Proof of Theorem dalem54
Step | Hyp | Ref
| Expression |
1 | | dalem.ph |
. . . 4
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
2 | 1 | dalemkehl 37192 |
. . 3
⊢ (𝜑 → 𝐾 ∈ HL) |
3 | 2 | 3ad2ant1 1131 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ HL) |
4 | | dalem.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
5 | | dalem.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
6 | | dalem.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
7 | | dalem.ps |
. . . 4
⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
8 | | dalem54.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
9 | | dalem54.o |
. . . 4
⊢ 𝑂 = (LPlanes‘𝐾) |
10 | | dalem54.y |
. . . 4
⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
11 | | dalem54.z |
. . . 4
⊢ 𝑍 = ((𝑆 ∨ 𝑇) ∨ 𝑈) |
12 | | dalem54.g |
. . . 4
⊢ 𝐺 = ((𝑐 ∨ 𝑃) ∧ (𝑑 ∨ 𝑆)) |
13 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dalem23 37265 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ∈ 𝐴) |
14 | | dalem54.h |
. . . 4
⊢ 𝐻 = ((𝑐 ∨ 𝑄) ∧ (𝑑 ∨ 𝑇)) |
15 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 14 | dalem29 37270 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐻 ∈ 𝐴) |
16 | | dalem54.i |
. . . 4
⊢ 𝐼 = ((𝑐 ∨ 𝑅) ∧ (𝑑 ∨ 𝑈)) |
17 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16 | dalem41 37282 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ≠ 𝐻) |
18 | | eqid 2759 |
. . . 4
⊢
(LLines‘𝐾) =
(LLines‘𝐾) |
19 | 5, 6, 18 | llni2 37081 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴) ∧ 𝐺 ≠ 𝐻) → (𝐺 ∨ 𝐻) ∈ (LLines‘𝐾)) |
20 | 3, 13, 15, 17, 19 | syl31anc 1371 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐺 ∨ 𝐻) ∈ (LLines‘𝐾)) |
21 | | dalem54.b1 |
. . 3
⊢ 𝐵 = (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ 𝑌) |
22 | 1, 4, 5, 6, 7, 8, 18, 9, 10, 11, 12, 14, 16, 21 | dalem53 37294 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐵 ∈ (LLines‘𝐾)) |
23 | 1 | dalemkelat 37193 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ Lat) |
24 | 23 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ Lat) |
25 | | eqid 2759 |
. . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) |
26 | 25, 18 | llnbase 37078 |
. . . . . . . 8
⊢ ((𝐺 ∨ 𝐻) ∈ (LLines‘𝐾) → (𝐺 ∨ 𝐻) ∈ (Base‘𝐾)) |
27 | 20, 26 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐺 ∨ 𝐻) ∈ (Base‘𝐾)) |
28 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 16 | dalem34 37275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐼 ∈ 𝐴) |
29 | 25, 6 | atbase 36858 |
. . . . . . . 8
⊢ (𝐼 ∈ 𝐴 → 𝐼 ∈ (Base‘𝐾)) |
30 | 28, 29 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐼 ∈ (Base‘𝐾)) |
31 | 25, 5 | latjcl 17720 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝐺 ∨ 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾)) → ((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ (Base‘𝐾)) |
32 | 24, 27, 30, 31 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ (Base‘𝐾)) |
33 | 1, 9 | dalemyeb 37218 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ (Base‘𝐾)) |
34 | 33 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑌 ∈ (Base‘𝐾)) |
