MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrngringnsg Structured version   Visualization version   GIF version

Theorem subrngringnsg 20466
Description: A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.)
Assertion
Ref Expression
subrngringnsg (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅))

Proof of Theorem subrngringnsg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 20465 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
2 subrngrcl 20464 . . . . . . . . 9 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
3 rngabl 20071 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
42, 3syl 17 . . . . . . . 8 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Abel)
543anim1i 1152 . . . . . . 7 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)))
653expb 1120 . . . . . 6 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)))
7 eqid 2731 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2731 . . . . . . 7 (+g𝑅) = (+g𝑅)
97, 8ablcom 19709 . . . . . 6 ((𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) = (𝑦(+g𝑅)𝑥))
106, 9syl 17 . . . . 5 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑦(+g𝑅)𝑥))
1110eleq1d 2816 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦) ∈ 𝐴 ↔ (𝑦(+g𝑅)𝑥) ∈ 𝐴))
1211biimpd 229 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦) ∈ 𝐴 → (𝑦(+g𝑅)𝑥) ∈ 𝐴))
1312ralrimivva 3175 . 2 (𝐴 ∈ (SubRng‘𝑅) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) ∈ 𝐴 → (𝑦(+g𝑅)𝑥) ∈ 𝐴))
147, 8isnsg2 19066 . 2 (𝐴 ∈ (NrmSGrp‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) ∈ 𝐴 → (𝑦(+g𝑅)𝑥) ∈ 𝐴)))
151, 13, 14sylanbrc 583 1 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cfv 6481  (class class class)co 7346  Basecbs 17117  +gcplusg 17158  SubGrpcsubg 19030  NrmSGrpcnsg 19031  Abelcabl 19691  Rngcrng 20068  SubRngcsubrng 20458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-subg 19033  df-nsg 19034  df-cmn 19692  df-abl 19693  df-rng 20069  df-subrng 20459
This theorem is referenced by:  rng2idlnsg  21201  rng2idlsubgnsg  21204
  Copyright terms: Public domain W3C validator