Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngnring Structured version   Visualization version   GIF version

Theorem 2zrngnring 48102
Description: R is not a unital ring. (Contributed by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngnring 𝑅 ∉ Ring
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngnring
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . . . . . 7 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 2zrngbas.r . . . . . . 7 𝑅 = (ℂflds 𝐸)
3 2zrngmmgm.1 . . . . . . 7 𝑀 = (mulGrp‘𝑅)
41, 2, 32zrngnmlid 48099 . . . . . 6 𝑏𝐸𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎
51, 22zrngbas 48086 . . . . . . . . 9 𝐸 = (Base‘𝑅)
63, 5mgpbas 20158 . . . . . . . 8 𝐸 = (Base‘𝑀)
71, 22zrngmul 48095 . . . . . . . . 9 · = (.r𝑅)
83, 7mgpplusg 20156 . . . . . . . 8 · = (+g𝑀)
96, 8isnmnd 18764 . . . . . . 7 (∀𝑏𝐸𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎𝑀 ∉ Mnd)
10 df-nel 3045 . . . . . . 7 (𝑀 ∉ Mnd ↔ ¬ 𝑀 ∈ Mnd)
119, 10sylib 218 . . . . . 6 (∀𝑏𝐸𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎 → ¬ 𝑀 ∈ Mnd)
124, 11ax-mp 5 . . . . 5 ¬ 𝑀 ∈ Mnd
13123mix2i 1333 . . . 4 𝑅 ∈ Grp ∨ ¬ 𝑀 ∈ Mnd ∨ ¬ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))))
14 3ianor 1106 . . . 4 (¬ (𝑅 ∈ Grp ∧ 𝑀 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧)))) ↔ (¬ 𝑅 ∈ Grp ∨ ¬ 𝑀 ∈ Mnd ∨ ¬ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧)))))
1513, 14mpbir 231 . . 3 ¬ (𝑅 ∈ Grp ∧ 𝑀 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))))
16 eqid 2735 . . . 4 (Base‘𝑅) = (Base‘𝑅)
17 eqid 2735 . . . 4 (+g𝑅) = (+g𝑅)
1816, 3, 17, 7isring 20255 . . 3 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ 𝑀 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧)))))
1915, 18mtbir 323 . 2 ¬ 𝑅 ∈ Ring
2019nelir 3047 1 𝑅 ∉ Ring
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3o 1085  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wnel 3044  wral 3059  wrex 3068  {crab 3433  cfv 6563  (class class class)co 7431   · cmul 11158  2c2 12319  cz 12611  Basecbs 17245  s cress 17274  +gcplusg 17298  Mndcmnd 18760  Grpcgrp 18964  mulGrpcmgp 20152  Ringcrg 20251  fldccnfld 21382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-mnd 18761  df-mgp 20153  df-ring 20253  df-cnfld 21383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator