![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgr2pthnlp | Structured version Visualization version GIF version |
Description: A path of length at least 2 in a pseudograph does not contain a loop. (Contributed by AV, 6-Feb-2021.) |
Ref | Expression |
---|---|
2pthnloop.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
upgr2pthnlp | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹‘𝑖))) = 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2pthnloop.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | 1 | 2pthnloop 29668 | . . 3 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))) |
3 | 2 | 3adant1 1127 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))) |
4 | pthiswlk 29664 | . . . . . . 7 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
5 | 1 | wlkf 29551 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
6 | simp2 1134 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → 𝐺 ∈ UPGraph) | |
7 | wrdsymbcl 14535 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝐹‘𝑖) ∈ dom 𝐼) | |
8 | 1 | upgrle2 29041 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UPGraph ∧ (𝐹‘𝑖) ∈ dom 𝐼) → (♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2) |
9 | 6, 7, 8 | 3imp3i2an 1342 | . . . . . . . . 9 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2) |
10 | fvex 6914 | . . . . . . . . . . . . 13 ⊢ (𝐼‘(𝐹‘𝑖)) ∈ V | |
11 | hashxnn0 14356 | . . . . . . . . . . . . 13 ⊢ ((𝐼‘(𝐹‘𝑖)) ∈ V → (♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℕ0*) | |
12 | xnn0xr 12601 | . . . . . . . . . . . . 13 ⊢ ((♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℕ0* → (♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℝ*) | |
13 | 10, 11, 12 | mp2b 10 | . . . . . . . . . . . 12 ⊢ (♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℝ* |
14 | 2re 12338 | . . . . . . . . . . . . 13 ⊢ 2 ∈ ℝ | |
15 | 14 | rexri 11322 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ* |
16 | 13, 15 | pm3.2i 469 | . . . . . . . . . . 11 ⊢ ((♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℝ* ∧ 2 ∈ ℝ*) |
17 | xrletri3 13187 | . . . . . . . . . . 11 ⊢ (((♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((♯‘(𝐼‘(𝐹‘𝑖))) = 2 ↔ ((♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))))) | |
18 | 16, 17 | mp1i 13 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((♯‘(𝐼‘(𝐹‘𝑖))) = 2 ↔ ((♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))))) |
19 | 18 | biimprd 247 | . . . . . . . . 9 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (((♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)) |
20 | 9, 19 | mpand 693 | . . . . . . . 8 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)) |
21 | 20 | 3exp 1116 | . . . . . . 7 ⊢ (𝐹 ∈ Word dom 𝐼 → (𝐺 ∈ UPGraph → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)))) |
22 | 4, 5, 21 | 3syl 18 | . . . . . 6 ⊢ (𝐹(Paths‘𝐺)𝑃 → (𝐺 ∈ UPGraph → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)))) |
23 | 22 | impcom 406 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2))) |
24 | 23 | 3adant3 1129 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2))) |
25 | 24 | imp 405 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)) |
26 | 25 | ralimdva 3157 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹‘𝑖))) = 2)) |
27 | 3, 26 | mpd 15 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹‘𝑖))) = 2) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∀wral 3051 Vcvv 3462 class class class wbr 5153 dom cdm 5682 ‘cfv 6554 (class class class)co 7424 0cc0 11158 1c1 11159 ℝ*cxr 11297 < clt 11298 ≤ cle 11299 2c2 12319 ℕ0*cxnn0 12596 ..^cfzo 13681 ♯chash 14347 Word cword 14522 iEdgciedg 28933 UPGraphcupgr 29016 Walkscwlks 29533 Pathscpths 29649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-oadd 8500 df-er 8734 df-map 8857 df-pm 8858 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-dju 9944 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-n0 12525 df-xnn0 12597 df-z 12611 df-uz 12875 df-fz 13539 df-fzo 13682 df-hash 14348 df-word 14523 df-uhgr 28994 df-upgr 29018 df-wlks 29536 df-trls 29629 df-pths 29653 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |