Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem54 Structured version   Visualization version   GIF version

Theorem dalem54 39720
Description: Lemma for dath 39730. Line 𝐺𝐻 intersects the auxiliary axis of perspectivity 𝐵. (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem54.m = (meet‘𝐾)
dalem54.o 𝑂 = (LPlanes‘𝐾)
dalem54.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem54.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem54.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem54.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem54.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
dalem54.b1 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
Assertion
Ref Expression
dalem54 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ 𝐴)

Proof of Theorem dalem54
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 39617 . . 3 (𝜑𝐾 ∈ HL)
323ad2ant1 1133 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
4 dalem.l . . . 4 = (le‘𝐾)
5 dalem.j . . . 4 = (join‘𝐾)
6 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
7 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
8 dalem54.m . . . 4 = (meet‘𝐾)
9 dalem54.o . . . 4 𝑂 = (LPlanes‘𝐾)
10 dalem54.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
11 dalem54.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
12 dalem54.g . . . 4 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
131, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem23 39690 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
14 dalem54.h . . . 4 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
151, 4, 5, 6, 7, 8, 9, 10, 11, 14dalem29 39695 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
16 dalem54.i . . . 4 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
171, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16dalem41 39707 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐻)
18 eqid 2729 . . . 4 (LLines‘𝐾) = (LLines‘𝐾)
195, 6, 18llni2 39506 . . 3 (((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) ∧ 𝐺𝐻) → (𝐺 𝐻) ∈ (LLines‘𝐾))
203, 13, 15, 17, 19syl31anc 1375 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (LLines‘𝐾))
21 dalem54.b1 . . 3 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
221, 4, 5, 6, 7, 8, 18, 9, 10, 11, 12, 14, 16, 21dalem53 39719 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (LLines‘𝐾))
231dalemkelat 39618 . . . . . . 7 (𝜑𝐾 ∈ Lat)
24233ad2ant1 1133 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
25 eqid 2729 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2625, 18llnbase 39503 . . . . . . . 8 ((𝐺 𝐻) ∈ (LLines‘𝐾) → (𝐺 𝐻) ∈ (Base‘𝐾))
2720, 26syl 17 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
281, 4, 5, 6, 7, 8, 9, 10, 11, 16dalem34 39700 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
2925, 6atbase 39282 . . . . . . . 8 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
3028, 29syl 17 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
3125, 5latjcl 18398 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾)) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
3224, 27, 30, 31syl3anc 1373 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
331, 9dalemyeb 39643 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝐾))
34333ad2ant1 1133 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ∈ (Base‘𝐾))
3525, 4, 8latmle2 18424 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (((𝐺 𝐻) 𝐼) 𝑌) 𝑌)
3624, 32, 34, 35syl3anc 1373 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐼) 𝑌) 𝑌)
3721, 36eqbrtrid 5142 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 𝑌)
381, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem24 39691 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝐺 𝑌)
3925, 6atbase 39282 . . . . . . . 8 (𝐺𝐴𝐺 ∈ (Base‘𝐾))
4013, 39syl 17 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 ∈ (Base‘𝐾))
4125, 6atbase 39282 . . . . . . . 8 (𝐻𝐴𝐻 ∈ (Base‘𝐾))
4215, 41syl 17 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐻 ∈ (Base‘𝐾))
4325, 4, 5latjle12 18409 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐺 ∈ (Base‘𝐾) ∧ 𝐻 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝐺 𝑌𝐻 𝑌) ↔ (𝐺 𝐻) 𝑌))
4424, 40, 42, 34, 43syl13anc 1374 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝑌𝐻 𝑌) ↔ (𝐺 𝐻) 𝑌))
45 simpl 482 . . . . . 6 ((𝐺 𝑌𝐻 𝑌) → 𝐺 𝑌)
4644, 45biimtrrdi 254 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝑌𝐺 𝑌))
4738, 46mtod 198 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ¬ (𝐺 𝐻) 𝑌)
48 nbrne2 5127 . . . 4 ((𝐵 𝑌 ∧ ¬ (𝐺 𝐻) 𝑌) → 𝐵 ≠ (𝐺 𝐻))
4937, 47, 48syl2anc 584 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ≠ (𝐺 𝐻))
5049necomd 2980 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ≠ 𝐵)
51 hlatl 39353 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
523, 51syl 17 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ AtLat)
5325, 18llnbase 39503 . . . . 5 (𝐵 ∈ (LLines‘𝐾) → 𝐵 ∈ (Base‘𝐾))
5422, 53syl 17 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (Base‘𝐾))
5525, 8latmcl 18399 . . . 4 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾)) → ((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾))
5624, 27, 54, 55syl3anc 1373 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾))
571, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16dalem52 39718 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ 𝐴)
581, 5, 6dalempjqeb 39639 . . . . . 6 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
59583ad2ant1 1133 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ∈ (Base‘𝐾))
6025, 4, 8latmle1 18423 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻))
6124, 27, 59, 60syl3anc 1373 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻))
621, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16dalem51 39717 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) ∧ ((𝐺 𝐻) 𝐼) ≠ 𝑌))
6362simpld 494 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))))
6425, 6atbase 39282 . . . . . . . 8 (𝑐𝐴𝑐 ∈ (Base‘𝐾))
6564anim2i 617 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑐𝐴) → (𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)))
66653anim1i 1152 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)))
67 biid 261 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) ↔ (((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))))
68 eqid 2729 . . . . . . 7 ((𝐺 𝐻) 𝐼) = ((𝐺 𝐻) 𝐼)
69 eqid 2729 . . . . . . 7 ((𝐺 𝐻) (𝑃 𝑄)) = ((𝐺 𝐻) (𝑃 𝑄))
7067, 4, 5, 6, 8, 9, 68, 10, 21, 69dalem10 39667 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) → ((𝐺 𝐻) (𝑃 𝑄)) 𝐵)
7166, 70syl3an1 1163 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) → ((𝐺 𝐻) (𝑃 𝑄)) 𝐵)
7263, 71syl 17 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) 𝐵)
7325, 8latmcl 18399 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ (Base‘𝐾))
7424, 27, 59, 73syl3anc 1373 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ (Base‘𝐾))
7525, 4, 8latlem12 18425 . . . . 5 ((𝐾 ∈ Lat ∧ (((𝐺 𝐻) (𝑃 𝑄)) ∈ (Base‘𝐾) ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾))) → ((((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻) ∧ ((𝐺 𝐻) (𝑃 𝑄)) 𝐵) ↔ ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵)))
7624, 74, 27, 54, 75syl13anc 1374 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻) ∧ ((𝐺 𝐻) (𝑃 𝑄)) 𝐵) ↔ ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵)))
7761, 72, 76mpbi2and 712 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵))
78 eqid 2729 . . . 4 (0.‘𝐾) = (0.‘𝐾)
7925, 4, 78, 6atlen0 39303 . . 3 (((𝐾 ∈ AtLat ∧ ((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾) ∧ ((𝐺 𝐻) (𝑃 𝑄)) ∈ 𝐴) ∧ ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵)) → ((𝐺 𝐻) 𝐵) ≠ (0.‘𝐾))
8052, 56, 57, 77, 79syl31anc 1375 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ≠ (0.‘𝐾))
818, 78, 6, 182llnmat 39518 . 2 (((𝐾 ∈ HL ∧ (𝐺 𝐻) ∈ (LLines‘𝐾) ∧ 𝐵 ∈ (LLines‘𝐾)) ∧ ((𝐺 𝐻) ≠ 𝐵 ∧ ((𝐺 𝐻) 𝐵) ≠ (0.‘𝐾))) → ((𝐺 𝐻) 𝐵) ∈ 𝐴)
823, 20, 22, 50, 80, 81syl32anc 1380 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  0.cp0 18382  Latclat 18390  Atomscatm 39256  AtLatcal 39257  HLchlt 39343  LLinesclln 39485  LPlanesclpl 39486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494
This theorem is referenced by:  dalem55  39721  dalem57  39723
  Copyright terms: Public domain W3C validator