| Mathbox for Alexander van der Vekens | < Previous  
      Next > Nearby theorems | ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrngnring | Structured version Visualization version GIF version | ||
| Description: R is not a unital ring. (Contributed by AV, 6-Jan-2020.) | 
| Ref | Expression | 
|---|---|
| 2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | 
| 2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) | 
| 2zrngmmgm.1 | ⊢ 𝑀 = (mulGrp‘𝑅) | 
| Ref | Expression | 
|---|---|
| 2zrngnring | ⊢ 𝑅 ∉ Ring | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2zrng.e | . . . . . . 7 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
| 2 | 2zrngbas.r | . . . . . . 7 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
| 3 | 2zrngmmgm.1 | . . . . . . 7 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 4 | 1, 2, 3 | 2zrngnmlid 48171 | . . . . . 6 ⊢ ∀𝑏 ∈ 𝐸 ∃𝑎 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 | 
| 5 | 1, 2 | 2zrngbas 48158 | . . . . . . . . 9 ⊢ 𝐸 = (Base‘𝑅) | 
| 6 | 3, 5 | mgpbas 20142 | . . . . . . . 8 ⊢ 𝐸 = (Base‘𝑀) | 
| 7 | 1, 2 | 2zrngmul 48167 | . . . . . . . . 9 ⊢ · = (.r‘𝑅) | 
| 8 | 3, 7 | mgpplusg 20141 | . . . . . . . 8 ⊢ · = (+g‘𝑀) | 
| 9 | 6, 8 | isnmnd 18751 | . . . . . . 7 ⊢ (∀𝑏 ∈ 𝐸 ∃𝑎 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 → 𝑀 ∉ Mnd) | 
| 10 | df-nel 3047 | . . . . . . 7 ⊢ (𝑀 ∉ Mnd ↔ ¬ 𝑀 ∈ Mnd) | |
| 11 | 9, 10 | sylib 218 | . . . . . 6 ⊢ (∀𝑏 ∈ 𝐸 ∃𝑎 ∈ 𝐸 (𝑏 · 𝑎) ≠ 𝑎 → ¬ 𝑀 ∈ Mnd) | 
| 12 | 4, 11 | ax-mp 5 | . . . . 5 ⊢ ¬ 𝑀 ∈ Mnd | 
| 13 | 12 | 3mix2i 1335 | . . . 4 ⊢ (¬ 𝑅 ∈ Grp ∨ ¬ 𝑀 ∈ Mnd ∨ ¬ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧)))) | 
| 14 | 3ianor 1107 | . . . 4 ⊢ (¬ (𝑅 ∈ Grp ∧ 𝑀 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧)))) ↔ (¬ 𝑅 ∈ Grp ∨ ¬ 𝑀 ∈ Mnd ∨ ¬ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))))) | |
| 15 | 13, 14 | mpbir 231 | . . 3 ⊢ ¬ (𝑅 ∈ Grp ∧ 𝑀 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧)))) | 
| 16 | eqid 2737 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 17 | eqid 2737 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 18 | 16, 3, 17, 7 | isring 20234 | . . 3 ⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ 𝑀 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g‘𝑅)𝑧)) = ((𝑥 · 𝑦)(+g‘𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝑅)(𝑦 · 𝑧))))) | 
| 19 | 15, 18 | mtbir 323 | . 2 ⊢ ¬ 𝑅 ∈ Ring | 
| 20 | 19 | nelir 3049 | 1 ⊢ 𝑅 ∉ Ring | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ w3o 1086 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∉ wnel 3046 ∀wral 3061 ∃wrex 3070 {crab 3436 ‘cfv 6561 (class class class)co 7431 · cmul 11160 2c2 12321 ℤcz 12613 Basecbs 17247 ↾s cress 17274 +gcplusg 17297 Mndcmnd 18747 Grpcgrp 18951 mulGrpcmgp 20137 Ringcrg 20230 ℂfldccnfld 21364 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-mulf 11235 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-mnd 18748 df-mgp 20138 df-ring 20232 df-cnfld 21365 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |