Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcong Structured version   Visualization version   GIF version

Theorem mzpcong 42929
Description: Polynomials commute with congruences. (Does this characterize them?) (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzpcong ((𝐹 ∈ (mzPoly‘𝑉) ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) → 𝑁 ∥ ((𝐹𝑋) − (𝐹𝑌)))
Distinct variable groups:   𝑘,𝑋   𝑘,𝑉   𝑘,𝑌   𝑘,𝑁
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem mzpcong
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6958 . . 3 (𝐹 ∈ (mzPoly‘𝑉) → 𝑉 ∈ V)
213anim1i 1152 . 2 ((𝐹 ∈ (mzPoly‘𝑉) ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) → (𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))))
3 simp1 1136 . 2 ((𝐹 ∈ (mzPoly‘𝑉) ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) → 𝐹 ∈ (mzPoly‘𝑉))
4 simpl3l 1228 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏 ∈ ℤ) → 𝑁 ∈ ℤ)
5 simpr 484 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
6 congid 42928 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑁 ∥ (𝑏𝑏))
74, 5, 6syl2anc 583 . . . 4 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏 ∈ ℤ) → 𝑁 ∥ (𝑏𝑏))
8 simpl2l 1226 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏 ∈ ℤ) → 𝑋 ∈ (ℤ ↑m 𝑉))
9 vex 3492 . . . . . . 7 𝑏 ∈ V
109fvconst2 7241 . . . . . 6 (𝑋 ∈ (ℤ ↑m 𝑉) → (((ℤ ↑m 𝑉) × {𝑏})‘𝑋) = 𝑏)
118, 10syl 17 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏 ∈ ℤ) → (((ℤ ↑m 𝑉) × {𝑏})‘𝑋) = 𝑏)
12 simpl2r 1227 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏 ∈ ℤ) → 𝑌 ∈ (ℤ ↑m 𝑉))
139fvconst2 7241 . . . . . 6 (𝑌 ∈ (ℤ ↑m 𝑉) → (((ℤ ↑m 𝑉) × {𝑏})‘𝑌) = 𝑏)
1412, 13syl 17 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏 ∈ ℤ) → (((ℤ ↑m 𝑉) × {𝑏})‘𝑌) = 𝑏)
1511, 14oveq12d 7466 . . . 4 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏 ∈ ℤ) → ((((ℤ ↑m 𝑉) × {𝑏})‘𝑋) − (((ℤ ↑m 𝑉) × {𝑏})‘𝑌)) = (𝑏𝑏))
167, 15breqtrrd 5194 . . 3 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏 ∈ ℤ) → 𝑁 ∥ ((((ℤ ↑m 𝑉) × {𝑏})‘𝑋) − (((ℤ ↑m 𝑉) × {𝑏})‘𝑌)))
17 simpr 484 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏𝑉) → 𝑏𝑉)
18 simpl3r 1229 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏𝑉) → ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))
19 fveq2 6920 . . . . . . . 8 (𝑘 = 𝑏 → (𝑋𝑘) = (𝑋𝑏))
20 fveq2 6920 . . . . . . . 8 (𝑘 = 𝑏 → (𝑌𝑘) = (𝑌𝑏))
2119, 20oveq12d 7466 . . . . . . 7 (𝑘 = 𝑏 → ((𝑋𝑘) − (𝑌𝑘)) = ((𝑋𝑏) − (𝑌𝑏)))
2221breq2d 5178 . . . . . 6 (𝑘 = 𝑏 → (𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)) ↔ 𝑁 ∥ ((𝑋𝑏) − (𝑌𝑏))))
2322rspcva 3633 . . . . 5 ((𝑏𝑉 ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘))) → 𝑁 ∥ ((𝑋𝑏) − (𝑌𝑏)))
2417, 18, 23syl2anc 583 . . . 4 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏𝑉) → 𝑁 ∥ ((𝑋𝑏) − (𝑌𝑏)))
25 simpl2l 1226 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏𝑉) → 𝑋 ∈ (ℤ ↑m 𝑉))
26 fveq1 6919 . . . . . . 7 (𝑐 = 𝑋 → (𝑐𝑏) = (𝑋𝑏))
27 eqid 2740 . . . . . . 7 (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))
28 fvex 6933 . . . . . . 7 (𝑋𝑏) ∈ V
2926, 27, 28fvmpt 7029 . . . . . 6 (𝑋 ∈ (ℤ ↑m 𝑉) → ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘𝑋) = (𝑋𝑏))
3025, 29syl 17 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏𝑉) → ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘𝑋) = (𝑋𝑏))
31 simpl2r 1227 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏𝑉) → 𝑌 ∈ (ℤ ↑m 𝑉))
32 fveq1 6919 . . . . . . 7 (𝑐 = 𝑌 → (𝑐𝑏) = (𝑌𝑏))
33 fvex 6933 . . . . . . 7 (𝑌𝑏) ∈ V
3432, 27, 33fvmpt 7029 . . . . . 6 (𝑌 ∈ (ℤ ↑m 𝑉) → ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘𝑌) = (𝑌𝑏))
3531, 34syl 17 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏𝑉) → ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘𝑌) = (𝑌𝑏))
3630, 35oveq12d 7466 . . . 4 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏𝑉) → (((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘𝑋) − ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘𝑌)) = ((𝑋𝑏) − (𝑌𝑏)))
3724, 36breqtrrd 5194 . . 3 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏𝑉) → 𝑁 ∥ (((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘𝑋) − ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘𝑌)))
38 simp13l 1288 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑁 ∈ ℤ)
39 simp2l 1199 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑏:(ℤ ↑m 𝑉)⟶ℤ)
40 simp12l 1286 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑋 ∈ (ℤ ↑m 𝑉))
4139, 40ffvelcdmd 7119 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → (𝑏𝑋) ∈ ℤ)
42 simp12r 1287 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑌 ∈ (ℤ ↑m 𝑉))
4339, 42ffvelcdmd 7119 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → (𝑏𝑌) ∈ ℤ)
44 simp3l 1201 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑐:(ℤ ↑m 𝑉)⟶ℤ)
4544, 40ffvelcdmd 7119 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → (𝑐𝑋) ∈ ℤ)
4644, 42ffvelcdmd 7119 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → (𝑐𝑌) ∈ ℤ)
47 simp2r 1200 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌)))
48 simp3r 1202 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))
49 congadd 42923 . . . . 5 (((𝑁 ∈ ℤ ∧ (𝑏𝑋) ∈ ℤ ∧ (𝑏𝑌) ∈ ℤ) ∧ ((𝑐𝑋) ∈ ℤ ∧ (𝑐𝑌) ∈ ℤ) ∧ (𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌)) ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑁 ∥ (((𝑏𝑋) + (𝑐𝑋)) − ((𝑏𝑌) + (𝑐𝑌))))
5038, 41, 43, 45, 46, 47, 48, 49syl322anc 1398 . . . 4 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑁 ∥ (((𝑏𝑋) + (𝑐𝑋)) − ((𝑏𝑌) + (𝑐𝑌))))
5139ffnd 6748 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑏 Fn (ℤ ↑m 𝑉))
5244ffnd 6748 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑐 Fn (ℤ ↑m 𝑉))
53 ovexd 7483 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → (ℤ ↑m 𝑉) ∈ V)
54 fnfvof 7731 . . . . . 6 (((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ ((ℤ ↑m 𝑉) ∈ V ∧ 𝑋 ∈ (ℤ ↑m 𝑉))) → ((𝑏f + 𝑐)‘𝑋) = ((𝑏𝑋) + (𝑐𝑋)))
5551, 52, 53, 40, 54syl22anc 838 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → ((𝑏f + 𝑐)‘𝑋) = ((𝑏𝑋) + (𝑐𝑋)))
56 fnfvof 7731 . . . . . 6 (((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ ((ℤ ↑m 𝑉) ∈ V ∧ 𝑌 ∈ (ℤ ↑m 𝑉))) → ((𝑏f + 𝑐)‘𝑌) = ((𝑏𝑌) + (𝑐𝑌)))
5751, 52, 53, 42, 56syl22anc 838 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → ((𝑏f + 𝑐)‘𝑌) = ((𝑏𝑌) + (𝑐𝑌)))
5855, 57oveq12d 7466 . . . 4 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → (((𝑏f + 𝑐)‘𝑋) − ((𝑏f + 𝑐)‘𝑌)) = (((𝑏𝑋) + (𝑐𝑋)) − ((𝑏𝑌) + (𝑐𝑌))))
5950, 58breqtrrd 5194 . . 3 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑁 ∥ (((𝑏f + 𝑐)‘𝑋) − ((𝑏f + 𝑐)‘𝑌)))
60 congmul 42924 . . . . 5 (((𝑁 ∈ ℤ ∧ (𝑏𝑋) ∈ ℤ ∧ (𝑏𝑌) ∈ ℤ) ∧ ((𝑐𝑋) ∈ ℤ ∧ (𝑐𝑌) ∈ ℤ) ∧ (𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌)) ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑁 ∥ (((𝑏𝑋) · (𝑐𝑋)) − ((𝑏𝑌) · (𝑐𝑌))))
6138, 41, 43, 45, 46, 47, 48, 60syl322anc 1398 . . . 4 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑁 ∥ (((𝑏𝑋) · (𝑐𝑋)) − ((𝑏𝑌) · (𝑐𝑌))))
62 fnfvof 7731 . . . . . 6 (((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ ((ℤ ↑m 𝑉) ∈ V ∧ 𝑋 ∈ (ℤ ↑m 𝑉))) → ((𝑏f · 𝑐)‘𝑋) = ((𝑏𝑋) · (𝑐𝑋)))
6351, 52, 53, 40, 62syl22anc 838 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → ((𝑏f · 𝑐)‘𝑋) = ((𝑏𝑋) · (𝑐𝑋)))
64 fnfvof 7731 . . . . . 6 (((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ ((ℤ ↑m 𝑉) ∈ V ∧ 𝑌 ∈ (ℤ ↑m 𝑉))) → ((𝑏f · 𝑐)‘𝑌) = ((𝑏𝑌) · (𝑐𝑌)))
6551, 52, 53, 42, 64syl22anc 838 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → ((𝑏f · 𝑐)‘𝑌) = ((𝑏𝑌) · (𝑐𝑌)))
6663, 65oveq12d 7466 . . . 4 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → (((𝑏f · 𝑐)‘𝑋) − ((𝑏f · 𝑐)‘𝑌)) = (((𝑏𝑋) · (𝑐𝑋)) − ((𝑏𝑌) · (𝑐𝑌))))
6761, 66breqtrrd 5194 . . 3 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑁 ∥ (((𝑏f · 𝑐)‘𝑋) − ((𝑏f · 𝑐)‘𝑌)))
68 fveq1 6919 . . . . 5 (𝑎 = ((ℤ ↑m 𝑉) × {𝑏}) → (𝑎𝑋) = (((ℤ ↑m 𝑉) × {𝑏})‘𝑋))
69 fveq1 6919 . . . . 5 (𝑎 = ((ℤ ↑m 𝑉) × {𝑏}) → (𝑎𝑌) = (((ℤ ↑m 𝑉) × {𝑏})‘𝑌))
7068, 69oveq12d 7466 . . . 4 (𝑎 = ((ℤ ↑m 𝑉) × {𝑏}) → ((𝑎𝑋) − (𝑎𝑌)) = ((((ℤ ↑m 𝑉) × {𝑏})‘𝑋) − (((ℤ ↑m 𝑉) × {𝑏})‘𝑌)))
7170breq2d 5178 . . 3 (𝑎 = ((ℤ ↑m 𝑉) × {𝑏}) → (𝑁 ∥ ((𝑎𝑋) − (𝑎𝑌)) ↔ 𝑁 ∥ ((((ℤ ↑m 𝑉) × {𝑏})‘𝑋) − (((ℤ ↑m 𝑉) × {𝑏})‘𝑌))))
72 fveq1 6919 . . . . 5 (𝑎 = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) → (𝑎𝑋) = ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘𝑋))
73 fveq1 6919 . . . . 5 (𝑎 = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) → (𝑎𝑌) = ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘𝑌))
7472, 73oveq12d 7466 . . . 4 (𝑎 = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) → ((𝑎𝑋) − (𝑎𝑌)) = (((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘𝑋) − ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘𝑌)))
7574breq2d 5178 . . 3 (𝑎 = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) → (𝑁 ∥ ((𝑎𝑋) − (𝑎𝑌)) ↔ 𝑁 ∥ (((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘𝑋) − ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘𝑌))))
76 fveq1 6919 . . . . 5 (𝑎 = 𝑏 → (𝑎𝑋) = (𝑏𝑋))
77 fveq1 6919 . . . . 5 (𝑎 = 𝑏 → (𝑎𝑌) = (𝑏𝑌))
7876, 77oveq12d 7466 . . . 4 (𝑎 = 𝑏 → ((𝑎𝑋) − (𝑎𝑌)) = ((𝑏𝑋) − (𝑏𝑌)))
7978breq2d 5178 . . 3 (𝑎 = 𝑏 → (𝑁 ∥ ((𝑎𝑋) − (𝑎𝑌)) ↔ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))))
80 fveq1 6919 . . . . 5 (𝑎 = 𝑐 → (𝑎𝑋) = (𝑐𝑋))
81 fveq1 6919 . . . . 5 (𝑎 = 𝑐 → (𝑎𝑌) = (𝑐𝑌))
8280, 81oveq12d 7466 . . . 4 (𝑎 = 𝑐 → ((𝑎𝑋) − (𝑎𝑌)) = ((𝑐𝑋) − (𝑐𝑌)))
8382breq2d 5178 . . 3 (𝑎 = 𝑐 → (𝑁 ∥ ((𝑎𝑋) − (𝑎𝑌)) ↔ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌))))
84 fveq1 6919 . . . . 5 (𝑎 = (𝑏f + 𝑐) → (𝑎𝑋) = ((𝑏f + 𝑐)‘𝑋))
85 fveq1 6919 . . . . 5 (𝑎 = (𝑏f + 𝑐) → (𝑎𝑌) = ((𝑏f + 𝑐)‘𝑌))
8684, 85oveq12d 7466 . . . 4 (𝑎 = (𝑏f + 𝑐) → ((𝑎𝑋) − (𝑎𝑌)) = (((𝑏f + 𝑐)‘𝑋) − ((𝑏f + 𝑐)‘𝑌)))
8786breq2d 5178 . . 3 (𝑎 = (𝑏f + 𝑐) → (𝑁 ∥ ((𝑎𝑋) − (𝑎𝑌)) ↔ 𝑁 ∥ (((𝑏f + 𝑐)‘𝑋) − ((𝑏f + 𝑐)‘𝑌))))
88 fveq1 6919 . . . . 5 (𝑎 = (𝑏f · 𝑐) → (𝑎𝑋) = ((𝑏f · 𝑐)‘𝑋))
89 fveq1 6919 . . . . 5 (𝑎 = (𝑏f · 𝑐) → (𝑎𝑌) = ((𝑏f · 𝑐)‘𝑌))
9088, 89oveq12d 7466 . . . 4 (𝑎 = (𝑏f · 𝑐) → ((𝑎𝑋) − (𝑎𝑌)) = (((𝑏f · 𝑐)‘𝑋) − ((𝑏f · 𝑐)‘𝑌)))
9190breq2d 5178 . . 3 (𝑎 = (𝑏f · 𝑐) → (𝑁 ∥ ((𝑎𝑋) − (𝑎𝑌)) ↔ 𝑁 ∥ (((𝑏f · 𝑐)‘𝑋) − ((𝑏f · 𝑐)‘𝑌))))
92 fveq1 6919 . . . . 5 (𝑎 = 𝐹 → (𝑎𝑋) = (𝐹𝑋))
93 fveq1 6919 . . . . 5 (𝑎 = 𝐹 → (𝑎𝑌) = (𝐹𝑌))
9492, 93oveq12d 7466 . . . 4 (𝑎 = 𝐹 → ((𝑎𝑋) − (𝑎𝑌)) = ((𝐹𝑋) − (𝐹𝑌)))
9594breq2d 5178 . . 3 (𝑎 = 𝐹 → (𝑁 ∥ ((𝑎𝑋) − (𝑎𝑌)) ↔ 𝑁 ∥ ((𝐹𝑋) − (𝐹𝑌))))
9616, 37, 59, 67, 71, 75, 79, 83, 87, 91, 95mzpindd 42702 . 2 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝐹 ∈ (mzPoly‘𝑉)) → 𝑁 ∥ ((𝐹𝑋) − (𝐹𝑌)))
972, 3, 96syl2anc 583 1 ((𝐹 ∈ (mzPoly‘𝑉) ∧ (𝑋 ∈ (ℤ ↑m 𝑉) ∧ 𝑌 ∈ (ℤ ↑m 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) → 𝑁 ∥ ((𝐹𝑋) − (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  {csn 4648   class class class wbr 5166  cmpt 5249   × cxp 5698   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884   + caddc 11187   · cmul 11189  cmin 11520  cz 12639  cdvds 16302  mzPolycmzp 42678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-dvds 16303  df-mzpcl 42679  df-mzp 42680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator