MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmulnn Structured version   Visualization version   GIF version

Theorem modmulnn 13794
Description: Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by NM, 2-Jan-2009.)
Assertion
Ref Expression
modmulnn ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)))

Proof of Theorem modmulnn
StepHypRef Expression
1 nnre 12160 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2 reflcl 13701 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
3 remulcl 11136 . . . . 5 ((𝑁 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ∈ ℝ)
41, 2, 3syl2an 596 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ∈ ℝ)
543adant3 1132 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ∈ ℝ)
6 remulcl 11136 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑁 · 𝐴) ∈ ℝ)
71, 6sylan 580 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ) → (𝑁 · 𝐴) ∈ ℝ)
8 reflcl 13701 . . . . 5 ((𝑁 · 𝐴) ∈ ℝ → (⌊‘(𝑁 · 𝐴)) ∈ ℝ)
97, 8syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ) → (⌊‘(𝑁 · 𝐴)) ∈ ℝ)
1093adant3 1132 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 · 𝐴)) ∈ ℝ)
11 nnmulcl 12177 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℕ)
1211nnred 12168 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℝ)
13123adant2 1131 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℝ)
14 nncn 12161 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
15 nnne0 12187 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1614, 15jca 512 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
17 nncn 12161 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
18 nnne0 12187 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
1917, 18jca 512 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
20 mulne0 11797 . . . . . . . 8 (((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) ∧ (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0)) → (𝑁 · 𝑀) ≠ 0)
2116, 19, 20syl2an 596 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ≠ 0)
22213adant2 1131 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ≠ 0)
235, 13, 22redivcld 11983 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) ∈ ℝ)
24 reflcl 13701 . . . . 5 (((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) ∈ ℝ → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) ∈ ℝ)
2523, 24syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) ∈ ℝ)
2613, 25remulcld 11185 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))) ∈ ℝ)
27 nnnn0 12420 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
28 flmulnn0 13732 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
2927, 28sylan 580 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
30293adant3 1132 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
315, 10, 26, 30lesub1dd 11771 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))) ≤ ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
3211nnrpd 12955 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℝ+)
33 modval 13776 . . 3 (((𝑁 · (⌊‘𝐴)) ∈ ℝ ∧ (𝑁 · 𝑀) ∈ ℝ+) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) = ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
345, 32, 333imp3i2an 1345 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) = ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
35 modval 13776 . . . 4 (((⌊‘(𝑁 · 𝐴)) ∈ ℝ ∧ (𝑁 · 𝑀) ∈ ℝ+) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))))
3610, 32, 353imp3i2an 1345 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))))
3773adant3 1132 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝐴) ∈ ℝ)
38 fldiv 13765 . . . . . . 7 (((𝑁 · 𝐴) ∈ ℝ ∧ (𝑁 · 𝑀) ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))))
3937, 11, 383imp3i2an 1345 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))))
40 fldiv 13765 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑀)) = (⌊‘(𝐴 / 𝑀)))
41403adant3 1132 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑀)) = (⌊‘(𝐴 / 𝑀)))
422recnd 11183 . . . . . . . . . 10 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
43 divcan5 11857 . . . . . . . . . 10 (((⌊‘𝐴) ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) = ((⌊‘𝐴) / 𝑀))
4442, 19, 16, 43syl3an 1160 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) = ((⌊‘𝐴) / 𝑀))
4544fveq2d 6846 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) = (⌊‘((⌊‘𝐴) / 𝑀)))
46 recn 11141 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
47 divcan5 11857 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → ((𝑁 · 𝐴) / (𝑁 · 𝑀)) = (𝐴 / 𝑀))
4846, 19, 16, 47syl3an 1160 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝐴) / (𝑁 · 𝑀)) = (𝐴 / 𝑀))
4948fveq2d 6846 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))) = (⌊‘(𝐴 / 𝑀)))
5041, 45, 493eqtr4rd 2787 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))
51503comr 1125 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))
5239, 51eqtrd 2776 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))
5352oveq2d 7373 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀)))) = ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))))
5453oveq2d 7373 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
5536, 54eqtrd 2776 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
5631, 34, 553brtr4d 5137 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   · cmul 11056  cle 11190  cmin 11385   / cdiv 11812  cn 12153  0cn0 12413  +crp 12915  cfl 13695   mod cmo 13774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fl 13697  df-mod 13775
This theorem is referenced by:  digit1  14140
  Copyright terms: Public domain W3C validator