| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrngringnsg | Structured version Visualization version GIF version | ||
| Description: A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.) |
| Ref | Expression |
|---|---|
| subrngringnsg | ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrngsubg 20517 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) | |
| 2 | subrngrcl 20516 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
| 3 | rngabl 20120 | . . . . . . . . 9 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Abel) |
| 5 | 4 | 3anim1i 1152 | . . . . . . 7 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) |
| 6 | 5 | 3expb 1120 | . . . . . 6 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) |
| 7 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | eqid 2736 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 9 | 7, 8 | ablcom 19785 | . . . . . 6 ⊢ ((𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)𝑦) = (𝑦(+g‘𝑅)𝑥)) |
| 10 | 6, 9 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑦(+g‘𝑅)𝑥)) |
| 11 | 10 | eleq1d 2820 | . . . 4 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑅)𝑦) ∈ 𝐴 ↔ (𝑦(+g‘𝑅)𝑥) ∈ 𝐴)) |
| 12 | 11 | biimpd 229 | . . 3 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑅)𝑦) ∈ 𝐴 → (𝑦(+g‘𝑅)𝑥) ∈ 𝐴)) |
| 13 | 12 | ralrimivva 3188 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) ∈ 𝐴 → (𝑦(+g‘𝑅)𝑥) ∈ 𝐴)) |
| 14 | 7, 8 | isnsg2 19144 | . 2 ⊢ (𝐴 ∈ (NrmSGrp‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) ∈ 𝐴 → (𝑦(+g‘𝑅)𝑥) ∈ 𝐴))) |
| 15 | 1, 13, 14 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 SubGrpcsubg 19108 NrmSGrpcnsg 19109 Abelcabl 19767 Rngcrng 20117 SubRngcsubrng 20510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-subg 19111 df-nsg 19112 df-cmn 19768 df-abl 19769 df-rng 20118 df-subrng 20511 |
| This theorem is referenced by: rng2idlnsg 21232 rng2idlsubgnsg 21235 |
| Copyright terms: Public domain | W3C validator |