MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfznelfzo Structured version   Visualization version   GIF version

Theorem elfznelfzo 13330
Description: A value in a finite set of sequential integers is a border value if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by Thierry Arnoux, 22-Dec-2021.)
Assertion
Ref Expression
elfznelfzo ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾))

Proof of Theorem elfznelfzo
StepHypRef Expression
1 elfz2nn0 13186 . . 3 (𝑀 ∈ (0...𝐾) ↔ (𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾))
2 nn0z 12183 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
3 nn0z 12183 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
42, 3anim12i 616 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ))
543adant3 1134 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ))
6 elfzom1b 13324 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ (1..^𝐾) ↔ (𝑀 − 1) ∈ (0..^(𝐾 − 1))))
75, 6syl 17 . . . . 5 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 ∈ (1..^𝐾) ↔ (𝑀 − 1) ∈ (0..^(𝐾 − 1))))
87notbid 321 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ ¬ (𝑀 − 1) ∈ (0..^(𝐾 − 1))))
9 elfzo0 13266 . . . . . . 7 ((𝑀 − 1) ∈ (0..^(𝐾 − 1)) ↔ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1)))
109a1i 11 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → ((𝑀 − 1) ∈ (0..^(𝐾 − 1)) ↔ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1))))
1110notbid 321 . . . . 5 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) ∈ (0..^(𝐾 − 1)) ↔ ¬ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1))))
12 3ianor 1109 . . . . . . 7 (¬ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1)) ↔ (¬ (𝑀 − 1) ∈ ℕ0 ∨ ¬ (𝐾 − 1) ∈ ℕ ∨ ¬ (𝑀 − 1) < (𝐾 − 1)))
13 elnnne0 12087 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℕ0𝑀 ≠ 0))
14 df-ne 2936 . . . . . . . . . . . . . . . . . 18 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
1514anbi2i 626 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑀 ≠ 0) ↔ (𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0))
1613, 15bitr2i 279 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0) ↔ 𝑀 ∈ ℕ)
17 nnm1nn0 12114 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
1816, 17sylbi 220 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0) → (𝑀 − 1) ∈ ℕ0)
1918ex 416 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (¬ 𝑀 = 0 → (𝑀 − 1) ∈ ℕ0))
2019con1d 147 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (¬ (𝑀 − 1) ∈ ℕ0𝑀 = 0))
2120imp 410 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0 ∧ ¬ (𝑀 − 1) ∈ ℕ0) → 𝑀 = 0)
2221orcd 873 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0 ∧ ¬ (𝑀 − 1) ∈ ℕ0) → (𝑀 = 0 ∨ 𝑀 = 𝐾))
2322ex 416 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (¬ (𝑀 − 1) ∈ ℕ0 → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
24233ad2ant1 1135 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) ∈ ℕ0 → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
2524com12 32 . . . . . . . 8 (¬ (𝑀 − 1) ∈ ℕ0 → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
26 ioran 984 . . . . . . . . . . . 12 (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))
27 nn1m1nn 11834 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → (𝑀 = 1 ∨ (𝑀 − 1) ∈ ℕ))
28 df-ne 2936 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀𝐾 ↔ ¬ 𝑀 = 𝐾)
29 necom 2988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑀𝐾𝐾𝑀)
30 nn0re 12082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
3130ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → 𝑀 ∈ ℝ)
32 nn0re 12082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
3332adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → 𝐾 ∈ ℝ)
3433adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → 𝐾 ∈ ℝ)
35 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → 𝑀𝐾)
3631, 34, 35leltned 10968 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → (𝑀 < 𝐾𝐾𝑀))
3729, 36bitr4id 293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → (𝑀𝐾𝑀 < 𝐾))
3837adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) ∧ 𝑀 = 1) → (𝑀𝐾𝑀 < 𝐾))
39 breq1 5046 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑀 = 1 → (𝑀 < 𝐾 ↔ 1 < 𝐾))
4039biimpa 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑀 = 1 ∧ 𝑀 < 𝐾) → 1 < 𝐾)
41 1red 10817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → 1 ∈ ℝ)
4241, 33, 41ltsub1d 11424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (1 < 𝐾 ↔ (1 − 1) < (𝐾 − 1)))
43 1m1e0 11885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (1 − 1) = 0
4443breq1i 5050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((1 − 1) < (𝐾 − 1) ↔ 0 < (𝐾 − 1))
45 1zzd 12191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐾 ∈ ℕ0 → 1 ∈ ℤ)
463, 45zsubcld 12270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℤ)
4746adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 − 1) ∈ ℤ)
4847adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 0 < (𝐾 − 1)) → (𝐾 − 1) ∈ ℤ)
