MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfznelfzo Structured version   Visualization version   GIF version

Theorem elfznelfzo 12992
Description: A value in a finite set of sequential integers is a border value if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by Thierry Arnoux, 22-Dec-2021.)
Assertion
Ref Expression
elfznelfzo ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾))

Proof of Theorem elfznelfzo
StepHypRef Expression
1 elfz2nn0 12848 . . 3 (𝑀 ∈ (0...𝐾) ↔ (𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾))
2 nn0z 11854 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
3 nn0z 11854 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
42, 3anim12i 612 . . . . . . 7 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ))
543adant3 1125 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ))
6 elfzom1b 12986 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ (1..^𝐾) ↔ (𝑀 − 1) ∈ (0..^(𝐾 − 1))))
75, 6syl 17 . . . . 5 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 ∈ (1..^𝐾) ↔ (𝑀 − 1) ∈ (0..^(𝐾 − 1))))
87notbid 319 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ 𝑀 ∈ (1..^𝐾) ↔ ¬ (𝑀 − 1) ∈ (0..^(𝐾 − 1))))
9 elfzo0 12928 . . . . . . 7 ((𝑀 − 1) ∈ (0..^(𝐾 − 1)) ↔ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1)))
109a1i 11 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → ((𝑀 − 1) ∈ (0..^(𝐾 − 1)) ↔ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1))))
1110notbid 319 . . . . 5 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) ∈ (0..^(𝐾 − 1)) ↔ ¬ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1))))
12 3ianor 1100 . . . . . . 7 (¬ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1)) ↔ (¬ (𝑀 − 1) ∈ ℕ0 ∨ ¬ (𝐾 − 1) ∈ ℕ ∨ ¬ (𝑀 − 1) < (𝐾 − 1)))
13 elnnne0 11759 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℕ0𝑀 ≠ 0))
14 df-ne 2985 . . . . . . . . . . . . . . . . . 18 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
1514anbi2i 622 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑀 ≠ 0) ↔ (𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0))
1613, 15bitr2i 277 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0) ↔ 𝑀 ∈ ℕ)
17 nnm1nn0 11786 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
1816, 17sylbi 218 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0) → (𝑀 − 1) ∈ ℕ0)
1918ex 413 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (¬ 𝑀 = 0 → (𝑀 − 1) ∈ ℕ0))
2019con1d 147 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (¬ (𝑀 − 1) ∈ ℕ0𝑀 = 0))
2120imp 407 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0 ∧ ¬ (𝑀 − 1) ∈ ℕ0) → 𝑀 = 0)
2221orcd 870 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0 ∧ ¬ (𝑀 − 1) ∈ ℕ0) → (𝑀 = 0 ∨ 𝑀 = 𝐾))
2322ex 413 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (¬ (𝑀 − 1) ∈ ℕ0 → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
24233ad2ant1 1126 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) ∈ ℕ0 → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
2524com12 32 . . . . . . . 8 (¬ (𝑀 − 1) ∈ ℕ0 → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
26 ioran 978 . . . . . . . . . . . 12 (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) ↔ (¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾))
27 nn1m1nn 11506 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → (𝑀 = 1 ∨ (𝑀 − 1) ∈ ℕ))
28 df-ne 2985 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀𝐾 ↔ ¬ 𝑀 = 𝐾)
29 nn0re 11754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
3029ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → 𝑀 ∈ ℝ)
31 nn0re 11754 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
3231adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → 𝐾 ∈ ℝ)
3332adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → 𝐾 ∈ ℝ)
34 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → 𝑀𝐾)
3530, 33, 34leltned 10640 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → (𝑀 < 𝐾𝐾𝑀))
36 necom 3037 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑀𝐾𝐾𝑀)
3735, 36syl6rbbr 291 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → (𝑀𝐾𝑀 < 𝐾))
3837adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) ∧ 𝑀 = 1) → (𝑀𝐾𝑀 < 𝐾))
39 breq1 4965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑀 = 1 → (𝑀 < 𝐾 ↔ 1 < 𝐾))
4039biimpa 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑀 = 1 ∧ 𝑀 < 𝐾) → 1 < 𝐾)
41 1red 10488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → 1 ∈ ℝ)
4241, 32, 41ltsub1d 11097 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (1 < 𝐾 ↔ (1 − 1) < (𝐾 − 1)))
43 1m1e0 11557 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (1 − 1) = 0
4443breq1i 4969 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((1 − 1) < (𝐾 − 1) ↔ 0 < (𝐾 − 1))
45 1zzd 11862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝐾 ∈ ℕ0 → 1 ∈ ℤ)
463, 45zsubcld 11941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℤ)
4746adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 − 1) ∈ ℤ)
4847adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 0 < (𝐾 − 1)) → (𝐾 − 1) ∈ ℤ)
49 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 0 < (𝐾 − 1)) → 0 < (𝐾 − 1))
50 elnnz 11839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝐾 − 1) ∈ ℕ ↔ ((𝐾 − 1) ∈ ℤ ∧ 0 < (𝐾 − 1)))
5148, 49, 50sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 0 < (𝐾 − 1)) → (𝐾 − 1) ∈ ℕ)
5251ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (0 < (𝐾 − 1) → (𝐾 − 1) ∈ ℕ))
5344, 52syl5bi 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((1 − 1) < (𝐾 − 1) → (𝐾 − 1) ∈ ℕ))
5442, 53sylbid 241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (1 < 𝐾 → (𝐾 − 1) ∈ ℕ))
5540, 54syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → ((𝑀 = 1 ∧ 𝑀 < 𝐾) → (𝐾 − 1) ∈ ℕ))
5655expd 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 = 1 → (𝑀 < 𝐾 → (𝐾 − 1) ∈ ℕ)))
5756adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) → (𝑀 = 1 → (𝑀 < 𝐾 → (𝐾 − 1) ∈ ℕ)))
5857imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) ∧ 𝑀 = 1) → (𝑀 < 𝐾 → (𝐾 − 1) ∈ ℕ))
5938, 58sylbid 241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) ∧ 𝑀𝐾) ∧ 𝑀 = 1) → (𝑀𝐾 → (𝐾 − 1) ∈ ℕ))
6059exp31 420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀𝐾 → (𝑀 = 1 → (𝑀𝐾 → (𝐾 − 1) ∈ ℕ))))
6160com14 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀𝐾 → (𝑀𝐾 → (𝑀 = 1 → ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 − 1) ∈ ℕ))))
6228, 61sylbir 236 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑀 = 𝐾 → (𝑀𝐾 → (𝑀 = 1 → ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 − 1) ∈ ℕ))))
6362com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑀 = 𝐾 → (𝑀 = 1 → (𝑀𝐾 → ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐾 − 1) ∈ ℕ))))
6463com14 96 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑀 = 1 → (𝑀𝐾 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))))
6564ex 413 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝑀 = 1 → (𝑀𝐾 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
6665com14 96 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀𝐾 → (𝑀 ∈ ℕ0 → (𝑀 = 1 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
6766com13 88 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 = 1 → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
6829ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝑀 ∈ ℝ)
6931adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 𝐾 ∈ ℝ)
70 1red 10488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → 1 ∈ ℝ)
7168, 69, 70lesub1d 11095 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾 ↔ (𝑀 − 1) ≤ (𝐾 − 1)))
723ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 𝐾 ∈ ℤ)
73 1zzd 11862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 1 ∈ ℤ)
7472, 73zsubcld 11941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → (𝐾 − 1) ∈ ℤ)
75 nngt0 11516 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑀 − 1) ∈ ℕ → 0 < (𝑀 − 1))
76 0red 10490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → 0 ∈ ℝ)
77 peano2rem 10801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
7829, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑀 ∈ ℕ0 → (𝑀 − 1) ∈ ℝ)
7978adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 − 1) ∈ ℝ)
80 peano2rem 10801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
8131, 80syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐾 ∈ ℕ0 → (𝐾 − 1) ∈ ℝ)
8281adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐾 − 1) ∈ ℝ)
83 ltletr 10579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((0 ∈ ℝ ∧ (𝑀 − 1) ∈ ℝ ∧ (𝐾 − 1) ∈ ℝ) → ((0 < (𝑀 − 1) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 0 < (𝐾 − 1)))
8476, 79, 82, 83syl3anc 1364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → ((0 < (𝑀 − 1) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 0 < (𝐾 − 1)))
8584ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → ((0 < (𝑀 − 1) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 0 < (𝐾 − 1))))
8685com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((0 < (𝑀 − 1) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → 0 < (𝐾 − 1))))
8786ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (0 < (𝑀 − 1) → ((𝑀 − 1) ≤ (𝐾 − 1) → (𝐾 ∈ ℕ0 → (𝑀 ∈ ℕ0 → 0 < (𝐾 − 1)))))
8887com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0 < (𝑀 − 1) → (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → ((𝑀 − 1) ≤ (𝐾 − 1) → 0 < (𝐾 − 1)))))
8975, 88syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑀 − 1) ∈ ℕ → (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → ((𝑀 − 1) ≤ (𝐾 − 1) → 0 < (𝐾 − 1)))))
9089imp41 426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → 0 < (𝐾 − 1))
9174, 90, 50sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → (𝐾 − 1) ∈ ℕ)
9291a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) ∧ (𝑀 − 1) ≤ (𝐾 − 1)) → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))
9392ex 413 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → ((𝑀 − 1) ≤ (𝐾 − 1) → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))
9471, 93sylbid 241 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ 𝐾 ∈ ℕ0) → (𝑀𝐾 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))
9594ex 413 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝐾 ∈ ℕ0 → (𝑀𝐾 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))))
9695com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 − 1) ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))))
9796ex 413 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 − 1) ∈ ℕ → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
9867, 97jaoi 852 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 = 1 ∨ (𝑀 − 1) ∈ ℕ) → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
9927, 98syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
10013, 99sylbir 236 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝑀 ≠ 0) → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
101100ex 413 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0 → (𝑀 ≠ 0 → (𝑀 ∈ ℕ0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ))))))
102101pm2.43a 54 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 → (𝑀 ≠ 0 → (𝑀𝐾 → (𝐾 ∈ ℕ0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
103102com24 95 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑀𝐾 → (𝑀 ≠ 0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))))
1041033imp 1104 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 ≠ 0 → (¬ 𝑀 = 𝐾 → (𝐾 − 1) ∈ ℕ)))
105104com3l 89 . . . . . . . . . . . . . 14 (𝑀 ≠ 0 → (¬ 𝑀 = 𝐾 → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝐾 − 1) ∈ ℕ)))
10614, 105sylbir 236 . . . . . . . . . . . . 13 𝑀 = 0 → (¬ 𝑀 = 𝐾 → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝐾 − 1) ∈ ℕ)))
107106imp 407 . . . . . . . . . . . 12 ((¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝐾 − 1) ∈ ℕ))
10826, 107sylbi 218 . . . . . . . . . . 11 (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝐾 − 1) ∈ ℕ))
109108com12 32 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 = 0 ∨ 𝑀 = 𝐾) → (𝐾 − 1) ∈ ℕ))
110109con1d 147 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝐾 − 1) ∈ ℕ → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
111110com12 32 . . . . . . . 8 (¬ (𝐾 − 1) ∈ ℕ → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
11229adantr 481 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → 𝑀 ∈ ℝ)
11331adantl 482 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → 𝐾 ∈ ℝ)
114 1red 10488 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → 1 ∈ ℝ)
115112, 113, 1143jca 1121 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ))
1161153adant3 1125 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ))
117 ltsub1 10984 . . . . . . . . . . . . 13 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑀 < 𝐾 ↔ (𝑀 − 1) < (𝐾 − 1)))
118116, 117syl 17 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 < 𝐾 ↔ (𝑀 − 1) < (𝐾 − 1)))
119118bicomd 224 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → ((𝑀 − 1) < (𝐾 − 1) ↔ 𝑀 < 𝐾))
120119notbid 319 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) < (𝐾 − 1) ↔ ¬ 𝑀 < 𝐾))
121 eqlelt 10575 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀 = 𝐾 ↔ (𝑀𝐾 ∧ ¬ 𝑀 < 𝐾)))
12229, 31, 121syl2an 595 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀 = 𝐾 ↔ (𝑀𝐾 ∧ ¬ 𝑀 < 𝐾)))
123122biimpar 478 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ (𝑀𝐾 ∧ ¬ 𝑀 < 𝐾)) → 𝑀 = 𝐾)
124123olcd 871 . . . . . . . . . . . 12 (((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) ∧ (𝑀𝐾 ∧ ¬ 𝑀 < 𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾))
125124exp43 437 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑀𝐾 → (¬ 𝑀 < 𝐾 → (𝑀 = 0 ∨ 𝑀 = 𝐾)))))
1261253imp 1104 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ 𝑀 < 𝐾 → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
127120, 126sylbid 241 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) < (𝐾 − 1) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
128127com12 32 . . . . . . . 8 (¬ (𝑀 − 1) < (𝐾 − 1) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
12925, 111, 1283jaoi 1420 . . . . . . 7 ((¬ (𝑀 − 1) ∈ ℕ0 ∨ ¬ (𝐾 − 1) ∈ ℕ ∨ ¬ (𝑀 − 1) < (𝐾 − 1)) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
13012, 129sylbi 218 . . . . . 6 (¬ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1)) → ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
131130com12 32 . . . . 5 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ ((𝑀 − 1) ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℕ ∧ (𝑀 − 1) < (𝐾 − 1)) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
13211, 131sylbid 241 . . . 4 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ (𝑀 − 1) ∈ (0..^(𝐾 − 1)) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
1338, 132sylbid 241 . . 3 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0𝑀𝐾) → (¬ 𝑀 ∈ (1..^𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
1341, 133sylbi 218 . 2 (𝑀 ∈ (0...𝐾) → (¬ 𝑀 ∈ (1..^𝐾) → (𝑀 = 0 ∨ 𝑀 = 𝐾)))
135134imp 407 1 ((𝑀 ∈ (0...𝐾) ∧ ¬ 𝑀 ∈ (1..^𝐾)) → (𝑀 = 0 ∨ 𝑀 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3o 1079  w3a 1080   = wceq 1522  wcel 2081  wne 2984   class class class wbr 4962  (class class class)co 7016  cr 10382  0cc0 10383  1c1 10384   < clt 10521  cle 10522  cmin 10717  cn 11486  0cn0 11745  cz 11829  ...cfz 12742  ..^cfzo 12883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-n0 11746  df-z 11830  df-uz 12094  df-fz 12743  df-fzo 12884
This theorem is referenced by:  elfznelfzob  12993  injresinjlem  13007
  Copyright terms: Public domain W3C validator