Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem54 Structured version   Visualization version   GIF version

Theorem dalem54 39683
Description: Lemma for dath 39693. Line 𝐺𝐻 intersects the auxiliary axis of perspectivity 𝐵. (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem54.m = (meet‘𝐾)
dalem54.o 𝑂 = (LPlanes‘𝐾)
dalem54.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem54.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem54.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem54.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem54.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
dalem54.b1 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
Assertion
Ref Expression
dalem54 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ 𝐴)

Proof of Theorem dalem54
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 39580 . . 3 (𝜑𝐾 ∈ HL)
323ad2ant1 1133 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
4 dalem.l . . . 4 = (le‘𝐾)
5 dalem.j . . . 4 = (join‘𝐾)
6 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
7 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
8 dalem54.m . . . 4 = (meet‘𝐾)
9 dalem54.o . . . 4 𝑂 = (LPlanes‘𝐾)
10 dalem54.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
11 dalem54.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
12 dalem54.g . . . 4 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
131, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem23 39653 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
14 dalem54.h . . . 4 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
151, 4, 5, 6, 7, 8, 9, 10, 11, 14dalem29 39658 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
16 dalem54.i . . . 4 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
171, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16dalem41 39670 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐻)
18 eqid 2740 . . . 4 (LLines‘𝐾) = (LLines‘𝐾)
195, 6, 18llni2 39469 . . 3 (((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) ∧ 𝐺𝐻) → (𝐺 𝐻) ∈ (LLines‘𝐾))
203, 13, 15, 17, 19syl31anc 1373 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (LLines‘𝐾))
21 dalem54.b1 . . 3 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
221, 4, 5, 6, 7, 8, 18, 9, 10, 11, 12, 14, 16, 21dalem53 39682 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (LLines‘𝐾))
231dalemkelat 39581 . . . . . . 7 (𝜑𝐾 ∈ Lat)
24233ad2ant1 1133 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
25 eqid 2740 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2625, 18llnbase 39466 . . . . . . . 8 ((𝐺 𝐻) ∈ (LLines‘𝐾) → (𝐺 𝐻) ∈ (Base‘𝐾))
2720, 26syl 17 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
281, 4, 5, 6, 7, 8, 9, 10, 11, 16dalem34 39663 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
2925, 6atbase 39245 . . . . . . . 8 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
3028, 29syl 17 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
3125, 5latjcl 18509 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾)) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
3224, 27, 30, 31syl3anc 1371 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
331, 9dalemyeb 39606 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝐾))
34333ad2ant1 1133 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ∈ (Base‘𝐾))
3525, 4, 8latmle2 18535 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (((𝐺 𝐻) 𝐼) 𝑌) 𝑌)
3624, 32, 34, 35syl3anc 1371 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐼) 𝑌) 𝑌)
3721, 36eqbrtrid 5201 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 𝑌)
381, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem24 39654 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝐺 𝑌)
3925, 6atbase 39245 . . . . . . . 8 (𝐺𝐴𝐺 ∈ (Base‘𝐾))
4013, 39syl 17 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 ∈ (Base‘𝐾))
4125, 6atbase 39245 . . . . . . . 8 (𝐻𝐴𝐻 ∈ (Base‘𝐾))
4215, 41syl 17 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐻 ∈ (Base‘𝐾))
4325, 4, 5latjle12 18520 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐺 ∈ (Base‘𝐾) ∧ 𝐻 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝐺 𝑌𝐻 𝑌) ↔ (𝐺 𝐻) 𝑌))
4424, 40, 42, 34, 43syl13anc 1372 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝑌𝐻 𝑌) ↔ (𝐺 𝐻) 𝑌))
45 simpl 482 . . . . . 6 ((𝐺 𝑌𝐻 𝑌) → 𝐺 𝑌)
4644, 45biimtrrdi 254 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝑌𝐺 𝑌))
4738, 46mtod 198 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ¬ (𝐺 𝐻) 𝑌)
48 nbrne2 5186 . . . 4 ((𝐵 𝑌 ∧ ¬ (𝐺 𝐻) 𝑌) → 𝐵 ≠ (𝐺 𝐻))
4937, 47, 48syl2anc 583 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ≠ (𝐺 𝐻))
5049necomd 3002 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ≠ 𝐵)
51 hlatl 39316 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
523, 51syl 17 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ AtLat)
5325, 18llnbase 39466 . . . . 5 (𝐵 ∈ (LLines‘𝐾) → 𝐵 ∈ (Base‘𝐾))
5422, 53syl 17 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (Base‘𝐾))
5525, 8latmcl 18510 . . . 4 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾)) → ((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾))
5624, 27, 54, 55syl3anc 1371 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾))
571, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16dalem52 39681 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ 𝐴)
581, 5, 6dalempjqeb 39602 . . . . . 6 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
59583ad2ant1 1133 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ∈ (Base‘𝐾))
6025, 4, 8latmle1 18534 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻))
6124, 27, 59, 60syl3anc 1371 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻))
621, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16dalem51 39680 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) ∧ ((𝐺 𝐻) 𝐼) ≠ 𝑌))
6362simpld 494 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))))
6425, 6atbase 39245 . . . . . . . 8 (𝑐𝐴𝑐 ∈ (Base‘𝐾))
6564anim2i 616 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑐𝐴) → (𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)))
66653anim1i 1152 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)))
67 biid 261 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) ↔ (((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))))
68 eqid 2740 . . . . . . 7 ((𝐺 𝐻) 𝐼) = ((𝐺 𝐻) 𝐼)
69 eqid 2740 . . . . . . 7 ((𝐺 𝐻) (𝑃 𝑄)) = ((𝐺 𝐻) (𝑃 𝑄))
7067, 4, 5, 6, 8, 9, 68, 10, 21, 69dalem10 39630 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) → ((𝐺 𝐻) (𝑃 𝑄)) 𝐵)
7166, 70syl3an1 1163 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) → ((𝐺 𝐻) (𝑃 𝑄)) 𝐵)
7263, 71syl 17 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) 𝐵)
7325, 8latmcl 18510 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ (Base‘𝐾))
7424, 27, 59, 73syl3anc 1371 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ (Base‘𝐾))
7525, 4, 8latlem12 18536 . . . . 5 ((𝐾 ∈ Lat ∧ (((𝐺 𝐻) (𝑃 𝑄)) ∈ (Base‘𝐾) ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾))) → ((((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻) ∧ ((𝐺 𝐻) (𝑃 𝑄)) 𝐵) ↔ ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵)))
7624, 74, 27, 54, 75syl13anc 1372 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻) ∧ ((𝐺 𝐻) (𝑃 𝑄)) 𝐵) ↔ ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵)))
7761, 72, 76mpbi2and 711 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵))
78 eqid 2740 . . . 4 (0.‘𝐾) = (0.‘𝐾)
7925, 4, 78, 6atlen0 39266 . . 3 (((𝐾 ∈ AtLat ∧ ((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾) ∧ ((𝐺 𝐻) (𝑃 𝑄)) ∈ 𝐴) ∧ ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵)) → ((𝐺 𝐻) 𝐵) ≠ (0.‘𝐾))
8052, 56, 57, 77, 79syl31anc 1373 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ≠ (0.‘𝐾))
818, 78, 6, 182llnmat 39481 . 2 (((𝐾 ∈ HL ∧ (𝐺 𝐻) ∈ (LLines‘𝐾) ∧ 𝐵 ∈ (LLines‘𝐾)) ∧ ((𝐺 𝐻) ≠ 𝐵 ∧ ((𝐺 𝐻) 𝐵) ≠ (0.‘𝐾))) → ((𝐺 𝐻) 𝐵) ∈ 𝐴)
823, 20, 22, 50, 80, 81syl32anc 1378 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  0.cp0 18493  Latclat 18501  Atomscatm 39219  AtLatcal 39220  HLchlt 39306  LLinesclln 39448  LPlanesclpl 39449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457
This theorem is referenced by:  dalem55  39684  dalem57  39686
  Copyright terms: Public domain W3C validator