Step | Hyp | Ref
| Expression |
1 | | eupths.i |
. . . 4
β’ πΌ = (iEdgβπΊ) |
2 | 1 | iseupthf1o 29723 |
. . 3
β’ (πΉ(EulerPathsβπΊ)π β (πΉ(WalksβπΊ)π β§ πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ)) |
3 | 2 | a1i 11 |
. 2
β’ (πΊ β UPGraph β (πΉ(EulerPathsβπΊ)π β (πΉ(WalksβπΊ)π β§ πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ))) |
4 | | upgriseupth.v |
. . . 4
β’ π = (VtxβπΊ) |
5 | 4, 1 | upgriswlk 29166 |
. . 3
β’ (πΊ β UPGraph β (πΉ(WalksβπΊ)π β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) |
6 | 5 | anbi1d 629 |
. 2
β’ (πΊ β UPGraph β ((πΉ(WalksβπΊ)π β§ πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ) β ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ))) |
7 | | simpr 484 |
. . . . 5
β’ (((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ) β πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ) |
8 | | simpl2 1191 |
. . . . 5
β’ (((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ) β π:(0...(β―βπΉ))βΆπ) |
9 | | simpl3 1192 |
. . . . 5
β’ (((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ) β βπ β
(0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) |
10 | 7, 8, 9 | 3jca 1127 |
. . . 4
β’ (((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ) β (πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))})) |
11 | | f1of 6833 |
. . . . . . 7
β’ (πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ β πΉ:(0..^(β―βπΉ))βΆdom πΌ) |
12 | | iswrdi 14473 |
. . . . . . 7
β’ (πΉ:(0..^(β―βπΉ))βΆdom πΌ β πΉ β Word dom πΌ) |
13 | 11, 12 | syl 17 |
. . . . . 6
β’ (πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ β πΉ β Word dom πΌ) |
14 | 13 | 3anim1i 1151 |
. . . . 5
β’ ((πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))})) |
15 | | simp1 1135 |
. . . . 5
β’ ((πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ) |
16 | 14, 15 | jca 511 |
. . . 4
β’ ((πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ)) |
17 | 10, 16 | impbii 208 |
. . 3
β’ (((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ) β (πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))})) |
18 | 17 | a1i 11 |
. 2
β’ (πΊ β UPGraph β (((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ) β (πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) |
19 | 3, 6, 18 | 3bitrd 305 |
1
β’ (πΊ β UPGraph β (πΉ(EulerPathsβπΊ)π β (πΉ:(0..^(β―βπΉ))β1-1-ontoβdom
πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) |