Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limcicciooub Structured version   Visualization version   GIF version

Theorem limcicciooub 45642
Description: The limit of a function at the upper bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limcicciooub.1 (𝜑𝐴 ∈ ℝ)
limcicciooub.2 (𝜑𝐵 ∈ ℝ)
limcicciooub.3 (𝜑𝐴 < 𝐵)
limcicciooub.4 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
Assertion
Ref Expression
limcicciooub (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐹 lim 𝐵))

Proof of Theorem limcicciooub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limcicciooub.4 . 2 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
2 ioossicc 13401 . . 3 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
32a1i 11 . 2 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
4 limcicciooub.1 . . . 4 (𝜑𝐴 ∈ ℝ)
5 limcicciooub.2 . . . 4 (𝜑𝐵 ∈ ℝ)
64, 5iccssred 13402 . . 3 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
7 ax-resscn 11132 . . 3 ℝ ⊆ ℂ
86, 7sstrdi 3962 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
9 eqid 2730 . 2 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
10 eqid 2730 . 2 ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵}))
11 retop 24656 . . . . . . . . 9 (topGen‘ran (,)) ∈ Top
1211a1i 11 . . . . . . . 8 (𝜑 → (topGen‘ran (,)) ∈ Top)
134rexrd 11231 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
14 iocssre 13395 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
1513, 5, 14syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
16 difssd 4103 . . . . . . . . . 10 (𝜑 → (ℝ ∖ (𝐴[,]𝐵)) ⊆ ℝ)
1715, 16unssd 4158 . . . . . . . . 9 (𝜑 → ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ ℝ)
18 uniretop 24657 . . . . . . . . 9 ℝ = (topGen‘ran (,))
1917, 18sseqtrdi 3990 . . . . . . . 8 (𝜑 → ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)))
20 elioore 13343 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴(,)+∞) → 𝑥 ∈ ℝ)
2120ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥 ∈ ℝ)
22 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐴(,)+∞))
2313ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝐴 ∈ ℝ*)
24 pnfxr 11235 . . . . . . . . . . . . . . . . 17 +∞ ∈ ℝ*
25 elioo2 13354 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞)))
2623, 24, 25sylancl 586 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐴(,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞)))
2722, 26mpbid 232 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥 < +∞))
2827simp2d 1143 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝐴 < 𝑥)
29 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥𝐵)
305ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝐵 ∈ ℝ)
31 elioc2 13377 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
3223, 30, 31syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
3321, 28, 29, 32mpbir3and 1343 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐴(,]𝐵))
3433orcd 873 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
3520ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝑥 ∈ ℝ)
36 3mix3 1333 . . . . . . . . . . . . . . . . 17 𝑥𝐵 → (¬ 𝑥 ∈ ℝ ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵))
37 3ianor 1106 . . . . . . . . . . . . . . . . 17 (¬ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵) ↔ (¬ 𝑥 ∈ ℝ ∨ ¬ 𝐴𝑥 ∨ ¬ 𝑥𝐵))
3836, 37sylibr 234 . . . . . . . . . . . . . . . 16 𝑥𝐵 → ¬ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
3938adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → ¬ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
404ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝐴 ∈ ℝ)
415ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝐵 ∈ ℝ)
42 elicc2 13379 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4340, 41, 42syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
4439, 43mtbird 325 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
4535, 44eldifd 3928 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵)))
4645olcd 874 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐴(,)+∞)) ∧ ¬ 𝑥𝐵) → (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
4734, 46pm2.61dan 812 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴(,)+∞)) → (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
48 elun 4119 . . . . . . . . . . 11 (𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ (𝑥 ∈ (𝐴(,]𝐵) ∨ 𝑥 ∈ (ℝ ∖ (𝐴[,]𝐵))))
4947, 48sylibr 234 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)+∞)) → 𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5049ralrimiva 3126 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (𝐴(,)+∞)𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
51 dfss3 3938 . . . . . . . . 9 ((𝐴(,)+∞) ⊆ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ↔ ∀𝑥 ∈ (𝐴(,)+∞)𝑥 ∈ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
5250, 51sylibr 234 . . . . . . . 8 (𝜑 → (𝐴(,)+∞) ⊆ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))))
53 eqid 2730 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
5453ntrss 22949 . . . . . . . 8 (((topGen‘ran (,)) ∈ Top ∧ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵))) ⊆ (topGen‘ran (,)) ∧ (𝐴(,)+∞) ⊆ ((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5512, 19, 52, 54syl3anc 1373 . . . . . . 7 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) ⊆ ((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
5624a1i 11 . . . . . . . . 9 (𝜑 → +∞ ∈ ℝ*)
57 limcicciooub.3 . . . . . . . . 9 (𝜑𝐴 < 𝐵)
585ltpnfd 13088 . . . . . . . . 9 (𝜑𝐵 < +∞)
5913, 56, 5, 57, 58eliood 45503 . . . . . . . 8 (𝜑𝐵 ∈ (𝐴(,)+∞))
60 iooretop 24660 . . . . . . . . 9 (𝐴(,)+∞) ∈ (topGen‘ran (,))
61 isopn3i 22976 . . . . . . . . 9 (((topGen‘ran (,)) ∈ Top ∧ (𝐴(,)+∞) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) = (𝐴(,)+∞))
6212, 60, 61sylancl 586 . . . . . . . 8 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)) = (𝐴(,)+∞))
6359, 62eleqtrrd 2832 . . . . . . 7 (𝜑𝐵 ∈ ((int‘(topGen‘ran (,)))‘(𝐴(,)+∞)))
6455, 63sseldd 3950 . . . . . 6 (𝜑𝐵 ∈ ((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))))
655rexrd 11231 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
664, 5, 57ltled 11329 . . . . . . 7 (𝜑𝐴𝐵)
67 ubicc2 13433 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
6813, 65, 66, 67syl3anc 1373 . . . . . 6 (𝜑𝐵 ∈ (𝐴[,]𝐵))
6964, 68elind 4166 . . . . 5 (𝜑𝐵 ∈ (((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
70 iocssicc 13405 . . . . . . 7 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
7170a1i 11 . . . . . 6 (𝜑 → (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵))
72 eqid 2730 . . . . . . 7 ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵))
7318, 72restntr 23076 . . . . . 6 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ ∧ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)) → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7412, 6, 71, 73syl3anc 1373 . . . . 5 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = (((int‘(topGen‘ran (,)))‘((𝐴(,]𝐵) ∪ (ℝ ∖ (𝐴[,]𝐵)))) ∩ (𝐴[,]𝐵)))
7569, 74eleqtrrd 2832 . . . 4 (𝜑𝐵 ∈ ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)))
76 eqid 2730 . . . . . . . . 9 (topGen‘ran (,)) = (topGen‘ran (,))
779, 76rerest 24699 . . . . . . . 8 ((𝐴[,]𝐵) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
786, 77syl 17 . . . . . . 7 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
7978eqcomd 2736 . . . . . 6 (𝜑 → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
8079fveq2d 6865 . . . . 5 (𝜑 → (int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))))
8180fveq1d 6863 . . . 4 (𝜑 → ((int‘((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)))
8275, 81eleqtrd 2831 . . 3 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)))
8368snssd 4776 . . . . . . . 8 (𝜑 → {𝐵} ⊆ (𝐴[,]𝐵))
84 ssequn2 4155 . . . . . . . 8 ({𝐵} ⊆ (𝐴[,]𝐵) ↔ ((𝐴[,]𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
8583, 84sylib 218 . . . . . . 7 (𝜑 → ((𝐴[,]𝐵) ∪ {𝐵}) = (𝐴[,]𝐵))
8685eqcomd 2736 . . . . . 6 (𝜑 → (𝐴[,]𝐵) = ((𝐴[,]𝐵) ∪ {𝐵}))
8786oveq2d 7406 . . . . 5 (𝜑 → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})))
8887fveq2d 6865 . . . 4 (𝜑 → (int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵))) = (int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵}))))
89 ioounsn 13445 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
9013, 65, 57, 89syl3anc 1373 . . . . 5 (𝜑 → ((𝐴(,)𝐵) ∪ {𝐵}) = (𝐴(,]𝐵))
9190eqcomd 2736 . . . 4 (𝜑 → (𝐴(,]𝐵) = ((𝐴(,)𝐵) ∪ {𝐵}))
9288, 91fveq12d 6868 . . 3 (𝜑 → ((int‘((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))‘(𝐴(,]𝐵)) = ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵})))
9382, 92eleqtrd 2831 . 2 (𝜑𝐵 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((𝐴[,]𝐵) ∪ {𝐵})))‘((𝐴(,)𝐵) ∪ {𝐵})))
941, 3, 8, 9, 10, 93limcres 25794 1 (𝜑 → ((𝐹 ↾ (𝐴(,)𝐵)) lim 𝐵) = (𝐹 lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cdif 3914  cun 3915  cin 3916  wss 3917  {csn 4592   cuni 4874   class class class wbr 5110  ran crn 5642  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  (,)cioo 13313  (,]cioc 13314  [,]cicc 13316  t crest 17390  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  Topctop 22787  intcnt 22911   lim climc 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-icc 13320  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-cnp 23122  df-xms 24215  df-ms 24216  df-limc 25774
This theorem is referenced by:  cncfiooicclem1  45898  fourierdlem82  46193  fourierdlem93  46204  fourierdlem111  46222
  Copyright terms: Public domain W3C validator