Proof of Theorem itscnhlc0xyqsol
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl 482 | . . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ∈
ℝ) | 
| 2 | 1 | 3anim1i 1153 | . . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) | 
| 3 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0) | 
| 4 | 3 | 3ad2ant1 1134 | . . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ≠ 0) | 
| 5 | 4 | orcd 874 | . . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) | 
| 6 | 2, 5 | jca 511 | . . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))) | 
| 7 | 6 | 3anim1i 1153 | . . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) | 
| 8 |  | itscnhlc0yqe.q | . . . . . 6
⊢ 𝑄 = ((𝐴↑2) + (𝐵↑2)) | 
| 9 |  | itsclc0yqsol.d | . . . . . 6
⊢ 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2)) | 
| 10 | 8, 9 | itsclc0yqsol 48685 | . . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐴 ≠ 0 ∨ 𝐵 ≠ 0)) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) | 
| 11 | 7, 10 | syl 17 | . . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) | 
| 12 | 11 | imp 406 | . . 3
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) | 
| 13 |  | oveq2 7439 | . . . . . . . . . . . . 13
⊢ (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → (𝐵 · 𝑌) = (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) | 
| 14 | 13 | oveq2d 7447 | . . . . . . . . . . . 12
⊢ (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)))) | 
| 15 | 14 | eqeq1d 2739 | . . . . . . . . . . 11
⊢ (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) = 𝐶)) | 
| 16 |  | simp12 1205 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℝ) | 
| 17 | 16 | recnd 11289 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℂ) | 
| 18 |  | simp13 1206 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 ∈ ℝ) | 
| 19 | 18 | recnd 11289 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 ∈ ℂ) | 
| 20 | 17, 19 | mulcld 11281 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝐶) ∈ ℂ) | 
| 21 |  | simp11l 1285 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈ ℝ) | 
| 22 | 21 | recnd 11289 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈ ℂ) | 
| 23 |  | rpre 13043 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑅 ∈ ℝ+
→ 𝑅 ∈
ℝ) | 
| 24 | 23 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑅 ∈ ℝ+
∧ 0 ≤ 𝐷) →
𝑅 ∈
ℝ) | 
| 25 | 24 | adantl 481 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝑅 ∈
ℝ) | 
| 26 | 25 | resqcld 14165 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑅↑2) ∈
ℝ) | 
| 27 |  | simp1l 1198 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ) | 
| 28 |  | simp2 1138 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ) | 
| 29 | 8 | resum2sqcl 48627 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑄 ∈
ℝ) | 
| 30 | 27, 28, 29 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝑄 ∈ ℝ) | 
| 31 | 30 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝑄 ∈
ℝ) | 
| 32 | 26, 31 | remulcld 11291 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑅↑2) · 𝑄) ∈
ℝ) | 
| 33 |  | simpl3 1194 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐶 ∈
ℝ) | 
| 34 | 33 | resqcld 14165 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐶↑2) ∈
ℝ) | 
| 35 | 32, 34 | resubcld 11691 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝑅↑2) · 𝑄) − (𝐶↑2)) ∈ ℝ) | 
| 36 | 9, 35 | eqeltrid 2845 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐷 ∈
ℝ) | 
| 37 | 36 | 3adant3 1133 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐷 ∈ ℝ) | 
| 38 | 37 | recnd 11289 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐷 ∈ ℂ) | 
| 39 | 38 | sqrtcld 15476 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) →
(√‘𝐷) ∈
ℂ) | 
| 40 | 22, 39 | mulcld 11281 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 · (√‘𝐷)) ∈ ℂ) | 
| 41 | 20, 40 | subcld 11620 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) ∈ ℂ) | 
| 42 | 30 | 3ad2ant1 1134 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑄 ∈ ℝ) | 
| 43 | 42 | recnd 11289 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑄 ∈ ℂ) | 
| 44 | 8 | resum2sqgt0 48628 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 0 < 𝑄) | 
| 45 | 44 | 3adant3 1133 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 < 𝑄) | 
| 46 | 45 | gt0ne0d 11827 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝑄 ≠ 0) | 
| 47 | 46 | 3ad2ant1 1134 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑄 ≠ 0) | 
| 48 | 17, 41, 43, 47 | divassd 12078 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄) = (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) | 
| 49 | 48 | eqcomd 2743 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) = ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) | 
| 50 | 49 | oveq2d 7447 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) = ((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄))) | 
| 51 | 19, 43, 47 | divcan3d 12048 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑄 · 𝐶) / 𝑄) = 𝐶) | 
| 52 | 51 | eqcomd 2743 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 = ((𝑄 · 𝐶) / 𝑄)) | 
| 53 | 50, 52 | eqeq12d 2753 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) = 𝐶 ↔ ((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) = ((𝑄 · 𝐶) / 𝑄))) | 
| 54 | 43, 19 | mulcld 11281 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑄 · 𝐶) ∈ ℂ) | 
| 55 | 17, 41 | mulcld 11281 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) ∈ ℂ) | 
| 56 | 54, 55, 43, 47 | divsubdird 12082 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) = (((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄))) | 
| 57 | 56 | eqcomd 2743 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄)) | 
| 58 | 57 | eqeq1d 2739 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) = (𝐴 · 𝑋) ↔ (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) = (𝐴 · 𝑋))) | 
| 59 | 54, 43, 47 | divcld 12043 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑄 · 𝐶) / 𝑄) ∈ ℂ) | 
| 60 | 55, 43, 47 | divcld 12043 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄) ∈ ℂ) | 
| 61 |  | simp3l 1202 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℝ) | 
| 62 | 61 | recnd 11289 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℂ) | 
| 63 | 22, 62 | mulcld 11281 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐴 · 𝑋) ∈ ℂ) | 
| 64 | 59, 60, 63 | subadd2d 11639 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) = (𝐴 · 𝑋) ↔ ((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) = ((𝑄 · 𝐶) / 𝑄))) | 
| 65 |  | eqcom 2744 | . . . . . . . . . . . . . . 15
⊢
(((((𝑄 ·
𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = 𝑋 ↔ 𝑋 = ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴)) | 
| 66 | 65 | a1i 11 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = 𝑋 ↔ 𝑋 = ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴))) | 
| 67 | 54, 55 | subcld 11620 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) ∈ ℂ) | 
| 68 | 67, 43, 47 | divcld 12043 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) ∈ ℂ) | 
| 69 |  | simp11r 1286 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ≠ 0) | 
| 70 | 68, 62, 22, 69 | divmul2d 12076 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = 𝑋 ↔ (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) = (𝐴 · 𝑋))) | 
| 71 | 67, 43, 22, 47, 69 | divdiv1d 12074 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴))) | 
| 72 | 71 | eqeq2d 2748 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑋 = ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) | 
| 73 | 66, 70, 72 | 3bitr3d 309 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / 𝑄) = (𝐴 · 𝑋) ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) | 
| 74 | 58, 64, 73 | 3bitr3d 309 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) / 𝑄)) = ((𝑄 · 𝐶) / 𝑄) ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) | 
| 75 | 53, 74 | bitrd 279 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄))) = 𝐶 ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) | 
| 76 | 15, 75 | sylan9bbr 510 | . . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) | 
| 77 | 8 | oveq1i 7441 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑄 · 𝐶) = (((𝐴↑2) + (𝐵↑2)) · 𝐶) | 
| 78 | 27 | recnd 11289 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ) | 
| 79 | 78 | sqcld 14184 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴↑2) ∈ ℂ) | 
| 80 | 28 | recnd 11289 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ) | 
| 81 | 80 | sqcld 14184 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵↑2) ∈ ℂ) | 
| 82 |  | simp3 1139 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ) | 
| 83 | 82 | recnd 11289 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ) | 
| 84 | 79, 81, 83 | adddird 11286 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴↑2) + (𝐵↑2)) · 𝐶) = (((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶))) | 
| 85 | 77, 84 | eqtrid 2789 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑄 · 𝐶) = (((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶))) | 
| 86 | 85 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑄 · 𝐶) = (((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶))) | 
| 87 | 80 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐵 ∈
ℂ) | 
| 88 | 33 | recnd 11289 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐶 ∈
ℂ) | 
| 89 | 87, 88 | mulcld 11281 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · 𝐶) ∈ ℂ) | 
| 90 | 78 | adantr 480 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐴 ∈
ℂ) | 
| 91 | 36 | recnd 11289 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐷 ∈
ℂ) | 
| 92 | 91 | sqrtcld 15476 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) →
(√‘𝐷) ∈
ℂ) | 
| 93 | 90, 92 | mulcld 11281 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · (√‘𝐷)) ∈
ℂ) | 
| 94 | 87, 89, 93 | subdid 11719 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) = ((𝐵 · (𝐵 · 𝐶)) − (𝐵 · (𝐴 · (√‘𝐷))))) | 
| 95 | 80, 80, 83 | mulassd 11284 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 · 𝐵) · 𝐶) = (𝐵 · (𝐵 · 𝐶))) | 
| 96 |  | recn 11245 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) | 
