Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2zrngnring Structured version   Visualization version   GIF version

Theorem 2zrngnring 48368
Description: R is not a unital ring. (Contributed by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2zrngbas.r 𝑅 = (ℂflds 𝐸)
2zrngmmgm.1 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
2zrngnring 𝑅 ∉ Ring
Distinct variable groups:   𝑥,𝑧,𝑅   𝑥,𝐸,𝑧
Allowed substitution hints:   𝑀(𝑥,𝑧)

Proof of Theorem 2zrngnring
Dummy variables 𝑎 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2zrng.e . . . . . . 7 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
2 2zrngbas.r . . . . . . 7 𝑅 = (ℂflds 𝐸)
3 2zrngmmgm.1 . . . . . . 7 𝑀 = (mulGrp‘𝑅)
41, 2, 32zrngnmlid 48365 . . . . . 6 𝑏𝐸𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎
51, 22zrngbas 48352 . . . . . . . . 9 𝐸 = (Base‘𝑅)
63, 5mgpbas 20063 . . . . . . . 8 𝐸 = (Base‘𝑀)
71, 22zrngmul 48361 . . . . . . . . 9 · = (.r𝑅)
83, 7mgpplusg 20062 . . . . . . . 8 · = (+g𝑀)
96, 8isnmnd 18646 . . . . . . 7 (∀𝑏𝐸𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎𝑀 ∉ Mnd)
10 df-nel 3033 . . . . . . 7 (𝑀 ∉ Mnd ↔ ¬ 𝑀 ∈ Mnd)
119, 10sylib 218 . . . . . 6 (∀𝑏𝐸𝑎𝐸 (𝑏 · 𝑎) ≠ 𝑎 → ¬ 𝑀 ∈ Mnd)
124, 11ax-mp 5 . . . . 5 ¬ 𝑀 ∈ Mnd
13123mix2i 1335 . . . 4 𝑅 ∈ Grp ∨ ¬ 𝑀 ∈ Mnd ∨ ¬ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))))
14 3ianor 1106 . . . 4 (¬ (𝑅 ∈ Grp ∧ 𝑀 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧)))) ↔ (¬ 𝑅 ∈ Grp ∨ ¬ 𝑀 ∈ Mnd ∨ ¬ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧)))))
1513, 14mpbir 231 . . 3 ¬ (𝑅 ∈ Grp ∧ 𝑀 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧))))
16 eqid 2731 . . . 4 (Base‘𝑅) = (Base‘𝑅)
17 eqid 2731 . . . 4 (+g𝑅) = (+g𝑅)
1816, 3, 17, 7isring 20155 . . 3 (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ 𝑀 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥 · (𝑦(+g𝑅)𝑧)) = ((𝑥 · 𝑦)(+g𝑅)(𝑥 · 𝑧)) ∧ ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝑅)(𝑦 · 𝑧)))))
1915, 18mtbir 323 . 2 ¬ 𝑅 ∈ Ring
2019nelir 3035 1 𝑅 ∉ Ring
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wnel 3032  wral 3047  wrex 3056  {crab 3395  cfv 6481  (class class class)co 7346   · cmul 11011  2c2 12180  cz 12468  Basecbs 17120  s cress 17141  +gcplusg 17161  Mndcmnd 18642  Grpcgrp 18846  mulGrpcmgp 20058  Ringcrg 20151  fldccnfld 21291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-mnd 18643  df-mgp 20059  df-ring 20153  df-cnfld 21292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator