| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgr2pthnlp | Structured version Visualization version GIF version | ||
| Description: A path of length at least 2 in a pseudograph does not contain a loop. (Contributed by AV, 6-Feb-2021.) |
| Ref | Expression |
|---|---|
| 2pthnloop.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| upgr2pthnlp | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹‘𝑖))) = 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2pthnloop.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 2 | 1 | 2pthnloop 29718 | . . 3 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))) |
| 3 | 2 | 3adant1 1130 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))) |
| 4 | pthiswlk 29712 | . . . . . . 7 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 5 | 1 | wlkf 29599 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
| 6 | simp2 1137 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → 𝐺 ∈ UPGraph) | |
| 7 | wrdsymbcl 14550 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝐹‘𝑖) ∈ dom 𝐼) | |
| 8 | 1 | upgrle2 29089 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UPGraph ∧ (𝐹‘𝑖) ∈ dom 𝐼) → (♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2) |
| 9 | 6, 7, 8 | 3imp3i2an 1346 | . . . . . . . . 9 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2) |
| 10 | fvex 6894 | . . . . . . . . . . . . 13 ⊢ (𝐼‘(𝐹‘𝑖)) ∈ V | |
| 11 | hashxnn0 14362 | . . . . . . . . . . . . 13 ⊢ ((𝐼‘(𝐹‘𝑖)) ∈ V → (♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℕ0*) | |
| 12 | xnn0xr 12584 | . . . . . . . . . . . . 13 ⊢ ((♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℕ0* → (♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℝ*) | |
| 13 | 10, 11, 12 | mp2b 10 | . . . . . . . . . . . 12 ⊢ (♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℝ* |
| 14 | 2re 12319 | . . . . . . . . . . . . 13 ⊢ 2 ∈ ℝ | |
| 15 | 14 | rexri 11298 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ* |
| 16 | 13, 15 | pm3.2i 470 | . . . . . . . . . . 11 ⊢ ((♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℝ* ∧ 2 ∈ ℝ*) |
| 17 | xrletri3 13175 | . . . . . . . . . . 11 ⊢ (((♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((♯‘(𝐼‘(𝐹‘𝑖))) = 2 ↔ ((♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))))) | |
| 18 | 16, 17 | mp1i 13 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((♯‘(𝐼‘(𝐹‘𝑖))) = 2 ↔ ((♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))))) |
| 19 | 18 | biimprd 248 | . . . . . . . . 9 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (((♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)) |
| 20 | 9, 19 | mpand 695 | . . . . . . . 8 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)) |
| 21 | 20 | 3exp 1119 | . . . . . . 7 ⊢ (𝐹 ∈ Word dom 𝐼 → (𝐺 ∈ UPGraph → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)))) |
| 22 | 4, 5, 21 | 3syl 18 | . . . . . 6 ⊢ (𝐹(Paths‘𝐺)𝑃 → (𝐺 ∈ UPGraph → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)))) |
| 23 | 22 | impcom 407 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2))) |
| 24 | 23 | 3adant3 1132 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2))) |
| 25 | 24 | imp 406 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)) |
| 26 | 25 | ralimdva 3153 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹‘𝑖))) = 2)) |
| 27 | 3, 26 | mpd 15 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹‘𝑖))) = 2) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 class class class wbr 5124 dom cdm 5659 ‘cfv 6536 (class class class)co 7410 0cc0 11134 1c1 11135 ℝ*cxr 11273 < clt 11274 ≤ cle 11275 2c2 12300 ℕ0*cxnn0 12579 ..^cfzo 13676 ♯chash 14353 Word cword 14536 iEdgciedg 28981 UPGraphcupgr 29064 Walkscwlks 29581 Pathscpths 29697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-uhgr 29042 df-upgr 29066 df-wlks 29584 df-trls 29677 df-pths 29701 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |