Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcicciooub Structured version   Visualization version   GIF version

Theorem limcicciooub 44863
Description: The limit of a function at the upper bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcicciooub.1 (𝜑𝐴 ∈ ℝ)
limcicciooub.2 (𝜑𝐵 ∈ ℝ)
limcicciooub.3 (𝜑𝐴 < 𝐵)
limcicciooub.4 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
Assertion
Ref Expression
limcicciooub (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐹 lim 𝐵))

Proof of Theorem limcicciooub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limcicciooub.4 . 2 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
2 ioossicc 13408 . . 3 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
32a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
4 limcicciooub.1 . . . 4 (𝜑𝐴 ∈ ℝ)
5 limcicciooub.2 . . . 4 (𝜑𝐵 ∈ ℝ)
64, 5iccssred 13409 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
7 ax-resscn 11164 . . 3 ℝ ⊆ ℂ
86, 7sstrdi 3987 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
9 eqid 2724 . 2 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10 eqid 2724 . 2 ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵}))
11 retop 24602 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
1211a1i 11 . . . . . . . 8 (𝜑 → (topGen‘ran (,)) ∈ Top)
134rexrd 11262 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
14 iocssre 13402 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
1513, 5, 14syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
16 difssd 4125 . . . . . . . . . 10 (𝜑 → (ℝ ∖ (𝐴[,]𝐵)) ⊆ ℝ)
1715, 16unssd 4179 . . . . . . . . 9 (𝜑 → ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ)
18 uniretop 24603 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1917, 18sseqtrdi 4025 . . . . . . . 8 (𝜑 → ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)))
20 elioore 13352 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴(,)+∞) → 𝑥 ∈ ℝ)
2120ad2antlr 724 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥 ∈ ℝ)
22 simplr 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐴(,)+∞))
2313ad2antrr 723 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝐴 ∈ ℝ*)
24 pnfxr 11266 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
25 elioo2 13363 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞)))
2623, 24, 25sylancl 585 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞)))
2722, 26mpbid 231 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞))
2827simp2d 1140 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝐴 < 𝑥)
29 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥𝐵)
305ad2antrr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝐵 ∈ ℝ)
31 elioc2 13385 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
3223, 30, 31syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
3321, 28, 29, 32mpbir3and 1339 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐴(,]𝐵))
3433orcd 870 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
3520ad2antlr 724 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝑥 ∈ ℝ)
36 3mix3 1329 . . . . . . . . . . . . . . . . 17 𝑥𝐵 → (¬ 𝑥 ∈ ℝ ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵))
37 3ianor 1104 . . . . . . . . . . . . . . . . 17 (¬ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵) ↔ (¬ 𝑥 ∈ ℝ ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵))
3836, 37sylibr 233 . . . . . . . . . . . . . . . 16 𝑥𝐵 → ¬ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
3938adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → ¬ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
404ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝐴 ∈ ℝ)
415ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝐵 ∈ ℝ)
42 elicc2 13387 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4340, 41, 42syl2anc 583 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4439, 43mtbird 325 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
4535, 44eldifd 3952 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))
4645olcd 871 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
4734, 46pm2.61dan 810 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)+∞)) → (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
48 elun 4141 . . . . . . . . . . 11 (𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
4947, 48sylibr 233 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)+∞)) → 𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5049ralrimiva 3138 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (𝐴(,)+∞)𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
51 dfss3 3963 . . . . . . . . 9 ((𝐴(,)+∞) ⊆ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴(,)+∞)𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5250, 51sylibr 233 . . . . . . . 8 (𝜑 → (𝐴(,)+∞) ⊆ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
53 eqid 2724 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
5453ntrss 22883 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)) ∧ (𝐴(,)+∞) ⊆ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5512, 19, 52, 54syl3anc 1368 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5624a1i 11 . . . . . . . . 9 (𝜑 → +∞ ∈ ℝ*)
57 limcicciooub.3 . . . . . . . . 9 (𝜑𝐴 < 𝐵)
585ltpnfd 13099 . . . . . . . . 9 (𝜑𝐵 < +∞)
5913, 56, 5, 57, 58eliood 44721 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴(,)+∞))
60 iooretop 24606 . . . . . . . . 9 (𝐴(,)+∞) ∈ (topGen‘ran (,))
61 isopn3i 22910 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)+∞) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) = (𝐴(,)+∞))
6212, 60, 61sylancl 585 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) = (𝐴(,)+∞))
6359, 62eleqtrrd 2828 . . . . . . 7 (𝜑𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)))
6455, 63sseldd 3976 . . . . . 6 (𝜑𝐵 ∈ ((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
655rexrd 11262 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
664, 5, 57ltled 11360 . . . . . . 7 (𝜑𝐴𝐵)
67 ubicc2 13440 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
6813, 65, 66, 67syl3anc 1368 . . . . . 6 (𝜑𝐵 ∈ (𝐴[,]𝐵))
6964, 68elind 4187 . . . . 5 (𝜑𝐵 ∈ (((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
70 iocssicc 13412 . . . . . . 7 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
7170a1i 11 . . . . . 6 (𝜑 → (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵))
72 eqid 2724 . . . . . . 7 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
7318, 72restntr 23010 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7412, 6, 71, 73syl3anc 1368 . . . . 5 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7569, 74eleqtrrd 2828 . . . 4 (𝜑𝐵 ∈ ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)))
76 eqid 2724 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
779, 76rerest 24644 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
786, 77syl 17 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7978eqcomd 2730 . . . . . 6 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
8079fveq2d 6886 . . . . 5 (𝜑 → (int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))))
8180fveq1d 6884 . . . 4 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)))
8275, 81eleqtrd 2827 . . 3 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)))
8368snssd 4805 . . . . . . . 8 (𝜑 → {𝐵} ⊆ (𝐴[,]𝐵))
84 ssequn2 4176 . . . . . . . 8 ({𝐵} ⊆ (𝐴[,]𝐵) ↔ ((𝐴[,]𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
8583, 84sylib 217 . . . . . . 7 (𝜑 → ((𝐴[,]𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
8685eqcomd 2730 . . . . . 6 (𝜑 → (𝐴[,]𝐵) = ((𝐴[,]𝐵) ∪ {𝐵}))
8786oveq2d 7418 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})))
8887fveq2d 6886 . . . 4 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵}))))
89 ioounsn 13452 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
9013, 65, 57, 89syl3anc 1368 . . . . 5 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
9190eqcomd 2730 . . . 4 (𝜑 → (𝐴(,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐵}))
9288, 91fveq12d 6889 . . 3 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵})))
9382, 92eleqtrd 2827 . 2 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵})))
941, 3, 8, 9, 10, 93limcres 25739 1 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐹 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  w3o 1083  w3a 1084   = wceq 1533  wcel 2098  wral 3053  cdif 3938  cun 3939  cin 3940  wss 3941  {csn 4621   cuni 4900   class class class wbr 5139  ran crn 5668  cres 5669  wf 6530  cfv 6534  (class class class)co 7402  cc 11105  cr 11106  +∞cpnf 11243  *cxr 11245   < clt 11246  cle 11247  (,)cioo 13322  (,]cioc 13323  [,]cicc 13325  t crest 17367  TopOpenctopn 17368  topGenctg 17384  fldccnfld 21230  Topctop 22719  intcnt 22845   lim climc 25715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fi 9403  df-sup 9434  df-inf 9435  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-q 12931  df-rp 12973  df-xneg 13090  df-xadd 13091  df-xmul 13092  df-ioo 13326  df-ioc 13327  df-icc 13329  df-fz 13483  df-seq 13965  df-exp 14026  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-struct 17081  df-slot 17116  df-ndx 17128  df-base 17146  df-plusg 17211  df-mulr 17212  df-starv 17213  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-rest 17369  df-topn 17370  df-topgen 17390  df-psmet 21222  df-xmet 21223  df-met 21224  df-bl 21225  df-mopn 21226  df-cnfld 21231  df-top 22720  df-topon 22737  df-topsp 22759  df-bases 22773  df-cld 22847  df-ntr 22848  df-cls 22849  df-cnp 23056  df-xms 24150  df-ms 24151  df-limc 25719
This theorem is referenced by:  cncfiooicclem1  45119  fourierdlem82  45414  fourierdlem93  45425  fourierdlem111  45443
  Copyright terms: Public domain W3C validator