MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmulnn Structured version   Visualization version   GIF version

Theorem modmulnn 13851
Description: Move a positive integer in and out of a floor in the first argument of a modulo operation. (Contributed by NM, 2-Jan-2009.)
Assertion
Ref Expression
modmulnn ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)))

Proof of Theorem modmulnn
StepHypRef Expression
1 nnre 12193 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
2 reflcl 13758 . . . . 5 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ)
3 remulcl 11153 . . . . 5 ((𝑁 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ∈ ℝ)
41, 2, 3syl2an 596 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ∈ ℝ)
543adant3 1132 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ∈ ℝ)
6 remulcl 11153 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑁 · 𝐴) ∈ ℝ)
71, 6sylan 580 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ) → (𝑁 · 𝐴) ∈ ℝ)
8 reflcl 13758 . . . . 5 ((𝑁 · 𝐴) ∈ ℝ → (⌊‘(𝑁 · 𝐴)) ∈ ℝ)
97, 8syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ) → (⌊‘(𝑁 · 𝐴)) ∈ ℝ)
1093adant3 1132 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 · 𝐴)) ∈ ℝ)
11 nnmulcl 12210 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℕ)
1211nnred 12201 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℝ)
13123adant2 1131 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℝ)
14 nncn 12194 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
15 nnne0 12220 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1614, 15jca 511 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0))
17 nncn 12194 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
18 nnne0 12220 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
1917, 18jca 511 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
20 mulne0 11820 . . . . . . . 8 (((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0) ∧ (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0)) → (𝑁 · 𝑀) ≠ 0)
2116, 19, 20syl2an 596 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ≠ 0)
22213adant2 1131 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ≠ 0)
235, 13, 22redivcld 12010 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) ∈ ℝ)
24 reflcl 13758 . . . . 5 (((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) ∈ ℝ → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) ∈ ℝ)
2523, 24syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) ∈ ℝ)
2613, 25remulcld 11204 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))) ∈ ℝ)
27 nnnn0 12449 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
28 flmulnn0 13789 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
2927, 28sylan 580 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
30293adant3 1132 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))
315, 10, 26, 30lesub1dd 11794 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))) ≤ ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
3211nnrpd 12993 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝑀) ∈ ℝ+)
33 modval 13833 . . 3 (((𝑁 · (⌊‘𝐴)) ∈ ℝ ∧ (𝑁 · 𝑀) ∈ ℝ+) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) = ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
345, 32, 333imp3i2an 1346 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) = ((𝑁 · (⌊‘𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
35 modval 13833 . . . 4 (((⌊‘(𝑁 · 𝐴)) ∈ ℝ ∧ (𝑁 · 𝑀) ∈ ℝ+) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))))
3610, 32, 353imp3i2an 1346 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))))
3773adant3 1132 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (𝑁 · 𝐴) ∈ ℝ)
38 fldiv 13822 . . . . . . 7 (((𝑁 · 𝐴) ∈ ℝ ∧ (𝑁 · 𝑀) ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))))
3937, 11, 383imp3i2an 1346 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))))
40 fldiv 13822 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑀)) = (⌊‘(𝐴 / 𝑀)))
41403adant3 1132 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((⌊‘𝐴) / 𝑀)) = (⌊‘(𝐴 / 𝑀)))
422recnd 11202 . . . . . . . . . 10 (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℂ)
43 divcan5 11884 . . . . . . . . . 10 (((⌊‘𝐴) ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) = ((⌊‘𝐴) / 𝑀))
4442, 19, 16, 43syl3an 1160 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)) = ((⌊‘𝐴) / 𝑀))
4544fveq2d 6862 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))) = (⌊‘((⌊‘𝐴) / 𝑀)))
46 recn 11158 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
47 divcan5 11884 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0) ∧ (𝑁 ∈ ℂ ∧ 𝑁 ≠ 0)) → ((𝑁 · 𝐴) / (𝑁 · 𝑀)) = (𝐴 / 𝑀))
4846, 19, 16, 47syl3an 1160 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑁 · 𝐴) / (𝑁 · 𝑀)) = (𝐴 / 𝑀))
4948fveq2d 6862 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))) = (⌊‘(𝐴 / 𝑀)))
5041, 45, 493eqtr4rd 2775 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))
51503comr 1125 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (⌊‘((𝑁 · 𝐴) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))
5239, 51eqtrd 2764 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))) = (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))
5352oveq2d 7403 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀)))) = ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀)))))
5453oveq2d 7403 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((⌊‘(𝑁 · 𝐴)) / (𝑁 · 𝑀))))) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
5536, 54eqtrd 2764 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)) = ((⌊‘(𝑁 · 𝐴)) − ((𝑁 · 𝑀) · (⌊‘((𝑁 · (⌊‘𝐴)) / (𝑁 · 𝑀))))))
5631, 34, 553brtr4d 5139 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ) → ((𝑁 · (⌊‘𝐴)) mod (𝑁 · 𝑀)) ≤ ((⌊‘(𝑁 · 𝐴)) mod (𝑁 · 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   · cmul 11073  cle 11209  cmin 11405   / cdiv 11835  cn 12186  0cn0 12442  +crp 12951  cfl 13752   mod cmo 13831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fl 13754  df-mod 13832
This theorem is referenced by:  digit1  14202
  Copyright terms: Public domain W3C validator