MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfznelfzo Structured version   Visualization version   GIF version

Theorem elfznelfzo 13141
Description: A value in a finite set of sequential integers is a border value if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by Thierry Arnoux, 22-Dec-2021.)
Assertion
Ref Expression
elfznelfzo ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾))

Proof of Theorem elfznelfzo
StepHypRef Expression
1 elfz2nn0 12997 . . 3 (𝑀 ∈ (0...𝐾) ↔ (𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾))
2 nn0z 11997 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
3 nn0z 11997 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
42, 3anim12i 615 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ))
543adant3 1129 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ))
6 elfzom1b 13135 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ (1..^𝐾) ↔ (𝑀 − 1) ∈ (0..^(𝐾 − 1))))
75, 6syl 17 . . . . 5 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 ∈ (1..^𝐾) ↔ (𝑀 − 1) ∈ (0..^(𝐾 − 1))))
87notbid 321 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ ¬ (𝑀 − 1) ∈ (0..^(𝐾 − 1))))
9 elfzo0 13077 . . . . . . 7 ((𝑀 − 1) ∈ (0..^(𝐾 − 1)) ↔ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1)))
109a1i 11 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → ((𝑀 − 1) ∈ (0..^(𝐾 − 1)) ↔ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1))))
1110notbid 321 . . . . 5 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) ∈ (0..^(𝐾 − 1)) ↔ ¬ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1))))
12 3ianor 1104 . . . . . . 7 (¬ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1)) ↔ (¬ (𝑀 − 1) ∈ ℕ0 ∨ ¬ (𝐾 − 1) ∈ ℕ ∨ ¬ (𝑀 − 1) < (𝐾 − 1)))
13 elnnne0 11903 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℕ0𝑀 ≠ 0))
14 df-ne 2991 . . . . . . . . . . . . . . . . . 18 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
1514anbi2i 625 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑀 ≠ 0) ↔ (𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0))
1613, 15bitr2i 279 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0) ↔ 𝑀 ∈ ℕ)
17 nnm1nn0 11930 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
1816, 17sylbi 220 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0) → (𝑀 − 1) ∈ ℕ0)
1918ex 416 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (¬ 𝑀 = 0 → (𝑀 − 1) ∈ ℕ0))
2019con1d 147 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (¬ (𝑀 − 1) ∈ ℕ0𝑀 = 0))
2120imp 410 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0 ∧ ¬ (𝑀 − 1) ∈ ℕ0) → 𝑀 = 0)
2221orcd 870 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0 ∧ ¬ (𝑀 − 1) ∈ ℕ0) → (𝑀 = 0 ∨ 𝑀 = 𝐾))
2322ex 416 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (¬ (𝑀 − 1) ∈ ℕ0 → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
24233ad2ant1 1130 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) ∈ ℕ0 → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
2524com12 32 . . . . . . . 8 (¬ (𝑀 − 1) ∈ ℕ0 → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
26 ioran 981 . . . . . . . . . . . 12 (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))
27 nn1m1nn 11650 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → (𝑀 = 1 ∨ (𝑀 − 1) ∈ ℕ))
28 df-ne 2991 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀𝐾 ↔ ¬ 𝑀 = 𝐾)
29 nn0re 11898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
3029ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → 𝑀 ∈ ℝ)
31 nn0re 11898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
3231adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → 𝐾 ∈ ℝ)
3332adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → 𝐾 ∈ ℝ)
34 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → 𝑀𝐾)
3530, 33, 34leltned 10786 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → (𝑀 < 𝐾𝐾𝑀))
36 necom 3043 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑀𝐾𝐾𝑀)
3735, 36syl6rbbr 293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → (𝑀𝐾𝑀 < 𝐾))
3837adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) ∧ 𝑀 = 1) → (𝑀𝐾𝑀 < 𝐾))
39 breq1 5036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑀 = 1 → (𝑀 < 𝐾 ↔ 1 < 𝐾))
4039biimpa 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑀 = 1 ∧ 𝑀 < 𝐾) → 1 < 𝐾)
41 1red 10635 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → 1 ∈ ℝ)
4241, 32, 41ltsub1d 11242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (1 < 𝐾 ↔ (1 − 1) < (𝐾 − 1)))
43 1m1e0 11701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (1 − 1) = 0
4443breq1i 5040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((1 − 1) < (𝐾 − 1) ↔ 0 < (𝐾 − 1))
45 1zzd 12005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐾 ∈ ℕ0 → 1 ∈ ℤ)
463, 45zsubcld 12084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℤ)
4746adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 − 1) ∈ ℤ)
4847adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 0 < (𝐾 − 1)) → (𝐾 − 1) ∈ ℤ)
49 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 0 < (𝐾 − 1)) → 0 < (𝐾 − 1))
50 elnnz 11983 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐾 − 1) ∈ ℕ ↔ ((𝐾 − 1) ∈ ℤ ∧ 0 < (𝐾 − 1)))
5148, 49, 50sylanbrc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 0 < (𝐾 − 1)) → (𝐾 − 1) ∈ ℕ)
5251ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (0 < (𝐾 − 1) → (𝐾 − 1) ∈ ℕ))
5344, 52syl5bi 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((1 − 1) < (𝐾 − 1) → (𝐾 − 1) ∈ ℕ))
5442, 53sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (1 < 𝐾 → (𝐾 − 1) ∈ ℕ))
5540, 54syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑀 = 1 ∧ 𝑀 < 𝐾) → (𝐾 − 1) ∈ ℕ))
5655expd 419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 = 1 → (𝑀 < 𝐾 → (𝐾 − 1) ∈ ℕ)))
5756adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → (𝑀 = 1 → (𝑀 < 𝐾 → (𝐾 − 1) ∈ ℕ)))
5857imp 410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) ∧ 𝑀 = 1) → (𝑀 < 𝐾 → (𝐾 − 1) ∈ ℕ))
5938, 58sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) ∧ 𝑀 = 1) → (𝑀𝐾 → (𝐾 − 1) ∈ ℕ))
6059exp31 423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀𝐾 → (𝑀 = 1 → (𝑀𝐾 → (𝐾 − 1) ∈ ℕ))))
6160com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀𝐾 → (𝑀𝐾 → (𝑀 = 1 → ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 − 1) ∈ ℕ))))
6228, 61sylbir 238 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑀 = 𝐾 → (𝑀𝐾 → (𝑀 = 1 → ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 − 1) ∈ ℕ))))
6362com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑀 = 𝐾 → (𝑀 = 1 → (𝑀𝐾 → ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 − 1) ∈ ℕ))))
6463com14 96 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 = 1 → (𝑀𝐾 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))))
6564ex 416 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝑀 = 1 → (𝑀𝐾 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
6665com14 96 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀𝐾 → (𝑀 ∈ ℕ0 → (𝑀 = 1 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
6766com13 88 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 = 1 → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
6829ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝑀 ∈ ℝ)
6931adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℝ)
70 1red 10635 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 1 ∈ ℝ)
7168, 69, 70lesub1d 11240 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾 ↔ (𝑀 − 1) ≤ (𝐾 − 1)))
723ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 𝐾 ∈ ℤ)
73 1zzd 12005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 1 ∈ ℤ)
7472, 73zsubcld 12084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → (𝐾 − 1) ∈ ℤ)
75 nngt0 11660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑀 − 1) ∈ ℕ → 0 < (𝑀 − 1))
76 0red 10637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → 0 ∈ ℝ)
77 peano2rem 10946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
7829, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑀 ∈ ℕ0 → (𝑀 − 1) ∈ ℝ)
7978adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 − 1) ∈ ℝ)
80 peano2rem 10946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
8131, 80syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℝ)
8281adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐾 − 1) ∈ ℝ)
83 ltletr 10725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((0 ∈ ℝ ∧ (𝑀 − 1) ∈ ℝ ∧ (𝐾 − 1) ∈ ℝ) → ((0 < (𝑀 − 1) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 0 < (𝐾 − 1)))
8476, 79, 82, 83syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((0 < (𝑀 − 1) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 0 < (𝐾 − 1)))
8584ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → ((0 < (𝑀 − 1) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 0 < (𝐾 − 1))))
8685com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0 < (𝑀 − 1) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → 0 < (𝐾 − 1))))
8786ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (0 < (𝑀 − 1) → ((𝑀 − 1) ≤ (𝐾 − 1) → (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → 0 < (𝐾 − 1)))))
8887com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0 < (𝑀 − 1) → (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → ((𝑀 − 1) ≤ (𝐾 − 1) → 0 < (𝐾 − 1)))))
8975, 88syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑀 − 1) ∈ ℕ → (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → ((𝑀 − 1) ≤ (𝐾 − 1) → 0 < (𝐾 − 1)))))
9089imp41 429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 0 < (𝐾 − 1))
9174, 90, 50sylanbrc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → (𝐾 − 1) ∈ ℕ)
9291a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))
9392ex 416 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → ((𝑀 − 1) ≤ (𝐾 − 1) → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))
9471, 93sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))
9594ex 416 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝐾 ∈ ℕ0 → (𝑀𝐾 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))))
9695com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))))
9796ex 416 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 − 1) ∈ ℕ → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
9867, 97jaoi 854 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 = 1 ∨ (𝑀 − 1) ∈ ℕ) → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
9927, 98syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
10013, 99sylbir 238 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝑀 ≠ 0) → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
101100ex 416 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0 → (𝑀 ≠ 0 → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))))))
102101pm2.43a 54 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → (𝑀 ≠ 0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
103102com24 95 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑀𝐾 → (𝑀 ≠ 0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
1041033imp 1108 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 ≠ 0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))
105104com3l 89 . . . . . . . . . . . . . 14 (𝑀 ≠ 0 → (¬ 𝑀 = 𝐾 → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝐾 − 1) ∈ ℕ)))
10614, 105sylbir 238 . . . . . . . . . . . . 13 𝑀 = 0 → (¬ 𝑀 = 𝐾 → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝐾 − 1) ∈ ℕ)))
107106imp 410 . . . . . . . . . . . 12 ((¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝐾 − 1) ∈ ℕ))
10826, 107sylbi 220 . . . . . . . . . . 11 (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝐾 − 1) ∈ ℕ))
109108com12 32 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) → (𝐾 − 1) ∈ ℕ))
110109con1d 147 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝐾 − 1) ∈ ℕ → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
111110com12 32 . . . . . . . 8 (¬ (𝐾 − 1) ∈ ℕ → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
11229adantr 484 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → 𝑀 ∈ ℝ)
11331adantl 485 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → 𝐾 ∈ ℝ)
114 1red 10635 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → 1 ∈ ℝ)
115112, 113, 1143jca 1125 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ))
1161153adant3 1129 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ))
117 ltsub1 11129 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑀 < 𝐾 ↔ (𝑀 − 1) < (𝐾 − 1)))
118116, 117syl 17 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 < 𝐾 ↔ (𝑀 − 1) < (𝐾 − 1)))
119118bicomd 226 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → ((𝑀 − 1) < (𝐾 − 1) ↔ 𝑀 < 𝐾))
120119notbid 321 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) < (𝐾 − 1) ↔ ¬ 𝑀 < 𝐾))
121 eqlelt 10721 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 = 𝐾 ↔ (𝑀𝐾 ∧ ¬ 𝑀 < 𝐾)))
12229, 31, 121syl2an 598 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 = 𝐾 ↔ (𝑀𝐾 ∧ ¬ 𝑀 < 𝐾)))
123122biimpar 481 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ (𝑀𝐾 ∧ ¬ 𝑀 < 𝐾)) → 𝑀 = 𝐾)
124123olcd 871 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ (𝑀𝐾 ∧ ¬ 𝑀 < 𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾))
125124exp43 440 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑀𝐾 → (¬ 𝑀 < 𝐾 → (𝑀 = 0 ∨ 𝑀 = 𝐾)))))
1261253imp 1108 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ 𝑀 < 𝐾 → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
127120, 126sylbid 243 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) < (𝐾 − 1) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
128127com12 32 . . . . . . . 8 (¬ (𝑀 − 1) < (𝐾 − 1) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
12925, 111, 1283jaoi 1424 . . . . . . 7 ((¬ (𝑀 − 1) ∈ ℕ0 ∨ ¬ (𝐾 − 1) ∈ ℕ ∨ ¬ (𝑀 − 1) < (𝐾 − 1)) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
13012, 129sylbi 220 . . . . . 6 (¬ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1)) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
131130com12 32 . . . . 5 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1)) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
13211, 131sylbid 243 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) ∈ (0..^(𝐾 − 1)) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
1338, 132sylbid 243 . . 3 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ 𝑀 ∈ (1..^𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
1341, 133sylbi 220 . 2 (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
135134imp 410 1 ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3o 1083  w3a 1084   = wceq 1538  wcel 2112  wne 2990   class class class wbr 5033  (class class class)co 7139  cr 10529  0cc0 10530  1c1 10531   < clt 10668  cle 10669  cmin 10863  cn 11629  0cn0 11889  cz 11973  ...cfz 12889  ..^cfzo 13032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033
This theorem is referenced by:  elfznelfzob  13142  injresinjlem  13156
  Copyright terms: Public domain W3C validator