![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgr2pthnlp | Structured version Visualization version GIF version |
Description: A path of length at least 2 in a pseudograph does not contain a loop. (Contributed by AV, 6-Feb-2021.) |
Ref | Expression |
---|---|
2pthnloop.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
upgr2pthnlp | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹‘𝑖))) = 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2pthnloop.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | 1 | 2pthnloop 29767 | . . 3 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))) |
3 | 2 | 3adant1 1130 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))) |
4 | pthiswlk 29763 | . . . . . . 7 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
5 | 1 | wlkf 29650 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
6 | simp2 1137 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → 𝐺 ∈ UPGraph) | |
7 | wrdsymbcl 14575 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝐹‘𝑖) ∈ dom 𝐼) | |
8 | 1 | upgrle2 29140 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UPGraph ∧ (𝐹‘𝑖) ∈ dom 𝐼) → (♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2) |
9 | 6, 7, 8 | 3imp3i2an 1345 | . . . . . . . . 9 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2) |
10 | fvex 6933 | . . . . . . . . . . . . 13 ⊢ (𝐼‘(𝐹‘𝑖)) ∈ V | |
11 | hashxnn0 14388 | . . . . . . . . . . . . 13 ⊢ ((𝐼‘(𝐹‘𝑖)) ∈ V → (♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℕ0*) | |
12 | xnn0xr 12630 | . . . . . . . . . . . . 13 ⊢ ((♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℕ0* → (♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℝ*) | |
13 | 10, 11, 12 | mp2b 10 | . . . . . . . . . . . 12 ⊢ (♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℝ* |
14 | 2re 12367 | . . . . . . . . . . . . 13 ⊢ 2 ∈ ℝ | |
15 | 14 | rexri 11348 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ* |
16 | 13, 15 | pm3.2i 470 | . . . . . . . . . . 11 ⊢ ((♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℝ* ∧ 2 ∈ ℝ*) |
17 | xrletri3 13216 | . . . . . . . . . . 11 ⊢ (((♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((♯‘(𝐼‘(𝐹‘𝑖))) = 2 ↔ ((♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))))) | |
18 | 16, 17 | mp1i 13 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((♯‘(𝐼‘(𝐹‘𝑖))) = 2 ↔ ((♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))))) |
19 | 18 | biimprd 248 | . . . . . . . . 9 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (((♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)) |
20 | 9, 19 | mpand 694 | . . . . . . . 8 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)) |
21 | 20 | 3exp 1119 | . . . . . . 7 ⊢ (𝐹 ∈ Word dom 𝐼 → (𝐺 ∈ UPGraph → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)))) |
22 | 4, 5, 21 | 3syl 18 | . . . . . 6 ⊢ (𝐹(Paths‘𝐺)𝑃 → (𝐺 ∈ UPGraph → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)))) |
23 | 22 | impcom 407 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2))) |
24 | 23 | 3adant3 1132 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2))) |
25 | 24 | imp 406 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)) |
26 | 25 | ralimdva 3173 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹‘𝑖))) = 2)) |
27 | 3, 26 | mpd 15 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹‘𝑖))) = 2) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 class class class wbr 5166 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 2c2 12348 ℕ0*cxnn0 12625 ..^cfzo 13711 ♯chash 14379 Word cword 14562 iEdgciedg 29032 UPGraphcupgr 29115 Walkscwlks 29632 Pathscpths 29748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-uhgr 29093 df-upgr 29117 df-wlks 29635 df-trls 29728 df-pths 29752 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |