Step | Hyp | Ref
| Expression |
1 | | limcicciooub.4 |
. 2
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
2 | | ioossicc 12858 |
. . 3
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
3 | 2 | a1i 11 |
. 2
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)) |
4 | | limcicciooub.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ ℝ) |
5 | | limcicciooub.2 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ℝ) |
6 | 4, 5 | iccssred 12859 |
. . 3
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
7 | | ax-resscn 10625 |
. . 3
⊢ ℝ
⊆ ℂ |
8 | 6, 7 | sstrdi 3905 |
. 2
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℂ) |
9 | | eqid 2759 |
. 2
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
10 | | eqid 2759 |
. 2
⊢
((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld)
↾t ((𝐴[,]𝐵) ∪ {𝐵})) |
11 | | retop 23456 |
. . . . . . . . 9
⊢
(topGen‘ran (,)) ∈ Top |
12 | 11 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (topGen‘ran (,))
∈ Top) |
13 | 4 | rexrd 10722 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
14 | | iocssre 12852 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (𝐴(,]𝐵) ⊆
ℝ) |
15 | 13, 5, 14 | syl2anc 588 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴(,]𝐵) ⊆ ℝ) |
16 | | difssd 4039 |
. . . . . . . . . 10
⊢ (𝜑 → (ℝ ∖ (𝐴[,]𝐵)) ⊆ ℝ) |
17 | 15, 16 | unssd 4092 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ) |
18 | | uniretop 23457 |
. . . . . . . . 9
⊢ ℝ =
∪ (topGen‘ran (,)) |
19 | 17, 18 | sseqtrdi 3943 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ∪
(topGen‘ran (,))) |
20 | | elioore 12802 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝐴(,)+∞) → 𝑥 ∈ ℝ) |
21 | 20 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥 ≤ 𝐵) → 𝑥 ∈ ℝ) |
22 | | simplr 769 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥 ≤ 𝐵) → 𝑥 ∈ (𝐴(,)+∞)) |
23 | 13 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥 ≤ 𝐵) → 𝐴 ∈
ℝ*) |
24 | | pnfxr 10726 |
. . . . . . . . . . . . . . . . 17
⊢ +∞
∈ ℝ* |
25 | | elioo2 12813 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℝ*
∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞))) |
26 | 23, 24, 25 | sylancl 590 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥 ≤ 𝐵) → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞))) |
27 | 22, 26 | mpbid 235 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥 ≤ 𝐵) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 < +∞)) |
28 | 27 | simp2d 1141 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥 ≤ 𝐵) → 𝐴 < 𝑥) |
29 | | simpr 489 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥 ≤ 𝐵) → 𝑥 ≤ 𝐵) |
30 | 5 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥 ≤ 𝐵) → 𝐵 ∈ ℝ) |
31 | | elioc2 12835 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵))) |
32 | 23, 30, 31 | syl2anc 588 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥 ≤ 𝐵) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥 ∧ 𝑥 ≤ 𝐵))) |
33 | 21, 28, 29, 32 | mpbir3and 1340 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥 ≤ 𝐵) → 𝑥 ∈ (𝐴(,]𝐵)) |
34 | 33 | orcd 871 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥 ≤ 𝐵) → (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))) |
35 | 20 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥 ≤ 𝐵) → 𝑥 ∈ ℝ) |
36 | | 3mix3 1330 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑥 ≤ 𝐵 → (¬ 𝑥 ∈ ℝ ∨ ¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ 𝐵)) |
37 | | 3ianor 1105 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑥 ∈ ℝ ∧
𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) ↔ (¬ 𝑥 ∈ ℝ ∨ ¬ 𝐴 ≤ 𝑥 ∨ ¬ 𝑥 ≤ 𝐵)) |
38 | 36, 37 | sylibr 237 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑥 ≤ 𝐵 → ¬ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
39 | 38 | adantl 486 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥 ≤ 𝐵) → ¬ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
40 | 4 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥 ≤ 𝐵) → 𝐴 ∈ ℝ) |
41 | 5 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥 ≤ 𝐵) → 𝐵 ∈ ℝ) |
42 | | elicc2 12837 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
43 | 40, 41, 42 | syl2anc 588 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥 ≤ 𝐵) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
44 | 39, 43 | mtbird 329 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥 ≤ 𝐵) → ¬ 𝑥 ∈ (𝐴[,]𝐵)) |
45 | 35, 44 | eldifd 3870 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥 ≤ 𝐵) → 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))) |
46 | 45 | olcd 872 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥 ≤ 𝐵) → (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))) |
47 | 34, 46 | pm2.61dan 813 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) → (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))) |
48 | | elun 4055 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))) |
49 | 47, 48 | sylibr 237 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)+∞)) → 𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) |
50 | 49 | ralrimiva 3114 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ (𝐴(,)+∞)𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) |
51 | | dfss3 3881 |
. . . . . . . . 9
⊢ ((𝐴(,)+∞) ⊆ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴(,)+∞)𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) |
52 | 50, 51 | sylibr 237 |
. . . . . . . 8
⊢ (𝜑 → (𝐴(,)+∞) ⊆ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) |
53 | | eqid 2759 |
. . . . . . . . 9
⊢ ∪ (topGen‘ran (,)) = ∪
(topGen‘ran (,)) |
54 | 53 | ntrss 21748 |
. . . . . . . 8
⊢
(((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ∪
(topGen‘ran (,)) ∧ (𝐴(,)+∞) ⊆ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) → ((int‘(topGen‘ran
(,)))‘(𝐴(,)+∞))
⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))) |
55 | 12, 19, 52, 54 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) ⊆
((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))) |
56 | 24 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → +∞ ∈
ℝ*) |
57 | | limcicciooub.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 < 𝐵) |
58 | 5 | ltpnfd 12550 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 < +∞) |
59 | 13, 56, 5, 57, 58 | eliood 42494 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ (𝐴(,)+∞)) |
60 | | iooretop 23460 |
. . . . . . . . 9
⊢ (𝐴(,)+∞) ∈
(topGen‘ran (,)) |
61 | | isopn3i 21775 |
. . . . . . . . 9
⊢
(((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)+∞) ∈ (topGen‘ran (,)))
→ ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) = (𝐴(,)+∞)) |
62 | 12, 60, 61 | sylancl 590 |
. . . . . . . 8
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) = (𝐴(,)+∞)) |
63 | 59, 62 | eleqtrrd 2856 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ((int‘(topGen‘ran
(,)))‘(𝐴(,)+∞))) |
64 | 55, 63 | sseldd 3894 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ ((int‘(topGen‘ran
(,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))) |
65 | 5 | rexrd 10722 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
66 | 4, 5, 57 | ltled 10819 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
67 | | ubicc2 12890 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
68 | 13, 65, 66, 67 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ (𝐴[,]𝐵)) |
69 | 64, 68 | elind 4100 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ (((int‘(topGen‘ran
(,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵))) |
70 | | iocssicc 12862 |
. . . . . . 7
⊢ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵) |
71 | 70 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)) |
72 | | eqid 2759 |
. . . . . . 7
⊢
((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,))
↾t (𝐴[,]𝐵)) |
73 | 18, 72 | restntr 21875 |
. . . . . 6
⊢
(((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)) → ((int‘((topGen‘ran
(,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(topGen‘ran
(,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵))) |
74 | 12, 6, 71, 73 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 →
((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(topGen‘ran
(,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵))) |
75 | 69, 74 | eleqtrrd 2856 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ ((int‘((topGen‘ran (,))
↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵))) |
76 | | eqid 2759 |
. . . . . . . . 9
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
77 | 9, 76 | rerest 23498 |
. . . . . . . 8
⊢ ((𝐴[,]𝐵) ⊆ ℝ →
((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,))
↾t (𝐴[,]𝐵))) |
78 | 6, 77 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,))
↾t (𝐴[,]𝐵))) |
79 | 78 | eqcomd 2765 |
. . . . . 6
⊢ (𝜑 → ((topGen‘ran (,))
↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld)
↾t (𝐴[,]𝐵))) |
80 | 79 | fveq2d 6663 |
. . . . 5
⊢ (𝜑 →
(int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) =
(int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))) |
81 | 80 | fveq1d 6661 |
. . . 4
⊢ (𝜑 →
((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) =
((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵))) |
82 | 75, 81 | eleqtrd 2855 |
. . 3
⊢ (𝜑 → 𝐵 ∈
((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵))) |
83 | 68 | snssd 4700 |
. . . . . . . 8
⊢ (𝜑 → {𝐵} ⊆ (𝐴[,]𝐵)) |
84 | | ssequn2 4089 |
. . . . . . . 8
⊢ ({𝐵} ⊆ (𝐴[,]𝐵) ↔ ((𝐴[,]𝐵) ∪ {𝐵}) = (𝐴[,]𝐵)) |
85 | 83, 84 | sylib 221 |
. . . . . . 7
⊢ (𝜑 → ((𝐴[,]𝐵) ∪ {𝐵}) = (𝐴[,]𝐵)) |
86 | 85 | eqcomd 2765 |
. . . . . 6
⊢ (𝜑 → (𝐴[,]𝐵) = ((𝐴[,]𝐵) ∪ {𝐵})) |
87 | 86 | oveq2d 7167 |
. . . . 5
⊢ (𝜑 →
((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld)
↾t ((𝐴[,]𝐵) ∪ {𝐵}))) |
88 | 87 | fveq2d 6663 |
. . . 4
⊢ (𝜑 →
(int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))) =
(int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})))) |
89 | | ioounsn 12902 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) |
90 | 13, 65, 57, 89 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵)) |
91 | 90 | eqcomd 2765 |
. . . 4
⊢ (𝜑 → (𝐴(,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐵})) |
92 | 88, 91 | fveq12d 6666 |
. . 3
⊢ (𝜑 →
((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) =
((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵}))) |
93 | 82, 92 | eleqtrd 2855 |
. 2
⊢ (𝜑 → 𝐵 ∈
((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵}))) |
94 | 1, 3, 8, 9, 10, 93 | limcres 24578 |
1
⊢ (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) limℂ 𝐵) = (𝐹 limℂ 𝐵)) |