-cmn 19728  df-abl 19729  df-rng 20084  df-subrng 20472
This theorem is referenced by:  rng2idlnsg  21149  rng2idlsubgnsg  21152
  Copyright terms: Public domain W3C validator