MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrngringnsg Structured version   Visualization version   GIF version

Theorem subrngringnsg 20530
Description: A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.)
Assertion
Ref Expression
subrngringnsg (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅))

Proof of Theorem subrngringnsg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 20529 . 2 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
2 subrngrcl 20528 . . . . . . . . 9 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
3 rngabl 20133 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
42, 3syl 17 . . . . . . . 8 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Abel)
543anim1i 1149 . . . . . . 7 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)))
653expb 1117 . . . . . 6 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)))
7 eqid 2726 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2726 . . . . . . 7 (+g𝑅) = (+g𝑅)
97, 8ablcom 19792 . . . . . 6 ((𝑅 ∈ Abel ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)𝑦) = (𝑦(+g𝑅)𝑥))
106, 9syl 17 . . . . 5 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑦(+g𝑅)𝑥))
1110eleq1d 2811 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦) ∈ 𝐴 ↔ (𝑦(+g𝑅)𝑥) ∈ 𝐴))
1211biimpd 228 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦) ∈ 𝐴 → (𝑦(+g𝑅)𝑥) ∈ 𝐴))
1312ralrimivva 3191 . 2 (𝐴 ∈ (SubRng‘𝑅) → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) ∈ 𝐴 → (𝑦(+g𝑅)𝑥) ∈ 𝐴))
147, 8isnsg2 19145 . 2 (𝐴 ∈ (NrmSGrp‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)((𝑥(+g𝑅)𝑦) ∈ 𝐴 → (𝑦(+g𝑅)𝑥) ∈ 𝐴)))
151, 13, 14sylanbrc 581 1 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  cfv 6545  (class class class)co 7415  Basecbs 17207  +gcplusg 17260  SubGrpcsubg 19109  NrmSGrpcnsg 19110  Abelcabl 19774  Rngcrng 20130  SubRngcsubrng 20522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3421  df-v 3466  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4325  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4908  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6497  df-fun 6547  df-fv 6553  df-ov 7418  df-subg 19112  df-nsg 19113  df-cmn 19775  df-abl 19776  df-rng 20131  df-subrng 20523
This theorem is referenced by:  rng2idlnsg  21250  rng2idlsubgnsg  21253
  Copyright terms: Public domain W3C validator