Proof of Theorem itscnhlc0xyqsol
Step | Hyp | Ref
| Expression |
1 | | simpl 486 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈
ℝ) |
2 | 1 | 3anim1i 1149 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) |
3 | | simpr 488 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0) |
4 | 3 | 3ad2ant1 1130 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ≠ 0) |
5 | 4 | orcd 870 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) |
6 | 2, 5 | jca 515 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))) |
7 | 6 | 3anim1i 1149 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) |
8 | | itscnhlc0yqe.q |
. . . . . 6
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) |
9 | | itsclc0yqsol.d |
. . . . . 6
⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) |
10 | 8, 9 | itsclc0yqsol 45602 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) |
11 | 7, 10 | syl 17 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) |
12 | 11 | imp 410 |
. . 3
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) |
13 | | oveq2 7164 |
. . . . . . . . . . . . 13
⊢ (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → (𝐵 · 𝑌) = (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) |
14 | 13 | oveq2d 7172 |
. . . . . . . . . . . 12
⊢ (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)))) |
15 | 14 | eqeq1d 2760 |
. . . . . . . . . . 11
⊢ (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) = 𝐶)) |
16 | | simp12 1201 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℝ) |
17 | 16 | recnd 10720 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℂ) |
18 | | simp13 1202 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 ∈ ℝ) |
19 | 18 | recnd 10720 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 ∈ ℂ) |
20 | 17, 19 | mulcld 10712 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝐶) ∈ ℂ) |
21 | | simp11l 1281 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈ ℝ) |
22 | 21 | recnd 10720 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈ ℂ) |
23 | | rpre 12451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈
ℝ) |
24 | 23 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) →
𝑅 ∈
ℝ) |
25 | 24 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝑅 ∈
ℝ) |
26 | 25 | resqcld 13674 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑅↑2) ∈
ℝ) |
27 | | simp1l 1194 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ) |
28 | | simp2 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ) |
29 | 8 | resum2sqcl 45544 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑄 ∈
ℝ) |
30 | 27, 28, 29 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝑄 ∈ ℝ) |
31 | 30 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝑄 ∈
ℝ) |
32 | 26, 31 | remulcld 10722 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑅↑2) · 𝑄) ∈
ℝ) |
33 | | simpl3 1190 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐶 ∈
ℝ) |
34 | 33 | resqcld 13674 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐶↑2) ∈
ℝ) |
35 | 32, 34 | resubcld 11119 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝑅↑2) · 𝑄) − (𝐶↑2)) ∈ ℝ) |
36 | 9, 35 | eqeltrid 2856 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐷 ∈
ℝ) |
37 | 36 | 3adant3 1129 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐷 ∈ ℝ) |
38 | 37 | recnd 10720 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐷 ∈ ℂ) |
39 | 38 | sqrtcld 14858 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) →
(√‘𝐷) ∈
ℂ) |
40 | 22, 39 | mulcld 10712 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 · (√‘𝐷)) ∈ ℂ) |
41 | 20, 40 | subcld 11048 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) ∈ ℂ) |
42 | 30 | 3ad2ant1 1130 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑄 ∈ ℝ) |
43 | 42 | recnd 10720 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑄 ∈ ℂ) |
44 | 8 | resum2sqgt0 45545 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 0 < 𝑄) |
45 | 44 | 3adant3 1129 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 < 𝑄) |
46 | 45 | gt0ne0d 11255 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝑄 ≠ 0) |
47 | 46 | 3ad2ant1 1130 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑄 ≠ 0) |
48 | 17, 41, 43, 47 | divassd 11502 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄) = (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) |
49 | 48 | eqcomd 2764 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) = ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) |
50 | 49 | oveq2d 7172 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) = ((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄))) |
51 | 19, 43, 47 | divcan3d 11472 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑄 · 𝐶) / 𝑄) = 𝐶) |
52 | 51 | eqcomd 2764 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 = ((𝑄 · 𝐶) / 𝑄)) |
53 | 50, 52 | eqeq12d 2774 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) = 𝐶 ↔ ((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) = ((𝑄 · 𝐶) / 𝑄))) |
54 | 43, 19 | mulcld 10712 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑄 · 𝐶) ∈ ℂ) |
55 | 17, 41 | mulcld 10712 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) ∈ ℂ) |
56 | 54, 55, 43, 47 | divsubdird 11506 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) = (((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄))) |
57 | 56 | eqcomd 2764 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄)) |
58 | 57 | eqeq1d 2760 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) = (𝐴 · 𝑋) ↔ (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) = (𝐴 · 𝑋))) |
59 | 54, 43, 47 | divcld 11467 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑄 · 𝐶) / 𝑄) ∈ ℂ) |
60 | 55, 43, 47 | divcld 11467 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄) ∈ ℂ) |
61 | | simp3l 1198 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℝ) |
62 | 61 | recnd 10720 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℂ) |
63 | 22, 62 | mulcld 10712 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 · 𝑋) ∈ ℂ) |
64 | 59, 60, 63 | subadd2d 11067 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) = (𝐴 · 𝑋) ↔ ((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) = ((𝑄 · 𝐶) / 𝑄))) |
65 | | eqcom 2765 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑄 ·
𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = 𝑋 ↔ 𝑋 = ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴)) |
66 | 65 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = 𝑋 ↔ 𝑋 = ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴))) |
67 | 54, 55 | subcld 11048 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) ∈ ℂ) |
68 | 67, 43, 47 | divcld 11467 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) ∈ ℂ) |
69 | | simp11r 1282 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ≠ 0) |
70 | 68, 62, 22, 69 | divmul2d 11500 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = 𝑋 ↔ (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) = (𝐴 · 𝑋))) |
71 | 67, 43, 22, 47, 69 | divdiv1d 11498 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴))) |
72 | 71 | eqeq2d 2769 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑋 = ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
73 | 66, 70, 72 | 3bitr3d 312 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) = (𝐴 · 𝑋) ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
74 | 58, 64, 73 | 3bitr3d 312 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) = ((𝑄 · 𝐶) / 𝑄) ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
75 | 53, 74 | bitrd 282 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) = 𝐶 ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
76 | 15, 75 | sylan9bbr 514 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
77 | 8 | oveq1i 7166 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑄 · 𝐶) = (((𝐴↑2) + (𝐵↑2)) · 𝐶) |
78 | 27 | recnd 10720 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ) |
79 | 78 | sqcld 13571 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴↑2) ∈ ℂ) |
80 | 28 | recnd 10720 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ) |
81 | 80 | sqcld 13571 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵↑2) ∈ ℂ) |
82 | | simp3 1135 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) |
83 | 82 | recnd 10720 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ) |
84 | 79, 81, 83 | adddird 10717 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴↑2) + (𝐵↑2)) · 𝐶) = (((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶))) |
85 | 77, 84 | syl5eq 2805 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑄 · 𝐶) = (((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶))) |
86 | 85 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑄 · 𝐶) = (((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶))) |
87 | 80 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐵 ∈
ℂ) |
88 | 33 | recnd 10720 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐶 ∈
ℂ) |
89 | 87, 88 | mulcld 10712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · 𝐶) ∈ ℂ) |
90 | 78 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐴 ∈
ℂ) |
91 | 36 | recnd 10720 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐷 ∈
ℂ) |
92 | 91 | sqrtcld 14858 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) →
(√‘𝐷) ∈
ℂ) |
93 | 90, 92 | mulcld 10712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · (√‘𝐷)) ∈
ℂ) |
94 | 87, 89, 93 | subdid 11147 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) = ((𝐵 · (𝐵 · 𝐶)) − (𝐵 · (𝐴 · (√‘𝐷))))) |
95 | 80, 80, 83 | mulassd 10715 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 · 𝐵) · 𝐶) = (𝐵 · (𝐵 · 𝐶))) |
96 | | recn 10678 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) |
97 | 96 | sqvald 13570 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐵 ∈ ℝ → (𝐵↑2) = (𝐵 · 𝐵)) |
98 | 97 | 3ad2ant2 1131 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵↑2) = (𝐵 · 𝐵)) |
99 | 98 | eqcomd 2764 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐵) = (𝐵↑2)) |
100 | 99 | oveq1d 7171 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 · 𝐵) · 𝐶) = ((𝐵↑2) · 𝐶)) |
101 | 95, 100 | eqtr3d 2795 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · (𝐵 · 𝐶)) = ((𝐵↑2) · 𝐶)) |
102 | 101 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · (𝐵 · 𝐶)) = ((𝐵↑2) · 𝐶)) |
103 | 87, 90, 92 | mul12d 10900 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · (𝐴 · (√‘𝐷))) = (𝐴 · (𝐵 · (√‘𝐷)))) |
104 | 102, 103 | oveq12d 7174 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐵 · (𝐵 · 𝐶)) − (𝐵 · (𝐴 · (√‘𝐷)))) = (((𝐵↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷))))) |
105 | 94, 104 | eqtrd 2793 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) = (((𝐵↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷))))) |
106 | 86, 105 | oveq12d 7174 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) = ((((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷)))))) |
107 | 90 | sqcld 13571 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴↑2) ∈
ℂ) |
108 | 107, 88 | mulcld 10712 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴↑2) · 𝐶) ∈
ℂ) |
109 | 87 | sqcld 13571 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵↑2) ∈
ℂ) |
110 | 109, 88 | mulcld 10712 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐵↑2) · 𝐶) ∈
ℂ) |
111 | 108, 110 | addcomd 10893 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶)) = (((𝐵↑2) · 𝐶) + ((𝐴↑2) · 𝐶))) |
112 | 111 | oveq1d 7171 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷))))) = ((((𝐵↑2) · 𝐶) + ((𝐴↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷)))))) |
113 | 87, 92 | mulcld 10712 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · (√‘𝐷)) ∈
ℂ) |
114 | 90, 113 | mulcld 10712 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · (𝐵 · (√‘𝐷))) ∈ ℂ) |
115 | 110, 108,
114 | pnncand 11087 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((((𝐵↑2) · 𝐶) + ((𝐴↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷))))) = (((𝐴↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷))))) |
116 | 106, 112,
115 | 3eqtrd 2797 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) = (((𝐴↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷))))) |
117 | 116 | oveq1d 7171 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) = ((((𝐴↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷)))) / (𝑄 · 𝐴))) |
118 | 78 | sqvald 13570 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴↑2) = (𝐴 · 𝐴)) |
119 | 118 | oveq1d 7171 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴↑2) · 𝐶) = ((𝐴 · 𝐴) · 𝐶)) |
120 | 78, 78, 83 | mulassd 10715 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐴) · 𝐶) = (𝐴 · (𝐴 · 𝐶))) |
121 | 119, 120 | eqtrd 2793 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴↑2) · 𝐶) = (𝐴 · (𝐴 · 𝐶))) |
122 | 121 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴↑2) · 𝐶) = (𝐴 · (𝐴 · 𝐶))) |
123 | 122 | oveq1d 7171 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷)))) = ((𝐴 · (𝐴 · 𝐶)) + (𝐴 · (𝐵 · (√‘𝐷))))) |
124 | 31 | recnd 10720 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝑄 ∈
ℂ) |
125 | 124, 90 | mulcomd 10713 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑄 · 𝐴) = (𝐴 · 𝑄)) |
126 | 123, 125 | oveq12d 7174 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((((𝐴↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷)))) / (𝑄 · 𝐴)) = (((𝐴 · (𝐴 · 𝐶)) + (𝐴 · (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄))) |
127 | 90, 88 | mulcld 10712 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · 𝐶) ∈ ℂ) |
128 | 90, 127, 113 | adddid 10716 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷)))) = ((𝐴 · (𝐴 · 𝐶)) + (𝐴 · (𝐵 · (√‘𝐷))))) |
129 | 128 | eqcomd 2764 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · (𝐴 · 𝐶)) + (𝐴 · (𝐵 · (√‘𝐷)))) = (𝐴 · ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))))) |
130 | 129 | oveq1d 7171 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴 · (𝐴 · 𝐶)) + (𝐴 · (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄)) = ((𝐴 · ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄))) |
131 | 127, 113 | addcld 10711 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) ∈ ℂ) |
132 | 46 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝑄 ≠ 0) |
133 | | simpl1r 1222 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐴 ≠ 0) |
134 | 131, 124,
90, 132, 133 | divcan5d 11493 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄)) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)) |
135 | 130, 134 | eqtrd 2793 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴 · (𝐴 · 𝐶)) + (𝐴 · (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄)) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)) |
136 | 117, 126,
135 | 3eqtrd 2797 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)) |
137 | 136 | eqeq2d 2769 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) ↔ 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) |
138 | 137 | biimpd 232 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) |
139 | 138 | 3adant3 1129 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) |
140 | 139 | adantr 484 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) |
141 | 76, 140 | sylbid 243 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) |
142 | 141 | ex 416 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)))) |
143 | 142 | com23 86 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)))) |
144 | 143 | adantld 494 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)))) |
145 | 144 | imp 410 |
. . . . 5
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) |
146 | 145 | ancrd 555 |
. . . 4
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → (𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)))) |
147 | | oveq2 7164 |
. . . . . . . . . . . . 13
⊢ (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → (𝐵 · 𝑌) = (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) |
148 | 147 | oveq2d 7172 |
. . . . . . . . . . . 12
⊢ (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) |
149 | 148 | eqeq1d 2760 |
. . . . . . . . . . 11
⊢ (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) = 𝐶)) |
150 | 20, 40 | addcld 10711 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) ∈ ℂ) |
151 | 17, 150, 43, 47 | divassd 11502 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄) = (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) |
152 | 151 | eqcomd 2764 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) = ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) |
153 | 152 | oveq2d 7172 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) = ((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄))) |
154 | 153, 52 | eqeq12d 2774 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) = 𝐶 ↔ ((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) = ((𝑄 · 𝐶) / 𝑄))) |
155 | 17, 150 | mulcld 10712 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) ∈ ℂ) |
156 | 54, 155, 43, 47 | divsubdird 11506 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) = (((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄))) |
157 | 156 | eqcomd 2764 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄)) |
158 | 157 | eqeq1d 2760 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) = (𝐴 · 𝑋) ↔ (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) = (𝐴 · 𝑋))) |
