Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcicciooub Structured version   Visualization version   GIF version

Theorem limcicciooub 45745
Description: The limit of a function at the upper bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcicciooub.1 (𝜑𝐴 ∈ ℝ)
limcicciooub.2 (𝜑𝐵 ∈ ℝ)
limcicciooub.3 (𝜑𝐴 < 𝐵)
limcicciooub.4 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
Assertion
Ref Expression
limcicciooub (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐹 lim 𝐵))

Proof of Theorem limcicciooub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limcicciooub.4 . 2 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
2 ioossicc 13333 . . 3 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
32a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
4 limcicciooub.1 . . . 4 (𝜑𝐴 ∈ ℝ)
5 limcicciooub.2 . . . 4 (𝜑𝐵 ∈ ℝ)
64, 5iccssred 13334 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
7 ax-resscn 11063 . . 3 ℝ ⊆ ℂ
86, 7sstrdi 3942 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
9 eqid 2731 . 2 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10 eqid 2731 . 2 ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵}))
11 retop 24676 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
1211a1i 11 . . . . . . . 8 (𝜑 → (topGen‘ran (,)) ∈ Top)
134rexrd 11162 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
14 iocssre 13327 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
1513, 5, 14syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
16 difssd 4084 . . . . . . . . . 10 (𝜑 → (ℝ ∖ (𝐴[,]𝐵)) ⊆ ℝ)
1715, 16unssd 4139 . . . . . . . . 9 (𝜑 → ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ)
18 uniretop 24677 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1917, 18sseqtrdi 3970 . . . . . . . 8 (𝜑 → ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)))
20 elioore 13275 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴(,)+∞) → 𝑥 ∈ ℝ)
2120ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥 ∈ ℝ)
22 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐴(,)+∞))
2313ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝐴 ∈ ℝ*)
24 pnfxr 11166 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
25 elioo2 13286 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞)))
2623, 24, 25sylancl 586 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞)))
2722, 26mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞))
2827simp2d 1143 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝐴 < 𝑥)
29 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥𝐵)
305ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝐵 ∈ ℝ)
31 elioc2 13309 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
3223, 30, 31syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
3321, 28, 29, 32mpbir3and 1343 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐴(,]𝐵))
3433orcd 873 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
3520ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝑥 ∈ ℝ)
36 3mix3 1333 . . . . . . . . . . . . . . . . 17 𝑥𝐵 → (¬ 𝑥 ∈ ℝ ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵))
37 3ianor 1106 . . . . . . . . . . . . . . . . 17 (¬ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵) ↔ (¬ 𝑥 ∈ ℝ ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵))
3836, 37sylibr 234 . . . . . . . . . . . . . . . 16 𝑥𝐵 → ¬ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
3938adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → ¬ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
404ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝐴 ∈ ℝ)
415ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝐵 ∈ ℝ)
42 elicc2 13311 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4340, 41, 42syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4439, 43mtbird 325 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
4535, 44eldifd 3908 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))
4645olcd 874 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
4734, 46pm2.61dan 812 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)+∞)) → (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
48 elun 4100 . . . . . . . . . . 11 (𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
4947, 48sylibr 234 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)+∞)) → 𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5049ralrimiva 3124 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (𝐴(,)+∞)𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
51 dfss3 3918 . . . . . . . . 9 ((𝐴(,)+∞) ⊆ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴(,)+∞)𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5250, 51sylibr 234 . . . . . . . 8 (𝜑 → (𝐴(,)+∞) ⊆ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
53 eqid 2731 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
5453ntrss 22970 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)) ∧ (𝐴(,)+∞) ⊆ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5512, 19, 52, 54syl3anc 1373 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5624a1i 11 . . . . . . . . 9 (𝜑 → +∞ ∈ ℝ*)
57 limcicciooub.3 . . . . . . . . 9 (𝜑𝐴 < 𝐵)
585ltpnfd 13020 . . . . . . . . 9 (𝜑𝐵 < +∞)
5913, 56, 5, 57, 58eliood 45608 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴(,)+∞))
60 iooretop 24680 . . . . . . . . 9 (𝐴(,)+∞) ∈ (topGen‘ran (,))
61 isopn3i 22997 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)+∞) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) = (𝐴(,)+∞))
6212, 60, 61sylancl 586 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) = (𝐴(,)+∞))
6359, 62eleqtrrd 2834 . . . . . . 7 (𝜑𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)))
6455, 63sseldd 3930 . . . . . 6 (𝜑𝐵 ∈ ((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
655rexrd 11162 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
664, 5, 57ltled 11261 . . . . . . 7 (𝜑𝐴𝐵)
67 ubicc2 13365 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
6813, 65, 66, 67syl3anc 1373 . . . . . 6 (𝜑𝐵 ∈ (𝐴[,]𝐵))
6964, 68elind 4147 . . . . 5 (𝜑𝐵 ∈ (((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
70 iocssicc 13337 . . . . . . 7 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
7170a1i 11 . . . . . 6 (𝜑 → (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵))
72 eqid 2731 . . . . . . 7 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
7318, 72restntr 23097 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7412, 6, 71, 73syl3anc 1373 . . . . 5 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7569, 74eleqtrrd 2834 . . . 4 (𝜑𝐵 ∈ ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)))
76 eqid 2731 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
779, 76rerest 24719 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
786, 77syl 17 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7978eqcomd 2737 . . . . . 6 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
8079fveq2d 6826 . . . . 5 (𝜑 → (int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))))
8180fveq1d 6824 . . . 4 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)))
8275, 81eleqtrd 2833 . . 3 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)))
8368snssd 4758 . . . . . . . 8 (𝜑 → {𝐵} ⊆ (𝐴[,]𝐵))
84 ssequn2 4136 . . . . . . . 8 ({𝐵} ⊆ (𝐴[,]𝐵) ↔ ((𝐴[,]𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
8583, 84sylib 218 . . . . . . 7 (𝜑 → ((𝐴[,]𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
8685eqcomd 2737 . . . . . 6 (𝜑 → (𝐴[,]𝐵) = ((𝐴[,]𝐵) ∪ {𝐵}))
8786oveq2d 7362 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})))
8887fveq2d 6826 . . . 4 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵}))))
89 ioounsn 13377 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
9013, 65, 57, 89syl3anc 1373 . . . . 5 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
9190eqcomd 2737 . . . 4 (𝜑 → (𝐴(,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐵}))
9288, 91fveq12d 6829 . . 3 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵})))
9382, 92eleqtrd 2833 . 2 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵})))
941, 3, 8, 9, 10, 93limcres 25814 1 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐹 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cdif 3894  cun 3895  cin 3896  wss 3897  {csn 4573   cuni 4856   class class class wbr 5089  ran crn 5615  cres 5616  wf 6477  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  (,)cioo 13245  (,]cioc 13246  [,]cicc 13248  t crest 17324  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21291  Topctop 22808  intcnt 22932   lim climc 25790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-icc 13252  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-rest 17326  df-topn 17327  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-cnp 23143  df-xms 24235  df-ms 24236  df-limc 25794
This theorem is referenced by:  cncfiooicclem1  46001  fourierdlem82  46296  fourierdlem93  46307  fourierdlem111  46325
  Copyright terms: Public domain W3C validator