| 97 | 96 | sqvald 14183 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝐵 ∈ ℝ → (𝐵↑2) = (𝐵 · 𝐵)) | 
| 98 | 97 | 3ad2ant2 1135 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵↑2) = (𝐵 · 𝐵)) | 
| 99 | 98 | eqcomd 2743 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 𝐵) = (𝐵↑2)) | 
| 100 | 99 | oveq1d 7446 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 · 𝐵) · 𝐶) = ((𝐵↑2) · 𝐶)) | 
| 101 | 95, 100 | eqtr3d 2779 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · (𝐵 · 𝐶)) = ((𝐵↑2) · 𝐶)) | 
| 102 | 101 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · (𝐵 · 𝐶)) = ((𝐵↑2) · 𝐶)) | 
| 103 | 87, 90, 92 | mul12d 11470 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · (𝐴 · (√‘𝐷))) = (𝐴 · (𝐵 · (√‘𝐷)))) | 
| 104 | 102, 103 | oveq12d 7449 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐵 · (𝐵 · 𝐶)) − (𝐵 · (𝐴 · (√‘𝐷)))) = (((𝐵↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷))))) | 
| 105 | 94, 104 | eqtrd 2777 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷)))) = (((𝐵↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷))))) | 
| 106 | 86, 105 | oveq12d 7449 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) = ((((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷)))))) | 
| 107 | 90 | sqcld 14184 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴↑2) ∈
ℂ) | 
| 108 | 107, 88 | mulcld 11281 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴↑2) · 𝐶) ∈
ℂ) | 
| 109 | 87 | sqcld 14184 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵↑2) ∈
ℂ) | 
| 110 | 109, 88 | mulcld 11281 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐵↑2) · 𝐶) ∈
ℂ) | 
| 111 | 108, 110 | addcomd 11463 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶)) = (((𝐵↑2) · 𝐶) + ((𝐴↑2) · 𝐶))) | 
| 112 | 111 | oveq1d 7446 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷))))) = ((((𝐵↑2) · 𝐶) + ((𝐴↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷)))))) | 
| 113 | 87, 92 | mulcld 11281 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · (√‘𝐷)) ∈
ℂ) | 
| 114 | 90, 113 | mulcld 11281 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · (𝐵 · (√‘𝐷))) ∈ ℂ) | 
| 115 | 110, 108,
114 | pnncand 11659 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((((𝐵↑2) · 𝐶) + ((𝐴↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷))))) = (((𝐴↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷))))) | 
| 116 | 106, 112,
115 | 3eqtrd 2781 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) = (((𝐴↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷))))) | 
| 117 | 116 | oveq1d 7446 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) = ((((𝐴↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷)))) / (𝑄 · 𝐴))) | 
| 118 | 78 | sqvald 14183 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴↑2) = (𝐴 · 𝐴)) | 
| 119 | 118 | oveq1d 7446 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴↑2) · 𝐶) = ((𝐴 · 𝐴) · 𝐶)) | 
| 120 | 78, 78, 83 | mulassd 11284 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐴) · 𝐶) = (𝐴 · (𝐴 · 𝐶))) | 
| 121 | 119, 120 | eqtrd 2777 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴↑2) · 𝐶) = (𝐴 · (𝐴 · 𝐶))) | 
| 122 | 121 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴↑2) · 𝐶) = (𝐴 · (𝐴 · 𝐶))) | 
| 123 | 122 | oveq1d 7446 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷)))) = ((𝐴 · (𝐴 · 𝐶)) + (𝐴 · (𝐵 · (√‘𝐷))))) | 
| 124 | 31 | recnd 11289 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝑄 ∈
ℂ) | 
| 125 | 124, 90 | mulcomd 11282 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑄 · 𝐴) = (𝐴 · 𝑄)) | 
| 126 | 123, 125 | oveq12d 7449 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((((𝐴↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷)))) / (𝑄 · 𝐴)) = (((𝐴 · (𝐴 · 𝐶)) + (𝐴 · (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄))) | 
| 127 | 90, 88 | mulcld 11281 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · 𝐶) ∈ ℂ) | 
| 128 | 90, 127, 113 | adddid 11285 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷)))) = ((𝐴 · (𝐴 · 𝐶)) + (𝐴 · (𝐵 · (√‘𝐷))))) | 
| 129 | 128 | eqcomd 2743 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · (𝐴 · 𝐶)) + (𝐴 · (𝐵 · (√‘𝐷)))) = (𝐴 · ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))))) | 
| 130 | 129 | oveq1d 7446 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴 · (𝐴 · 𝐶)) + (𝐴 · (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄)) = ((𝐴 · ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄))) | 
| 131 | 127, 113 | addcld 11280 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) ∈ ℂ) | 
| 132 | 46 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝑄 ≠ 0) | 
| 133 |  | simpl1r 1226 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → 𝐴 ≠ 0) | 
| 134 | 131, 124,
90, 132, 133 | divcan5d 12069 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · ((𝐴 · 𝐶) + (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄)) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)) | 
| 135 | 130, 134 | eqtrd 2777 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴 · (𝐴 · 𝐶)) + (𝐴 · (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄)) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)) | 
| 136 | 117, 126,
135 | 3eqtrd 2781 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)) | 
| 137 | 136 | eqeq2d 2748 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) ↔ 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) | 
| 138 | 137 | biimpd 229 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) | 
| 139 | 138 | 3adant3 1133 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) | 
| 140 | 139 | adantr 480 | . . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) | 
| 141 | 76, 140 | sylbid 240 | . . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) | 
| 142 | 141 | ex 412 | . . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)))) | 
| 143 | 142 | com23 86 | . . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)))) | 
| 144 | 143 | adantld 490 | . . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄)))) | 
| 145 | 144 | imp 406 | . . . . 5
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → 𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄))) | 
| 146 | 145 | ancrd 551 | . . . 4
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → (𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) → (𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)))) | 
| 147 |  | oveq2 7439 | . . . . . . . . . . . . 13
⊢ (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → (𝐵 · 𝑌) = (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) | 
| 148 | 147 | oveq2d 7447 | . . . . . . . . . . . 12
⊢ (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) | 
| 149 | 148 | eqeq1d 2739 | . . . . . . . . . . 11
⊢ (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 ↔ ((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) = 𝐶)) | 
| 150 | 20, 40 | addcld 11280 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) ∈ ℂ) | 
| 151 | 17, 150, 43, 47 | divassd 12078 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄) = (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) | 
| 152 | 151 | eqcomd 2743 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) = ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) | 
| 153 | 152 | oveq2d 7447 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) = ((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄))) | 
| 154 | 153, 52 | eqeq12d 2753 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) = 𝐶 ↔ ((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) = ((𝑄 · 𝐶) / 𝑄))) | 
| 155 | 17, 150 | mulcld 11281 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) ∈ ℂ) | 
| 156 | 54, 155, 43, 47 | divsubdird 12082 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) = (((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄))) | 
| 157 | 156 | eqcomd 2743 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄)) | 
| 158 | 157 | eqeq1d 2739 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) = (𝐴 · 𝑋) ↔ (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) = (𝐴 · 𝑋))) | 
| 159 | 155, 43, 47 | divcld 12043 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄) ∈ ℂ) | 
| 160 | 59, 159, 63 | subadd2d 11639 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) / 𝑄) − ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) = (𝐴 · 𝑋) ↔ ((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) = ((𝑄 · 𝐶) / 𝑄))) | 
| 161 |  | eqcom 2744 | . . . . . . . . . . . . . . 15
⊢
(((((𝑄 ·
𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = 𝑋 ↔ 𝑋 = ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴)) | 
| 162 | 161 | a1i 11 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = 𝑋 ↔ 𝑋 = ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴))) | 
| 163 | 54, 155 | subcld 11620 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) ∈ ℂ) | 
| 164 | 163, 43, 47 | divcld 12043 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) ∈ ℂ) | 
| 165 | 164, 62, 22, 69 | divmul2d 12076 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = 𝑋 ↔ (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) = (𝐴 · 𝑋))) | 
| 166 | 163, 43, 22, 47, 69 | divdiv1d 12074 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴))) | 
| 167 | 166 | eqeq2d 2748 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑋 = ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) / 𝐴) ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) | 
| 168 | 162, 165,
167 | 3bitr3d 309 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / 𝑄) = (𝐴 · 𝑋) ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) | 
| 169 | 158, 160,
168 | 3bitr3d 309 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + ((𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) / 𝑄)) = ((𝑄 · 𝐶) / 𝑄) ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) | 
| 170 | 154, 169 | bitrd 279 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + (𝐵 · (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))) = 𝐶 ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) | 
| 171 | 149, 170 | sylan9bbr 510 | . . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 ↔ 𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)))) | 
| 172 | 87, 89, 93 | adddid 11285 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) = ((𝐵 · (𝐵 · 𝐶)) + (𝐵 · (𝐴 · (√‘𝐷))))) | 
| 173 | 102, 103 | oveq12d 7449 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐵 · (𝐵 · 𝐶)) + (𝐵 · (𝐴 · (√‘𝐷)))) = (((𝐵↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷))))) | 
| 174 | 172, 173 | eqtrd 2777 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷)))) = (((𝐵↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷))))) | 
| 175 | 86, 174 | oveq12d 7449 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) = ((((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷)))))) | 
| 176 | 111 | oveq1d 7446 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((((𝐴↑2) · 𝐶) + ((𝐵↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷))))) = ((((𝐵↑2) · 𝐶) + ((𝐴↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷)))))) | 
| 177 | 110, 108,
114 | pnpcand 11657 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((((𝐵↑2) · 𝐶) + ((𝐴↑2) · 𝐶)) − (((𝐵↑2) · 𝐶) + (𝐴 · (𝐵 · (√‘𝐷))))) = (((𝐴↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷))))) | 
| 178 | 175, 176,
177 | 3eqtrd 2781 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) = (((𝐴↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷))))) | 
| 179 | 178 | oveq1d 7446 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) = ((((𝐴↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷)))) / (𝑄 · 𝐴))) | 
| 180 | 122 | oveq1d 7446 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷)))) = ((𝐴 · (𝐴 · 𝐶)) − (𝐴 · (𝐵 · (√‘𝐷))))) | 
| 181 | 180, 125 | oveq12d 7449 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((((𝐴↑2) · 𝐶) − (𝐴 · (𝐵 · (√‘𝐷)))) / (𝑄 · 𝐴)) = (((𝐴 · (𝐴 · 𝐶)) − (𝐴 · (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄))) | 
| 182 | 90, 127, 113 | subdid 11719 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝐴 · ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷)))) = ((𝐴 · (𝐴 · 𝐶)) − (𝐴 · (𝐵 · (√‘𝐷))))) | 
| 183 | 182 | eqcomd 2743 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · (𝐴 · 𝐶)) − (𝐴 · (𝐵 · (√‘𝐷)))) = (𝐴 · ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))))) | 
| 184 | 183 | oveq1d 7446 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴 · (𝐴 · 𝐶)) − (𝐴 · (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄)) = ((𝐴 · ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄))) | 
| 185 | 127, 113 | subcld 11620 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) ∈ ℂ) | 
| 186 | 185, 124,
90, 132, 133 | divcan5d 12069 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → ((𝐴 · ((𝐴 · 𝐶) − (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄)) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)) | 
| 187 | 184, 186 | eqtrd 2777 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝐴 · (𝐴 · 𝐶)) − (𝐴 · (𝐵 · (√‘𝐷)))) / (𝐴 · 𝑄)) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)) | 
| 188 | 179, 181,
187 | 3eqtrd 2781 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)) | 
| 189 | 188 | eqeq2d 2748 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) ↔ 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) | 
| 190 | 189 | biimpd 229 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) | 
| 191 | 190 | 3adant3 1133 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) | 
| 192 | 191 | adantr 480 | . . . . . . . . . 10
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) → (𝑋 = (((𝑄 · 𝐶) − (𝐵 · ((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))))) / (𝑄 · 𝐴)) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) | 
| 193 | 171, 192 | sylbid 240 | . . . . . . . . 9
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) | 
| 194 | 193 | ex 412 | . . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)))) | 
| 195 | 194 | com23 86 | . . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)))) | 
| 196 | 195 | adantld 490 | . . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄)))) | 
| 197 | 196 | imp 406 | . . . . 5
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → 𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄))) | 
| 198 | 197 | ancrd 551 | . . . 4
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → (𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄) → (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) | 
| 199 | 146, 198 | orim12d 967 | . . 3
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → ((𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄) ∨ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) | 
| 200 | 12, 199 | mpd 15 | . 2
⊢
(((((𝐴 ∈
ℝ ∧ 𝐴 ≠ 0)
∧ 𝐵 ∈ ℝ
∧ 𝐶 ∈ ℝ)
∧ (𝑅 ∈
ℝ+ ∧ 0 ≤ 𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄)))) | 
| 201 | 200 | ex 412 | 1
⊢ ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑅 ∈ ℝ+ ∧ 0 ≤
𝐷) ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑋 = (((𝐴 · 𝐶) + (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) − (𝐴 · (√‘𝐷))) / 𝑄)) ∨ (𝑋 = (((𝐴 · 𝐶) − (𝐵 · (√‘𝐷))) / 𝑄) ∧ 𝑌 = (((𝐵 · 𝐶) + (𝐴 · (√‘𝐷))) / 𝑄))))) |