35 | 25, 4, 8 | latmle2 17746 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ ((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ 𝑌) ≤ 𝑌) |
36 | 24, 32, 34, 35 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (((𝐺 ∨ 𝐻) ∨ 𝐼) ∧ 𝑌) ≤ 𝑌) |
37 | 21, 36 | eqbrtrid 5068 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐵 ≤ 𝑌) |
38 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dalem24 37266 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝐺 ≤ 𝑌) |
39 | 25, 6 | atbase 36858 |
. . . . . . . 8
⊢ (𝐺 ∈ 𝐴 → 𝐺 ∈ (Base‘𝐾)) |
40 | 13, 39 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐺 ∈ (Base‘𝐾)) |
41 | 25, 6 | atbase 36858 |
. . . . . . . 8
⊢ (𝐻 ∈ 𝐴 → 𝐻 ∈ (Base‘𝐾)) |
42 | 15, 41 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐻 ∈ (Base‘𝐾)) |
43 | 25, 4, 5 | latjle12 17731 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝐺 ∈ (Base‘𝐾) ∧ 𝐻 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝐺 ≤ 𝑌 ∧ 𝐻 ≤ 𝑌) ↔ (𝐺 ∨ 𝐻) ≤ 𝑌)) |
44 | 24, 40, 42, 34, 43 | syl13anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ≤ 𝑌 ∧ 𝐻 ≤ 𝑌) ↔ (𝐺 ∨ 𝐻) ≤ 𝑌)) |
45 | | simpl 487 |
. . . . . 6
⊢ ((𝐺 ≤ 𝑌 ∧ 𝐻 ≤ 𝑌) → 𝐺 ≤ 𝑌) |
46 | 44, 45 | syl6bir 257 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ≤ 𝑌 → 𝐺 ≤ 𝑌)) |
47 | 38, 46 | mtod 201 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ (𝐺 ∨ 𝐻) ≤ 𝑌) |
48 | | nbrne2 5053 |
. . . 4
⊢ ((𝐵 ≤ 𝑌 ∧ ¬ (𝐺 ∨ 𝐻) ≤ 𝑌) → 𝐵 ≠ (𝐺 ∨ 𝐻)) |
49 | 37, 47, 48 | syl2anc 588 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐵 ≠ (𝐺 ∨ 𝐻)) |
50 | 49 | necomd 3007 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝐺 ∨ 𝐻) ≠ 𝐵) |
51 | | hlatl 36929 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
52 | 3, 51 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ AtLat) |
53 | 25, 18 | llnbase 37078 |
. . . . 5
⊢ (𝐵 ∈ (LLines‘𝐾) → 𝐵 ∈ (Base‘𝐾)) |
54 | 22, 53 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐵 ∈ (Base‘𝐾)) |
55 | 25, 8 | latmcl 17721 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝐺 ∨ 𝐻) ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾)) → ((𝐺 ∨ 𝐻) ∧ 𝐵) ∈ (Base‘𝐾)) |
56 | 24, 27, 54, 55 | syl3anc 1369 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∧ 𝐵) ∈ (Base‘𝐾)) |
57 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16 | dalem52 37293 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴) |
58 | 1, 5, 6 | dalempjqeb 37214 |
. . . . . 6
⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
59 | 58 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
60 | 25, 4, 8 | latmle1 17745 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝐺 ∨ 𝐻) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ≤ (𝐺 ∨ 𝐻)) |
61 | 24, 27, 59, 60 | syl3anc 1369 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ≤ (𝐺 ∨ 𝐻)) |
62 | 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16 | dalem51 37292 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) ∧ (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅)))) ∧ ((𝐺 ∨ 𝐻) ∨ 𝐼) ≠ 𝑌)) |
63 | 62 | simpld 499 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) ∧ (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅))))) |
64 | 25, 6 | atbase 36858 |
. . . . . . . 8
⊢ (𝑐 ∈ 𝐴 → 𝑐 ∈ (Base‘𝐾)) |
