| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrngringnsg | Structured version Visualization version GIF version | ||
| Description: A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.) |
| Ref | Expression |
|---|---|
| subrngringnsg | ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrngsubg 20469 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) | |
| 2 | subrngrcl 20468 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | |
| 3 | rngabl 20075 | . . . . . . . . 9 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 4 | 2, 3 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Abel) |
| 5 | 4 | 3anim1i 1152 | . . . . . . 7 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) |
| 6 | 5 | 3expb 1120 | . . . . . 6 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) |
| 7 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | eqid 2733 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 9 | 7, 8 | ablcom 19713 | . . . . . 6 ⊢ ((𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)𝑦) = (𝑦(+g‘𝑅)𝑥)) |
| 10 | 6, 9 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑦(+g‘𝑅)𝑥)) |
| 11 | 10 | eleq1d 2818 | . . . 4 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑅)𝑦) ∈ 𝐴 ↔ (𝑦(+g‘𝑅)𝑥) ∈ 𝐴)) |
| 12 | 11 | biimpd 229 | . . 3 ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑅)𝑦) ∈ 𝐴 → (𝑦(+g‘𝑅)𝑥) ∈ 𝐴)) |
| 13 | 12 | ralrimivva 3176 | . 2 ⊢ (𝐴 ∈ (SubRng‘𝑅) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) ∈ 𝐴 → (𝑦(+g‘𝑅)𝑥) ∈ 𝐴)) |
| 14 | 7, 8 | isnsg2 19070 | . 2 ⊢ (𝐴 ∈ (NrmSGrp‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(+g‘𝑅)𝑦) ∈ 𝐴 → (𝑦(+g‘𝑅)𝑥) ∈ 𝐴))) |
| 15 | 1, 13, 14 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 SubGrpcsubg 19035 NrmSGrpcnsg 19036 Abelcabl 19695 Rngcrng 20072 SubRngcsubrng 20462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-subg 19038 df-nsg 19039 df-cmn 19696 df-abl 19697 df-rng 20073 df-subrng 20463 |
| This theorem is referenced by: rng2idlnsg 21205 rng2idlsubgnsg 21208 |
| Copyright terms: Public domain | W3C validator |