Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngnring Structured version   Visualization version   GIF version

Theorem 2zrngnring 44243
Description: R is not a unital ring. (Contributed by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngnring 𝑅 ∉ Ring
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngnring
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . . . . . 7 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 2zrngbas.r . . . . . . 7 𝑅 = (ℂflds 𝐸)
3 2zrngmmgm.1 . . . . . . 7 𝑀 = (mulGrp‘𝑅)
41, 2, 32zrngnmlid 44240 . . . . . 6 𝑏𝐸𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎
51, 22zrngbas 44227 . . . . . . . . 9 𝐸 = (Base‘𝑅)
63, 5mgpbas 19245 . . . . . . . 8 𝐸 = (Base‘𝑀)
71, 22zrngmul 44236 . . . . . . . . 9 · = (.r𝑅)
83, 7mgpplusg 19243 . . . . . . . 8 · = (+g𝑀)
96, 8isnmnd 17915 . . . . . . 7 (∀𝑏𝐸𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎𝑀 ∉ Mnd)
10 df-nel 3124 . . . . . . 7 (𝑀 ∉ Mnd ↔ ¬ 𝑀 ∈ Mnd)
119, 10sylib 220 . . . . . 6 (∀𝑏𝐸𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎 → ¬ 𝑀 ∈ Mnd)
124, 11ax-mp 5 . . . . 5 ¬ 𝑀 ∈ Mnd
13123mix2i 1330 . . . 4 𝑅 ∈ Grp ∨ ¬ 𝑀 ∈ Mnd ∨ ¬ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))))
14 3ianor 1103 . . . 4 (¬ (𝑅 ∈ Grp ∧ 𝑀 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧)))) ↔ (¬ 𝑅 ∈ Grp ∨ ¬ 𝑀 ∈ Mnd ∨ ¬ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧)))))
1513, 14mpbir 233 . . 3 ¬ (𝑅 ∈ Grp ∧ 𝑀 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))))
16 eqid 2821 . . . 4 (Base‘𝑅) = (Base‘𝑅)
17 eqid 2821 . . . 4 (+g𝑅) = (+g𝑅)
1816, 3, 17, 7isring 19301 . . 3 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ 𝑀 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧)))))
1915, 18mtbir 325 . 2 ¬ 𝑅 ∈ Ring
2019nelir 3126 1 𝑅 ∉ Ring
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wnel 3123  wral 3138  wrex 3139  {crab 3142  cfv 6355  (class class class)co 7156   · cmul 10542  2c2 11693  cz 11982  Basecbs 16483  s cress 16484  +gcplusg 16565  Mndcmnd 17911  Grpcgrp 18103  mulGrpcmgp 19239  Ringcrg 19297  fldccnfld 20545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-mnd 17912  df-mgp 19240  df-ring 19299  df-cnfld 20546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator