Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem54 Structured version   Visualization version   GIF version

Theorem dalem54 38189
Description: Lemma for dath 38199. Line 𝐺𝐻 intersects the auxiliary axis of perspectivity 𝐵. (Contributed by NM, 8-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem54.m = (meet‘𝐾)
dalem54.o 𝑂 = (LPlanes‘𝐾)
dalem54.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem54.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem54.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem54.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem54.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
dalem54.b1 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
Assertion
Ref Expression
dalem54 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ 𝐴)

Proof of Theorem dalem54
StepHypRef Expression
1 dalem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemkehl 38086 . . 3 (𝜑𝐾 ∈ HL)
323ad2ant1 1133 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
4 dalem.l . . . 4 = (le‘𝐾)
5 dalem.j . . . 4 = (join‘𝐾)
6 dalem.a . . . 4 𝐴 = (Atoms‘𝐾)
7 dalem.ps . . . 4 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
8 dalem54.m . . . 4 = (meet‘𝐾)
9 dalem54.o . . . 4 𝑂 = (LPlanes‘𝐾)
10 dalem54.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
11 dalem54.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
12 dalem54.g . . . 4 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
131, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem23 38159 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
14 dalem54.h . . . 4 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
151, 4, 5, 6, 7, 8, 9, 10, 11, 14dalem29 38164 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
16 dalem54.i . . . 4 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
171, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16dalem41 38176 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐻)
18 eqid 2736 . . . 4 (LLines‘𝐾) = (LLines‘𝐾)
195, 6, 18llni2 37975 . . 3 (((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) ∧ 𝐺𝐻) → (𝐺 𝐻) ∈ (LLines‘𝐾))
203, 13, 15, 17, 19syl31anc 1373 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (LLines‘𝐾))
21 dalem54.b1 . . 3 𝐵 = (((𝐺 𝐻) 𝐼) 𝑌)
221, 4, 5, 6, 7, 8, 18, 9, 10, 11, 12, 14, 16, 21dalem53 38188 . 2 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (LLines‘𝐾))
231dalemkelat 38087 . . . . . . 7 (𝜑𝐾 ∈ Lat)
24233ad2ant1 1133 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
25 eqid 2736 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2625, 18llnbase 37972 . . . . . . . 8 ((𝐺 𝐻) ∈ (LLines‘𝐾) → (𝐺 𝐻) ∈ (Base‘𝐾))
2720, 26syl 17 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
281, 4, 5, 6, 7, 8, 9, 10, 11, 16dalem34 38169 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
2925, 6atbase 37751 . . . . . . . 8 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
3028, 29syl 17 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
3125, 5latjcl 18328 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾)) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
3224, 27, 30, 31syl3anc 1371 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾))
331, 9dalemyeb 38112 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝐾))
34333ad2ant1 1133 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 ∈ (Base‘𝐾))
3525, 4, 8latmle2 18354 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝐺 𝐻) 𝐼) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (((𝐺 𝐻) 𝐼) 𝑌) 𝑌)
3624, 32, 34, 35syl3anc 1371 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐼) 𝑌) 𝑌)
3721, 36eqbrtrid 5140 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 𝑌)
381, 4, 5, 6, 7, 8, 9, 10, 11, 12dalem24 38160 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝐺 𝑌)
3925, 6atbase 37751 . . . . . . . 8 (𝐺𝐴𝐺 ∈ (Base‘𝐾))
4013, 39syl 17 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 ∈ (Base‘𝐾))
4125, 6atbase 37751 . . . . . . . 8 (𝐻𝐴𝐻 ∈ (Base‘𝐾))
4215, 41syl 17 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐻 ∈ (Base‘𝐾))
4325, 4, 5latjle12 18339 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝐺 ∈ (Base‘𝐾) ∧ 𝐻 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝐺 𝑌𝐻 𝑌) ↔ (𝐺 𝐻) 𝑌))
4424, 40, 42, 34, 43syl13anc 1372 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝑌𝐻 𝑌) ↔ (𝐺 𝐻) 𝑌))
45 simpl 483 . . . . . 6 ((𝐺 𝑌𝐻 𝑌) → 𝐺 𝑌)
4644, 45syl6bir 253 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝑌𝐺 𝑌))
4738, 46mtod 197 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ¬ (𝐺 𝐻) 𝑌)
48 nbrne2 5125 . . . 4 ((𝐵 𝑌 ∧ ¬ (𝐺 𝐻) 𝑌) → 𝐵 ≠ (𝐺 𝐻))
4937, 47, 48syl2anc 584 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ≠ (𝐺 𝐻))
5049necomd 2999 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ≠ 𝐵)
51 hlatl 37822 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
523, 51syl 17 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ AtLat)
5325, 18llnbase 37972 . . . . 5 (𝐵 ∈ (LLines‘𝐾) → 𝐵 ∈ (Base‘𝐾))
5422, 53syl 17 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐵 ∈ (Base‘𝐾))
5525, 8latmcl 18329 . . . 4 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾)) → ((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾))
5624, 27, 54, 55syl3anc 1371 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾))
571, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16dalem52 38187 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ 𝐴)
581, 5, 6dalempjqeb 38108 . . . . . 6 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
59583ad2ant1 1133 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ∈ (Base‘𝐾))
6025, 4, 8latmle1 18353 . . . . 5 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻))
6124, 27, 59, 60syl3anc 1371 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻))
621, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16dalem51 38186 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) ∧ ((𝐺 𝐻) 𝐼) ≠ 𝑌))
6362simpld 495 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))))
6425, 6atbase 37751 . . . . . . . 8 (𝑐𝐴𝑐 ∈ (Base‘𝐾))
6564anim2i 617 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑐𝐴) → (𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)))
66653anim1i 1152 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)))
67 biid 260 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) ↔ (((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))))
68 eqid 2736 . . . . . . 7 ((𝐺 𝐻) 𝐼) = ((𝐺 𝐻) 𝐼)
69 eqid 2736 . . . . . . 7 ((𝐺 𝐻) (𝑃 𝑄)) = ((𝐺 𝐻) (𝑃 𝑄))
7067, 4, 5, 6, 8, 9, 68, 10, 21, 69dalem10 38136 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑐 ∈ (Base‘𝐾)) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) → ((𝐺 𝐻) (𝑃 𝑄)) 𝐵)
7166, 70syl3an1 1163 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑐𝐴) ∧ (𝐺𝐴𝐻𝐴𝐼𝐴) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (((𝐺 𝐻) 𝐼) ∈ 𝑂𝑌𝑂) ∧ ((¬ 𝑐 (𝐺 𝐻) ∧ ¬ 𝑐 (𝐻 𝐼) ∧ ¬ 𝑐 (𝐼 𝐺)) ∧ (¬ 𝑐 (𝑃 𝑄) ∧ ¬ 𝑐 (𝑄 𝑅) ∧ ¬ 𝑐 (𝑅 𝑃)) ∧ (𝑐 (𝐺 𝑃) ∧ 𝑐 (𝐻 𝑄) ∧ 𝑐 (𝐼 𝑅)))) → ((𝐺 𝐻) (𝑃 𝑄)) 𝐵)
7263, 71syl 17 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) 𝐵)
7325, 8latmcl 18329 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ (Base‘𝐾))
7424, 27, 59, 73syl3anc 1371 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ∈ (Base‘𝐾))
7525, 4, 8latlem12 18355 . . . . 5 ((𝐾 ∈ Lat ∧ (((𝐺 𝐻) (𝑃 𝑄)) ∈ (Base‘𝐾) ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐵 ∈ (Base‘𝐾))) → ((((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻) ∧ ((𝐺 𝐻) (𝑃 𝑄)) 𝐵) ↔ ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵)))
7624, 74, 27, 54, 75syl13anc 1372 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ((((𝐺 𝐻) (𝑃 𝑄)) (𝐺 𝐻) ∧ ((𝐺 𝐻) (𝑃 𝑄)) 𝐵) ↔ ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵)))
7761, 72, 76mpbi2and 710 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵))
78 eqid 2736 . . . 4 (0.‘𝐾) = (0.‘𝐾)
7925, 4, 78, 6atlen0 37772 . . 3 (((𝐾 ∈ AtLat ∧ ((𝐺 𝐻) 𝐵) ∈ (Base‘𝐾) ∧ ((𝐺 𝐻) (𝑃 𝑄)) ∈ 𝐴) ∧ ((𝐺 𝐻) (𝑃 𝑄)) ((𝐺 𝐻) 𝐵)) → ((𝐺 𝐻) 𝐵) ≠ (0.‘𝐾))
8052, 56, 57, 77, 79syl31anc 1373 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ≠ (0.‘𝐾))
818, 78, 6, 182llnmat 37987 . 2 (((𝐾 ∈ HL ∧ (𝐺 𝐻) ∈ (LLines‘𝐾) ∧ 𝐵 ∈ (LLines‘𝐾)) ∧ ((𝐺 𝐻) ≠ 𝐵 ∧ ((𝐺 𝐻) 𝐵) ≠ (0.‘𝐾))) → ((𝐺 𝐻) 𝐵) ∈ 𝐴)
823, 20, 22, 50, 80, 81syl32anc 1378 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝐵) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  joincjn 18200  meetcmee 18201  0.cp0 18312  Latclat 18320  Atomscatm 37725  AtLatcal 37726  HLchlt 37812  LLinesclln 37954  LPlanesclpl 37955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-lat 18321  df-clat 18388  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963
This theorem is referenced by:  dalem55  38190  dalem57  38192
  Copyright terms: Public domain W3C validator