159 | 155, 43, 47 | divcld 11467 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄) ∈ ℂ) |
160 | 59, 159, 63 | subadd2d 11067 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) = (𝐴 · 𝑋) ↔ ((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) = ((𝑄 · 𝐶) / 𝑄))) |
161 | | eqcom 2765 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑄 ·
𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = 𝑋 ↔ 𝑋 = ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴)) |
162 | 161 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = 𝑋 ↔ 𝑋 = ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴))) |
163 | 54, 155 | subcld 11048 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) ∈ ℂ) |
164 | 163, 43, 47 | divcld 11467 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) ∈ ℂ) |
165 | 164, 62, 22, 69 | divmul2d 11500 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = 𝑋 ↔ (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) = (𝐴 · 𝑋))) |
166 | 163, 43, 22, 47, 69 | divdiv1d 11498 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴))) |
167 | 166 | eqeq2d 2769 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑋 = ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
168 | 162, 165,
167 | 3bitr3d 312 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) = (𝐴 · 𝑋) ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
169 | 158, 160,
168 | 3bitr3d 312 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) = ((𝑄 · 𝐶) / 𝑄) ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
170 | 154, 169 | bitrd 282 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) = 𝐶 ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
171 | 149, 170 | sylan9bbr 514 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) |
172 | 87, 89, 93 | adddid 10716 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) = ((𝐵 · (𝐵 · 𝐶)) + (𝐵 · (𝐴 · (√‘𝐷))))) |
173 | 102, 103 | oveq12d 7174 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐵 · (𝐵 · 𝐶)) + (𝐵 · (𝐴 · (√‘𝐷)))) = (((𝐵↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷))))) |
174 | 172, 173 | eqtrd 2793 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) = (((𝐵↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷))))) |
175 | 86, 174 | oveq12d 7174 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) = ((((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷)))))) |
176 | 111 | oveq1d 7171 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷))))) = ((((𝐵↑2) · 𝐶) + ((𝐴↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷)))))) |
177 | 110, 108,
114 | pnpcand 11085 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((((𝐵↑2) · 𝐶) + ((𝐴↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷))))) = (((𝐴↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷))))) |
178 | 175, 176,
177 | 3eqtrd 2797 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) = (((𝐴↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷))))) |
179 | 178 | oveq1d 7171 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) = ((((𝐴↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷)))) / (𝑄 · 𝐴))) |
180 | 122 | oveq1d 7171 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷)))) = ((𝐴 · (𝐴 · 𝐶)) − (𝐴 · (𝐵 · (√‘𝐷))))) |
181 | 180, 125 | oveq12d 7174 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((((𝐴↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷)))) / (𝑄 · 𝐴)) = (((𝐴 · (𝐴 · 𝐶)) − (𝐴 · (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄))) |
182 | 90, 127, 113 | subdid 11147 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷)))) = ((𝐴 · (𝐴 · 𝐶)) − (𝐴 · (𝐵 · (√‘𝐷))))) |
183 | 182 | eqcomd 2764 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · (𝐴 · 𝐶)) − (𝐴 · (𝐵 · (√‘𝐷)))) = (𝐴 · ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))))) |
184 | 183 | oveq1d 7171 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴 · (𝐴 · 𝐶)) − (𝐴 · (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄)) = ((𝐴 · ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄))) |
185 | 127, 113 | subcld 11048 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) ∈ ℂ) |
186 | 185, 124,
90, 132, 133 | divcan5d 11493 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄)) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)) |
187 | 184, 186 | eqtrd 2793 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴 · (𝐴 · 𝐶)) − (𝐴 · (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄)) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)) |
188 | 179, 181,
187 | 3eqtrd 2797 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)) |
189 | 188 | eqeq2d 2769 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) ↔ 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) |
190 | 189 | biimpd 232 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) |
191 | 190 | 3adant3 1129 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) |
192 | 191 | adantr 484 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) |
193 | 171, 192 | sylbid 243 |
. . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) |
194 | 193 | ex 416 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)))) |
195 | 194 | com23 86 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)))) |
196 | 195 | adantld 494 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)))) |
197 | 196 | imp 410 |
. . . . 5
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) |
198 | 197 | ancrd 555 |
. . . 4
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) |
199 | 146, 198 | orim12d 962 |
. . 3
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → ((𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |
200 | 12, 199 | mpd 15 |
. 2
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) |
201 | 200 | ex 416 |
1
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |