MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrngringnsg Structured version   Visualization version   GIF version

Theorem subrngringnsg 20462
Description: A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.)
Assertion
Ref Expression
subrngringnsg (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅))

Proof of Theorem subrngringnsg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 20461 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
2 subrngrcl 20460 . . . . . . . . 9 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
3 rngabl 20064 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
42, 3syl 17 . . . . . . . 8 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Abel)
543anim1i 1152 . . . . . . 7 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)))
653expb 1120 . . . . . 6 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)))
7 eqid 2729 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2729 . . . . . . 7 (+g𝑅) = (+g𝑅)
97, 8ablcom 19729 . . . . . 6 ((𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) = (𝑦(+g𝑅)𝑥))
106, 9syl 17 . . . . 5 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑦(+g𝑅)𝑥))
1110eleq1d 2813 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦) ∈ 𝐴 ↔ (𝑦(+g𝑅)𝑥) ∈ 𝐴))
1211biimpd 229 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦) ∈ 𝐴 → (𝑦(+g𝑅)𝑥) ∈ 𝐴))
1312ralrimivva 3180 . 2 (𝐴 ∈ (SubRng‘𝑅) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) ∈ 𝐴 → (𝑦(+g𝑅)𝑥) ∈ 𝐴))
147, 8isnsg2 19088 . 2 (𝐴 ∈ (NrmSGrp‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) ∈ 𝐴 → (𝑦(+g𝑅)𝑥) ∈ 𝐴)))
151, 13, 14sylanbrc 583 1 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  SubGrpcsubg 19052  NrmSGrpcnsg 19053  Abelcabl 19711  Rngcrng 20061  SubRngcsubrng 20454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-subg 19055  df-nsg 19056  df-cmn 19712  df-abl 19713  df-rng 20062  df-subrng 20455
This theorem is referenced by:  rng2idlnsg  21176  rng2idlsubgnsg  21179
  Copyright terms: Public domain W3C validator