Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem54 Structured version   Visualization version   GIF version

Theorem dalem54 39669
Description: Lemma for dath 39679. Line 𝐺𝐻 intersects the auxiliary axis of perspectivity 𝐵. (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem54.m = (meet‘𝐾)
dalem54.o 𝑂 = (LPlanes‘𝐾)
dalem54.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem54.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem54.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem54.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem54.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
dalem54.b1 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
Assertion
Ref Expression
dalem54 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ 𝐴)

Proof of Theorem dalem54
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 39566 . . 3 (𝜑𝐾 ∈ HL)
323ad2ant1 1133 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
4 dalem.l . . . 4 = (le‘𝐾)
5 dalem.j . . . 4 = (join‘𝐾)
6 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
7 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
8 dalem54.m . . . 4 = (meet‘𝐾)
9 dalem54.o . . . 4 𝑂 = (LPlanes‘𝐾)
10 dalem54.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
11 dalem54.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
12 dalem54.g . . . 4 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
131, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem23 39639 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
14 dalem54.h . . . 4 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
151, 4, 5, 6, 7, 8, 9, 10, 11, 14dalem29 39644 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
16 dalem54.i . . . 4 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
171, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16dalem41 39656 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐻)
18 eqid 2734 . . . 4 (LLines‘𝐾) = (LLines‘𝐾)
195, 6, 18llni2 39455 . . 3 (((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) ∧ 𝐺𝐻) → (𝐺 𝐻) ∈ (LLines‘𝐾))
203, 13, 15, 17, 19syl31anc 1374 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (LLines‘𝐾))
21 dalem54.b1 . . 3 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
221, 4, 5, 6, 7, 8, 18, 9, 10, 11, 12, 14, 16, 21dalem53 39668 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (LLines‘𝐾))
231dalemkelat 39567 . . . . . . 7 (𝜑𝐾 ∈ Lat)
24233ad2ant1 1133 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
25 eqid 2734 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2625, 18llnbase 39452 . . . . . . . 8 ((𝐺 𝐻) ∈ (LLines‘𝐾) → (𝐺 𝐻) ∈ (Base‘𝐾))
2720, 26syl 17 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
281, 4, 5, 6, 7, 8, 9, 10, 11, 16dalem34 39649 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
2925, 6atbase 39231 . . . . . . . 8 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
3028, 29syl 17 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
3125, 5latjcl 18458 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾)) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
3224, 27, 30, 31syl3anc 1372 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
331, 9dalemyeb 39592 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝐾))
34333ad2ant1 1133 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ∈ (Base‘𝐾))
3525, 4, 8latmle2 18484 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (((𝐺 𝐻) 𝐼) 𝑌) 𝑌)
3624, 32, 34, 35syl3anc 1372 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐼) 𝑌) 𝑌)
3721, 36eqbrtrid 5160 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 𝑌)
381, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem24 39640 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝐺 𝑌)
3925, 6atbase 39231 . . . . . . . 8 (𝐺𝐴𝐺 ∈ (Base‘𝐾))
4013, 39syl 17 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 ∈ (Base‘𝐾))
4125, 6atbase 39231 . . . . . . . 8 (𝐻𝐴𝐻 ∈ (Base‘𝐾))
4215, 41syl 17 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐻 ∈ (Base‘𝐾))
4325, 4, 5latjle12 18469 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐺 ∈ (Base‘𝐾) ∧ 𝐻 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝐺 𝑌𝐻 𝑌) ↔ (𝐺 𝐻) 𝑌))
4424, 40, 42, 34, 43syl13anc 1373 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝑌𝐻 𝑌) ↔ (𝐺 𝐻) 𝑌))
45 simpl 482 . . . . . 6 ((𝐺 𝑌𝐻 𝑌) → 𝐺 𝑌)
4644, 45biimtrrdi 254 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝑌𝐺 𝑌))
4738, 46mtod 198 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ¬ (𝐺 𝐻) 𝑌)
48 nbrne2 5145 . . . 4 ((𝐵 𝑌 ∧ ¬ (𝐺 𝐻) 𝑌) → 𝐵 ≠ (𝐺 𝐻))
4937, 47, 48syl2anc 584 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ≠ (𝐺 𝐻))
5049necomd 2986 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ≠ 𝐵)
51 hlatl 39302 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
523, 51syl 17 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ AtLat)
5325, 18llnbase 39452 . . . . 5 (𝐵 ∈ (LLines‘𝐾) → 𝐵 ∈ (Base‘𝐾))
5422, 53syl 17 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (Base‘𝐾))
5525, 8latmcl 18459 . . . 4 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾)) → ((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾))
5624, 27, 54, 55syl3anc 1372 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾))
571, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16dalem52 39667 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ 𝐴)
581, 5, 6dalempjqeb 39588 . . . . . 6 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
59583ad2ant1 1133 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ∈ (Base‘𝐾))
6025, 4, 8latmle1 18483 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻))
6124, 27, 59, 60syl3anc 1372 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻))
621, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16dalem51 39666 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) ∧ ((𝐺 𝐻) 𝐼) ≠ 𝑌))
6362simpld 494 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))))
6425, 6atbase 39231 . . . . . . . 8 (𝑐𝐴𝑐 ∈ (Base‘𝐾))
6564anim2i 617 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑐𝐴) → (𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)))
66653anim1i 1152 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)))
67 biid 261 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) ↔ (((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))))
68 eqid 2734 . . . . . . 7 ((𝐺 𝐻) 𝐼) = ((𝐺 𝐻) 𝐼)
69 eqid 2734 . . . . . . 7 ((𝐺 𝐻) (𝑃 𝑄)) = ((𝐺 𝐻) (𝑃 𝑄))
7067, 4, 5, 6, 8, 9, 68, 10, 21, 69dalem10 39616 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) → ((𝐺 𝐻) (𝑃 𝑄)) 𝐵)
7166, 70syl3an1 1163 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) → ((𝐺 𝐻) (𝑃 𝑄)) 𝐵)
7263, 71syl 17 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) 𝐵)
7325, 8latmcl 18459 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ (Base‘𝐾))
7424, 27, 59, 73syl3anc 1372 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ (Base‘𝐾))
7525, 4, 8latlem12 18485 . . . . 5 ((𝐾 ∈ Lat ∧ (((𝐺 𝐻) (𝑃 𝑄)) ∈ (Base‘𝐾) ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾))) → ((((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻) ∧ ((𝐺 𝐻) (𝑃 𝑄)) 𝐵) ↔ ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵)))
7624, 74, 27, 54, 75syl13anc 1373 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻) ∧ ((𝐺 𝐻) (𝑃 𝑄)) 𝐵) ↔ ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵)))
7761, 72, 76mpbi2and 712 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵))
78 eqid 2734 . . . 4 (0.‘𝐾) = (0.‘𝐾)
7925, 4, 78, 6atlen0 39252 . . 3 (((𝐾 ∈ AtLat ∧ ((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾) ∧ ((𝐺 𝐻) (𝑃 𝑄)) ∈ 𝐴) ∧ ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵)) → ((𝐺 𝐻) 𝐵) ≠ (0.‘𝐾))
8052, 56, 57, 77, 79syl31anc 1374 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ≠ (0.‘𝐾))
818, 78, 6, 182llnmat 39467 . 2 (((𝐾 ∈ HL ∧ (𝐺 𝐻) ∈ (LLines‘𝐾) ∧ 𝐵 ∈ (LLines‘𝐾)) ∧ ((𝐺 𝐻) ≠ 𝐵 ∧ ((𝐺 𝐻) 𝐵) ≠ (0.‘𝐾))) → ((𝐺 𝐻) 𝐵) ∈ 𝐴)
823, 20, 22, 50, 80, 81syl32anc 1379 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5125  cfv 6542  (class class class)co 7414  Basecbs 17230  lecple 17284  joincjn 18332  meetcmee 18333  0.cp0 18442  Latclat 18450  Atomscatm 39205  AtLatcal 39206  HLchlt 39292  LLinesclln 39434  LPlanesclpl 39435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-proset 18315  df-poset 18334  df-plt 18349  df-lub 18365  df-glb 18366  df-join 18367  df-meet 18368  df-p0 18444  df-lat 18451  df-clat 18518  df-oposet 39118  df-ol 39120  df-oml 39121  df-covers 39208  df-ats 39209  df-atl 39240  df-cvlat 39264  df-hlat 39293  df-llines 39441  df-lplanes 39442  df-lvols 39443
This theorem is referenced by:  dalem55  39670  dalem57  39672
  Copyright terms: Public domain W3C validator