Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcicciooub Structured version   Visualization version   GIF version

Theorem limcicciooub 40439
Description: The limit of a function at the upper bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcicciooub.1 (𝜑𝐴 ∈ ℝ)
limcicciooub.2 (𝜑𝐵 ∈ ℝ)
limcicciooub.3 (𝜑𝐴 < 𝐵)
limcicciooub.4 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
Assertion
Ref Expression
limcicciooub (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐹 lim 𝐵))

Proof of Theorem limcicciooub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limcicciooub.4 . 2 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
2 ioossicc 12460 . . 3 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
32a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
4 limcicciooub.1 . . . 4 (𝜑𝐴 ∈ ℝ)
5 limcicciooub.2 . . . 4 (𝜑𝐵 ∈ ℝ)
64, 5iccssred 40301 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
7 ax-resscn 10245 . . 3 ℝ ⊆ ℂ
86, 7syl6ss 3772 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
9 eqid 2764 . 2 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10 eqid 2764 . 2 ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵}))
11 retop 22843 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
1211a1i 11 . . . . . . . 8 (𝜑 → (topGen‘ran (,)) ∈ Top)
134rexrd 10342 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
14 iocssre 12454 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
1513, 5, 14syl2anc 579 . . . . . . . . . 10 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
16 difssd 3899 . . . . . . . . . 10 (𝜑 → (ℝ ∖ (𝐴[,]𝐵)) ⊆ ℝ)
1715, 16unssd 3950 . . . . . . . . 9 (𝜑 → ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ)
18 uniretop 22844 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1917, 18syl6sseq 3810 . . . . . . . 8 (𝜑 → ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)))
20 elioore 12406 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴(,)+∞) → 𝑥 ∈ ℝ)
2120ad2antlr 718 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥 ∈ ℝ)
22 simplr 785 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐴(,)+∞))
2313ad2antrr 717 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝐴 ∈ ℝ*)
24 pnfxr 10345 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
25 elioo2 12417 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞)))
2623, 24, 25sylancl 580 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞)))
2722, 26mpbid 223 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞))
2827simp2d 1173 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝐴 < 𝑥)
29 simpr 477 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥𝐵)
305ad2antrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝐵 ∈ ℝ)
31 elioc2 12437 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
3223, 30, 31syl2anc 579 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
3321, 28, 29, 32mpbir3and 1442 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐴(,]𝐵))
3433orcd 899 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
3520ad2antlr 718 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝑥 ∈ ℝ)
36 3mix3 1431 . . . . . . . . . . . . . . . . 17 𝑥𝐵 → (¬ 𝑥 ∈ ℝ ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵))
37 3ianor 1132 . . . . . . . . . . . . . . . . 17 (¬ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵) ↔ (¬ 𝑥 ∈ ℝ ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵))
3836, 37sylibr 225 . . . . . . . . . . . . . . . 16 𝑥𝐵 → ¬ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
3938adantl 473 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → ¬ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
404ad2antrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝐴 ∈ ℝ)
415ad2antrr 717 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝐵 ∈ ℝ)
42 elicc2 12439 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4340, 41, 42syl2anc 579 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4439, 43mtbird 316 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
4535, 44eldifd 3742 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))
4645olcd 900 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
4734, 46pm2.61dan 847 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)+∞)) → (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
48 elun 3914 . . . . . . . . . . 11 (𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
4947, 48sylibr 225 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)+∞)) → 𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5049ralrimiva 3112 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (𝐴(,)+∞)𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
51 dfss3 3749 . . . . . . . . 9 ((𝐴(,)+∞) ⊆ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴(,)+∞)𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5250, 51sylibr 225 . . . . . . . 8 (𝜑 → (𝐴(,)+∞) ⊆ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
53 eqid 2764 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
5453ntrss 21138 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)) ∧ (𝐴(,)+∞) ⊆ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5512, 19, 52, 54syl3anc 1490 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5624a1i 11 . . . . . . . . 9 (𝜑 → +∞ ∈ ℝ*)
57 limcicciooub.3 . . . . . . . . 9 (𝜑𝐴 < 𝐵)
585ltpnfd 12154 . . . . . . . . 9 (𝜑𝐵 < +∞)
5913, 56, 5, 57, 58eliood 40294 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴(,)+∞))
60 iooretop 22847 . . . . . . . . 9 (𝐴(,)+∞) ∈ (topGen‘ran (,))
61 isopn3i 21165 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)+∞) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) = (𝐴(,)+∞))
6212, 60, 61sylancl 580 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) = (𝐴(,)+∞))
6359, 62eleqtrrd 2846 . . . . . . 7 (𝜑𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)))
6455, 63sseldd 3761 . . . . . 6 (𝜑𝐵 ∈ ((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
655rexrd 10342 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
664, 5, 57ltled 10438 . . . . . . 7 (𝜑𝐴𝐵)
67 ubicc2 12492 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
6813, 65, 66, 67syl3anc 1490 . . . . . 6 (𝜑𝐵 ∈ (𝐴[,]𝐵))
6964, 68elind 3959 . . . . 5 (𝜑𝐵 ∈ (((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
70 iocssicc 12463 . . . . . . 7 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
7170a1i 11 . . . . . 6 (𝜑 → (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵))
72 eqid 2764 . . . . . . 7 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
7318, 72restntr 21265 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7412, 6, 71, 73syl3anc 1490 . . . . 5 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7569, 74eleqtrrd 2846 . . . 4 (𝜑𝐵 ∈ ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)))
76 eqid 2764 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
779, 76rerest 22885 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
786, 77syl 17 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7978eqcomd 2770 . . . . . 6 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
8079fveq2d 6378 . . . . 5 (𝜑 → (int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))))
8180fveq1d 6376 . . . 4 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)))
8275, 81eleqtrd 2845 . . 3 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)))
8368snssd 4493 . . . . . . . 8 (𝜑 → {𝐵} ⊆ (𝐴[,]𝐵))
84 ssequn2 3947 . . . . . . . 8 ({𝐵} ⊆ (𝐴[,]𝐵) ↔ ((𝐴[,]𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
8583, 84sylib 209 . . . . . . 7 (𝜑 → ((𝐴[,]𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
8685eqcomd 2770 . . . . . 6 (𝜑 → (𝐴[,]𝐵) = ((𝐴[,]𝐵) ∪ {𝐵}))
8786oveq2d 6857 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})))
8887fveq2d 6378 . . . 4 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵}))))
89 ioounsn 12502 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
9013, 65, 57, 89syl3anc 1490 . . . . 5 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
9190eqcomd 2770 . . . 4 (𝜑 → (𝐴(,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐵}))
9288, 91fveq12d 6381 . . 3 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵})))
9382, 92eleqtrd 2845 . 2 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵})))
941, 3, 8, 9, 10, 93limcres 23940 1 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐹 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  w3o 1106  w3a 1107   = wceq 1652  wcel 2155  wral 3054  cdif 3728  cun 3729  cin 3730  wss 3731  {csn 4333   cuni 4593   class class class wbr 4808  ran crn 5277  cres 5278  wf 6063  cfv 6067  (class class class)co 6841  cc 10186  cr 10187  +∞cpnf 10324  *cxr 10326   < clt 10327  cle 10328  (,)cioo 12376  (,]cioc 12377  [,]cicc 12379  t crest 16348  TopOpenctopn 16349  topGenctg 16365  fldccnfld 20018  Topctop 20976  intcnt 21100   lim climc 23916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265  ax-pre-sup 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-int 4633  df-iun 4677  df-iin 4678  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-om 7263  df-1st 7365  df-2nd 7366  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-1o 7763  df-oadd 7767  df-er 7946  df-map 8061  df-pm 8062  df-en 8160  df-dom 8161  df-sdom 8162  df-fin 8163  df-fi 8523  df-sup 8554  df-inf 8555  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-div 10938  df-nn 11274  df-2 11334  df-3 11335  df-4 11336  df-5 11337  df-6 11338  df-7 11339  df-8 11340  df-9 11341  df-n0 11538  df-z 11624  df-dec 11740  df-uz 11886  df-q 11989  df-rp 12028  df-xneg 12145  df-xadd 12146  df-xmul 12147  df-ioo 12380  df-ioc 12381  df-icc 12383  df-fz 12533  df-seq 13008  df-exp 13067  df-cj 14125  df-re 14126  df-im 14127  df-sqrt 14261  df-abs 14262  df-struct 16133  df-ndx 16134  df-slot 16135  df-base 16137  df-plusg 16228  df-mulr 16229  df-starv 16230  df-tset 16234  df-ple 16235  df-ds 16237  df-unif 16238  df-rest 16350  df-topn 16351  df-topgen 16371  df-psmet 20010  df-xmet 20011  df-met 20012  df-bl 20013  df-mopn 20014  df-cnfld 20019  df-top 20977  df-topon 20994  df-topsp 21016  df-bases 21029  df-cld 21102  df-ntr 21103  df-cls 21104  df-cnp 21311  df-xms 22403  df-ms 22404  df-limc 23920
This theorem is referenced by:  cncfiooicclem1  40676  fourierdlem82  40974  fourierdlem93  40985  fourierdlem111  41003
  Copyright terms: Public domain W3C validator