49 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 0 < (𝐾 − 1)) → 0 < (𝐾 − 1))
50 elnnz 12169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐾 − 1) ∈ ℕ ↔ ((𝐾 − 1) ∈ ℤ ∧ 0 < (𝐾 − 1)))
5148, 49, 50sylanbrc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 0 < (𝐾 − 1)) → (𝐾 − 1) ∈ ℕ)
5251ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (0 < (𝐾 − 1) → (𝐾 − 1) ∈ ℕ))
5344, 52syl5bi 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((1 − 1) < (𝐾 − 1) → (𝐾 − 1) ∈ ℕ))
5442, 53sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (1 < 𝐾 → (𝐾 − 1) ∈ ℕ))
5540, 54syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑀 = 1 ∧ 𝑀 < 𝐾) → (𝐾 − 1) ∈ ℕ))
5655expd 419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 = 1 → (𝑀 < 𝐾 → (𝐾 − 1) ∈ ℕ)))
5756adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → (𝑀 = 1 → (𝑀 < 𝐾 → (𝐾 − 1) ∈ ℕ)))
5857imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) ∧ 𝑀 = 1) → (𝑀 < 𝐾 → (𝐾 − 1) ∈ ℕ))
5938, 58sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) ∧ 𝑀 = 1) → (𝑀𝐾 → (𝐾 − 1) ∈ ℕ))
6059exp31 423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀𝐾 → (𝑀 = 1 → (𝑀𝐾 → (𝐾 − 1) ∈ ℕ))))
6160com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀𝐾 → (𝑀𝐾 → (𝑀 = 1 → ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 − 1) ∈ ℕ))))
6228, 61sylbir 238 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑀 = 𝐾 → (𝑀𝐾 → (𝑀 = 1 → ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 − 1) ∈ ℕ))))
6362com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑀 = 𝐾 → (𝑀 = 1 → (𝑀𝐾 → ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 − 1) ∈ ℕ))))
6463com14 96 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 = 1 → (𝑀𝐾 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))))
6564ex 416 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝑀 = 1 → (𝑀𝐾 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
6665com14 96 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀𝐾 → (𝑀 ∈ ℕ0 → (𝑀 = 1 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
6766com13 88 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 = 1 → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
6830ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝑀 ∈ ℝ)
6932adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℝ)
70 1red 10817 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 1 ∈ ℝ)
7168, 69, 70lesub1d 11422 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾 ↔ (𝑀 − 1) ≤ (𝐾 − 1)))
723ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 𝐾 ∈ ℤ)
73 1zzd 12191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 1 ∈ ℤ)
7472, 73zsubcld 12270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → (𝐾 − 1) ∈ ℤ)
75 nngt0 11844 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑀 − 1) ∈ ℕ → 0 < (𝑀 − 1))
76 0red 10819 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → 0 ∈ ℝ)
77 peano2rem 11128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
7830, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑀 ∈ ℕ0 → (𝑀 − 1) ∈ ℝ)
7978adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 − 1) ∈ ℝ)
80 peano2rem 11128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
8132, 80syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℝ)
8281adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐾 − 1) ∈ ℝ)
83 ltletr 10907 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((0 ∈ ℝ ∧ (𝑀 − 1) ∈ ℝ ∧ (𝐾 − 1) ∈ ℝ) → ((0 < (𝑀 − 1) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 0 < (𝐾 − 1)))
8476, 79, 82, 83syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((0 < (𝑀 − 1) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 0 < (𝐾 − 1)))
8584ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → ((0 < (𝑀 − 1) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 0 < (𝐾 − 1))))
8685com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0 < (𝑀 − 1) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → 0 < (𝐾 − 1))))
8786ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (0 < (𝑀 − 1) → ((𝑀 − 1) ≤ (𝐾 − 1) → (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → 0 < (𝐾 − 1)))))
8887com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0 < (𝑀 − 1) → (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → ((𝑀 − 1) ≤ (𝐾 − 1) → 0 < (𝐾 − 1)))))
8975, 88syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑀 − 1) ∈ ℕ → (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → ((𝑀 − 1) ≤ (𝐾 − 1) → 0 < (𝐾 − 1)))))
9089imp41 429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 0 < (𝐾 − 1))
9174, 90, 50sylanbrc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → (𝐾 − 1) ∈ ℕ)
9291a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))
9392ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → ((𝑀 − 1) ≤ (𝐾 − 1) → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))
9471, 93sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))
9594ex 416 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝐾 ∈ ℕ0 → (𝑀𝐾 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))))
9695com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))))
9796ex 416 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 − 1) ∈ ℕ → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
9867, 97jaoi 857 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 = 1 ∨ (𝑀 − 1) ∈ ℕ) → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
9927, 98syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
10013, 99sylbir 238 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝑀 ≠ 0) → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
101100ex 416 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0 → (𝑀 ≠ 0 → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))))))
102101pm2.43a 54 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → (𝑀 ≠ 0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
103102com24 95 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑀𝐾 → (𝑀 ≠ 0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
1041033imp 1113 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 ≠ 0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))
105104com3l 89 . . . . . . . . . . . . . 14 (𝑀 ≠ 0 → (¬ 𝑀 = 𝐾 → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝐾 − 1) ∈ ℕ)))
10614, 105sylbir 238 . . . . . . . . . . . . 13 𝑀 = 0 → (¬ 𝑀 = 𝐾 → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝐾 − 1) ∈ ℕ)))
107106imp 410 . . . . . . . . . . . 12 ((¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝐾 − 1) ∈ ℕ))
10826, 107sylbi 220 . . . . . . . . . . 11 (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝐾 − 1) ∈ ℕ))
109108com12 32 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) → (𝐾 − 1) ∈ ℕ))
110109con1d 147 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝐾 − 1) ∈ ℕ → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
111110com12 32 . . . . . . . 8 (¬ (𝐾 − 1) ∈ ℕ → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
11230adantr 484 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → 𝑀 ∈ ℝ)
11332adantl 485 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → 𝐾 ∈ ℝ)
114 1red 10817 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → 1 ∈ ℝ)
115112, 113, 1143jca 1130 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ))
1161153adant3 1134 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ))
117 ltsub1 11311 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑀 < 𝐾 ↔ (𝑀 − 1) < (𝐾 − 1)))
118116, 117syl 17 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 < 𝐾 ↔ (𝑀 − 1) < (𝐾 − 1)))
119118bicomd 226 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → ((𝑀 − 1) < (𝐾 − 1) ↔ 𝑀 < 𝐾))
120119notbid 321 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) < (𝐾 − 1) ↔ ¬ 𝑀 < 𝐾))
121 eqlelt 10903 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 = 𝐾 ↔ (𝑀𝐾 ∧ ¬ 𝑀 < 𝐾)))
12230, 32, 121syl2an 599 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 = 𝐾 ↔ (𝑀𝐾 ∧ ¬ 𝑀 < 𝐾)))
123122biimpar 481 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ (𝑀𝐾 ∧ ¬ 𝑀 < 𝐾)) → 𝑀 = 𝐾)
124123olcd 874 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ (𝑀𝐾 ∧ ¬ 𝑀 < 𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾))
125124exp43 440 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑀𝐾 → (¬ 𝑀 < 𝐾 → (𝑀 = 0 ∨ 𝑀 = 𝐾)))))
1261253imp 1113 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ 𝑀 < 𝐾 → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
127120, 126sylbid 243 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) < (𝐾 − 1) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
128127com12 32 . . . . . . . 8 (¬ (𝑀 − 1) < (𝐾 − 1) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
12925, 111, 1283jaoi 1429 . . . . . . 7 ((¬ (𝑀 − 1) ∈ ℕ0 ∨ ¬ (𝐾 − 1) ∈ ℕ ∨ ¬ (𝑀 − 1) < (𝐾 − 1)) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
13012, 129sylbi 220 . . . . . 6 (¬ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1)) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
131130com12 32 . . . . 5 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1)) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
13211, 131sylbid 243 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) ∈ (0..^(𝐾 − 1)) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
1338, 132sylbid 243 . . 3 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ 𝑀 ∈ (1..^𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
1341, 133sylbi 220 . 2 (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
135134imp 410 1 ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3o 1088  w3a 1089   = wceq 1543  wcel 2110  wne 2935   class class class wbr 5043  (class class class)co 7202  cr 10711  0cc0 10712  1c1 10713   < clt 10850  cle 10851  cmin 11045  cn 11813  0cn0 12073  cz 12159  ...cfz 13078  ..^cfzo 13221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-n0 12074  df-z 12160  df-uz 12422  df-fz 13079  df-fzo 13222
This theorem is referenced by:  elfznelfzob  13331  injresinjlem  13345
  Copyright terms: Public domain W3C validator