MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmulnn Structured version   Visualization version   GIF version

Theorem modmulnn 13427
Description: Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by NM, 2-Jan-2009.)
Assertion
Ref Expression
modmulnn ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)))

Proof of Theorem modmulnn
StepHypRef Expression
1 nnre 11802 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2 reflcl 13336 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
3 remulcl 10779 . . . . 5 ((𝑁 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ∈ ℝ)
41, 2, 3syl2an 599 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ∈ ℝ)
543adant3 1134 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ∈ ℝ)
6 remulcl 10779 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑁 · 𝐴) ∈ ℝ)
71, 6sylan 583 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ) → (𝑁 · 𝐴) ∈ ℝ)
8 reflcl 13336 . . . . 5 ((𝑁 · 𝐴) ∈ ℝ → (⌊‘(𝑁 · 𝐴)) ∈ ℝ)
97, 8syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ) → (⌊‘(𝑁 · 𝐴)) ∈ ℝ)
1093adant3 1134 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 · 𝐴)) ∈ ℝ)
11 nnmulcl 11819 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℕ)
1211nnred 11810 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℝ)
13123adant2 1133 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℝ)
14 nncn 11803 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
15 nnne0 11829 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1614, 15jca 515 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
17 nncn 11803 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
18 nnne0 11829 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
1917, 18jca 515 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
20 mulne0 11439 . . . . . . . 8 (((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) ∧ (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0)) → (𝑁 · 𝑀) ≠ 0)
2116, 19, 20syl2an 599 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ≠ 0)
22213adant2 1133 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ≠ 0)
235, 13, 22redivcld 11625 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) ∈ ℝ)
24 reflcl 13336 . . . . 5 (((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) ∈ ℝ → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) ∈ ℝ)
2523, 24syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) ∈ ℝ)
2613, 25remulcld 10828 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))) ∈ ℝ)
27 nnnn0 12062 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
28 flmulnn0 13367 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
2927, 28sylan 583 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
30293adant3 1134 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
315, 10, 26, 30lesub1dd 11413 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))) ≤ ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
3211nnrpd 12591 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℝ+)
33 modval 13409 . . 3 (((𝑁 · (⌊‘𝐴)) ∈ ℝ ∧ (𝑁 · 𝑀) ∈ ℝ+) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) = ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
345, 32, 333imp3i2an 1347 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) = ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
35 modval 13409 . . . 4 (((⌊‘(𝑁 · 𝐴)) ∈ ℝ ∧ (𝑁 · 𝑀) ∈ ℝ+) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))))
3610, 32, 353imp3i2an 1347 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))))
3773adant3 1134 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝐴) ∈ ℝ)
38 fldiv 13398 . . . . . . 7 (((𝑁 · 𝐴) ∈ ℝ ∧ (𝑁 · 𝑀) ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))))
3937, 11, 383imp3i2an 1347 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))))
40 fldiv 13398 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑀)) = (⌊‘(𝐴 / 𝑀)))
41403adant3 1134 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑀)) = (⌊‘(𝐴 / 𝑀)))
422recnd 10826 . . . . . . . . . 10 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
43 divcan5 11499 . . . . . . . . . 10 (((⌊‘𝐴) ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) = ((⌊‘𝐴) / 𝑀))
4442, 19, 16, 43syl3an 1162 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) = ((⌊‘𝐴) / 𝑀))
4544fveq2d 6699 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) = (⌊‘((⌊‘𝐴) / 𝑀)))
46 recn 10784 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
47 divcan5 11499 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → ((𝑁 · 𝐴) / (𝑁 · 𝑀)) = (𝐴 / 𝑀))
4846, 19, 16, 47syl3an 1162 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝐴) / (𝑁 · 𝑀)) = (𝐴 / 𝑀))
4948fveq2d 6699 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))) = (⌊‘(𝐴 / 𝑀)))
5041, 45, 493eqtr4rd 2782 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))
51503comr 1127 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))
5239, 51eqtrd 2771 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))
5352oveq2d 7207 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀)))) = ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))))
5453oveq2d 7207 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
5536, 54eqtrd 2771 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
5631, 34, 553brtr4d 5071 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932   class class class wbr 5039  cfv 6358  (class class class)co 7191  cc 10692  cr 10693  0cc0 10694   · cmul 10699  cle 10833  cmin 11027   / cdiv 11454  cn 11795  0cn0 12055  +crp 12551  cfl 13330   mod cmo 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-fl 13332  df-mod 13408
This theorem is referenced by:  digit1  13769
  Copyright terms: Public domain W3C validator