Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcicciooub Structured version   Visualization version   GIF version

Theorem limcicciooub 42279
Description: The limit of a function at the upper bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcicciooub.1 (𝜑𝐴 ∈ ℝ)
limcicciooub.2 (𝜑𝐵 ∈ ℝ)
limcicciooub.3 (𝜑𝐴 < 𝐵)
limcicciooub.4 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
Assertion
Ref Expression
limcicciooub (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐹 lim 𝐵))

Proof of Theorem limcicciooub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limcicciooub.4 . 2 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
2 ioossicc 12811 . . 3 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
32a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
4 limcicciooub.1 . . . 4 (𝜑𝐴 ∈ ℝ)
5 limcicciooub.2 . . . 4 (𝜑𝐵 ∈ ℝ)
64, 5iccssred 12812 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
7 ax-resscn 10583 . . 3 ℝ ⊆ ℂ
86, 7sstrdi 3927 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
9 eqid 2798 . 2 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10 eqid 2798 . 2 ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵}))
11 retop 23367 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
1211a1i 11 . . . . . . . 8 (𝜑 → (topGen‘ran (,)) ∈ Top)
134rexrd 10680 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
14 iocssre 12805 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
1513, 5, 14syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
16 difssd 4060 . . . . . . . . . 10 (𝜑 → (ℝ ∖ (𝐴[,]𝐵)) ⊆ ℝ)
1715, 16unssd 4113 . . . . . . . . 9 (𝜑 → ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ)
18 uniretop 23368 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1917, 18sseqtrdi 3965 . . . . . . . 8 (𝜑 → ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)))
20 elioore 12756 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴(,)+∞) → 𝑥 ∈ ℝ)
2120ad2antlr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥 ∈ ℝ)
22 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐴(,)+∞))
2313ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝐴 ∈ ℝ*)
24 pnfxr 10684 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
25 elioo2 12767 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞)))
2623, 24, 25sylancl 589 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞)))
2722, 26mpbid 235 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞))
2827simp2d 1140 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝐴 < 𝑥)
29 simpr 488 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥𝐵)
305ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝐵 ∈ ℝ)
31 elioc2 12788 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
3223, 30, 31syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
3321, 28, 29, 32mpbir3and 1339 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐴(,]𝐵))
3433orcd 870 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
3520ad2antlr 726 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝑥 ∈ ℝ)
36 3mix3 1329 . . . . . . . . . . . . . . . . 17 𝑥𝐵 → (¬ 𝑥 ∈ ℝ ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵))
37 3ianor 1104 . . . . . . . . . . . . . . . . 17 (¬ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵) ↔ (¬ 𝑥 ∈ ℝ ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵))
3836, 37sylibr 237 . . . . . . . . . . . . . . . 16 𝑥𝐵 → ¬ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
3938adantl 485 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → ¬ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
404ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝐴 ∈ ℝ)
415ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝐵 ∈ ℝ)
42 elicc2 12790 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4340, 41, 42syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4439, 43mtbird 328 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
4535, 44eldifd 3892 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))
4645olcd 871 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
4734, 46pm2.61dan 812 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)+∞)) → (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
48 elun 4076 . . . . . . . . . . 11 (𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
4947, 48sylibr 237 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)+∞)) → 𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5049ralrimiva 3149 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (𝐴(,)+∞)𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
51 dfss3 3903 . . . . . . . . 9 ((𝐴(,)+∞) ⊆ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴(,)+∞)𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5250, 51sylibr 237 . . . . . . . 8 (𝜑 → (𝐴(,)+∞) ⊆ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
53 eqid 2798 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
5453ntrss 21660 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)) ∧ (𝐴(,)+∞) ⊆ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5512, 19, 52, 54syl3anc 1368 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5624a1i 11 . . . . . . . . 9 (𝜑 → +∞ ∈ ℝ*)
57 limcicciooub.3 . . . . . . . . 9 (𝜑𝐴 < 𝐵)
585ltpnfd 12504 . . . . . . . . 9 (𝜑𝐵 < +∞)
5913, 56, 5, 57, 58eliood 42135 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴(,)+∞))
60 iooretop 23371 . . . . . . . . 9 (𝐴(,)+∞) ∈ (topGen‘ran (,))
61 isopn3i 21687 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)+∞) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) = (𝐴(,)+∞))
6212, 60, 61sylancl 589 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) = (𝐴(,)+∞))
6359, 62eleqtrrd 2893 . . . . . . 7 (𝜑𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)))
6455, 63sseldd 3916 . . . . . 6 (𝜑𝐵 ∈ ((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
655rexrd 10680 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
664, 5, 57ltled 10777 . . . . . . 7 (𝜑𝐴𝐵)
67 ubicc2 12843 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
6813, 65, 66, 67syl3anc 1368 . . . . . 6 (𝜑𝐵 ∈ (𝐴[,]𝐵))
6964, 68elind 4121 . . . . 5 (𝜑𝐵 ∈ (((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
70 iocssicc 12815 . . . . . . 7 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
7170a1i 11 . . . . . 6 (𝜑 → (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵))
72 eqid 2798 . . . . . . 7 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
7318, 72restntr 21787 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7412, 6, 71, 73syl3anc 1368 . . . . 5 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7569, 74eleqtrrd 2893 . . . 4 (𝜑𝐵 ∈ ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)))
76 eqid 2798 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
779, 76rerest 23409 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
786, 77syl 17 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7978eqcomd 2804 . . . . . 6 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
8079fveq2d 6649 . . . . 5 (𝜑 → (int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))))
8180fveq1d 6647 . . . 4 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)))
8275, 81eleqtrd 2892 . . 3 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)))
8368snssd 4702 . . . . . . . 8 (𝜑 → {𝐵} ⊆ (𝐴[,]𝐵))
84 ssequn2 4110 . . . . . . . 8 ({𝐵} ⊆ (𝐴[,]𝐵) ↔ ((𝐴[,]𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
8583, 84sylib 221 . . . . . . 7 (𝜑 → ((𝐴[,]𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
8685eqcomd 2804 . . . . . 6 (𝜑 → (𝐴[,]𝐵) = ((𝐴[,]𝐵) ∪ {𝐵}))
8786oveq2d 7151 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})))
8887fveq2d 6649 . . . 4 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵}))))
89 ioounsn 12855 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
9013, 65, 57, 89syl3anc 1368 . . . . 5 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
9190eqcomd 2804 . . . 4 (𝜑 → (𝐴(,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐵}))
9288, 91fveq12d 6652 . . 3 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵})))
9382, 92eleqtrd 2892 . 2 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵})))
941, 3, 8, 9, 10, 93limcres 24489 1 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐹 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3o 1083  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cdif 3878  cun 3879  cin 3880  wss 3881  {csn 4525   cuni 4800   class class class wbr 5030  ran crn 5520  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  (,)cioo 12726  (,]cioc 12727  [,]cicc 12729  t crest 16686  TopOpenctopn 16687  topGenctg 16703  fldccnfld 20091  Topctop 21498  intcnt 21622   lim climc 24465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-icc 12733  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-rest 16688  df-topn 16689  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-cnp 21833  df-xms 22927  df-ms 22928  df-limc 24469
This theorem is referenced by:  cncfiooicclem1  42535  fourierdlem82  42830  fourierdlem93  42841  fourierdlem111  42859
  Copyright terms: Public domain W3C validator