65 | 64 | anim2i 620 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾))) |
66 | 65 | 3anim1i 1150 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴))) |
67 | | biid 264 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) ∧ (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅)))) ↔ (((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) ∧ (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅))))) |
68 | | eqid 2759 |
. . . . . . 7
⊢ ((𝐺 ∨ 𝐻) ∨ 𝐼) = ((𝐺 ∨ 𝐻) ∨ 𝐼) |
69 | | eqid 2759 |
. . . . . . 7
⊢ ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) = ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) |
70 | 67, 4, 5, 6, 8, 9, 68, 10, 21, 69 | dalem10 37242 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) ∧ (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅)))) → ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ≤ 𝐵) |
71 | 66, 70 | syl3an1 1161 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴) ∧ (𝐺 ∈ 𝐴 ∧ 𝐻 ∈ 𝐴 ∧ 𝐼 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (((𝐺 ∨ 𝐻) ∨ 𝐼) ∈ 𝑂 ∧ 𝑌 ∈ 𝑂) ∧ ((¬ 𝑐 ≤ (𝐺 ∨ 𝐻) ∧ ¬ 𝑐 ≤ (𝐻 ∨ 𝐼) ∧ ¬ 𝑐 ≤ (𝐼 ∨ 𝐺)) ∧ (¬ 𝑐 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑐 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝑐 ≤ (𝑅 ∨ 𝑃)) ∧ (𝑐 ≤ (𝐺 ∨ 𝑃) ∧ 𝑐 ≤ (𝐻 ∨ 𝑄) ∧ 𝑐 ≤ (𝐼 ∨ 𝑅)))) → ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ≤ 𝐵) |
72 | 63, 71 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ≤ 𝐵) |
73 | 25, 8 | latmcl 17721 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝐺 ∨ 𝐻) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) → ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ∈ (Base‘𝐾)) |
74 | 24, 27, 59, 73 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ∈ (Base‘𝐾)) |
75 | 25, 4, 8 | latlem12 17747 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ∈ (Base‘𝐾) ∧ (𝐺 ∨ 𝐻) ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾))) → ((((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ≤ (𝐺 ∨ 𝐻) ∧ ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ≤ 𝐵) ↔ ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ≤ ((𝐺 ∨ 𝐻) ∧ 𝐵))) |
76 | 24, 74, 27, 54, 75 | syl13anc 1370 |
. . . 4
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ≤ (𝐺 ∨ 𝐻) ∧ ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ≤ 𝐵) ↔ ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ≤ ((𝐺 ∨ 𝐻) ∧ 𝐵))) |
77 | 61, 72, 76 | mpbi2and 712 |
. . 3
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ≤ ((𝐺 ∨ 𝐻) ∧ 𝐵)) |
78 | | eqid 2759 |
. . . 4
⊢
(0.‘𝐾) =
(0.‘𝐾) |
79 | 25, 4, 78, 6 | atlen0 36879 |
. . 3
⊢ (((𝐾 ∈ AtLat ∧ ((𝐺 ∨ 𝐻) ∧ 𝐵) ∈ (Base‘𝐾) ∧ ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ∈ 𝐴) ∧ ((𝐺 ∨ 𝐻) ∧ (𝑃 ∨ 𝑄)) ≤ ((𝐺 ∨ 𝐻) ∧ 𝐵)) → ((𝐺 ∨ 𝐻) ∧ 𝐵) ≠ (0.‘𝐾)) |
80 | 52, 56, 57, 77, 79 | syl31anc 1371 |
. 2
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∧ 𝐵) ≠ (0.‘𝐾)) |
81 | 8, 78, 6, 18 | 2llnmat 37093 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝐺 ∨ 𝐻) ∈ (LLines‘𝐾) ∧ 𝐵 ∈ (LLines‘𝐾)) ∧ ((𝐺 ∨ 𝐻) ≠ 𝐵 ∧ ((𝐺 ∨ 𝐻) ∧ 𝐵) ≠ (0.‘𝐾))) → ((𝐺 ∨ 𝐻) ∧ 𝐵) ∈ 𝐴) |
82 | 3, 20, 22, 50, 80, 81 | syl32anc 1376 |
1
⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝐺 ∨ 𝐻) ∧ 𝐵) ∈ 𝐴) |