MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr2pthnlp Structured version   Visualization version   GIF version

Theorem upgr2pthnlp 27819
Description: A path of length at least 2 in a pseudograph does not contain a loop. (Contributed by AV, 6-Feb-2021.)
Hypothesis
Ref Expression
2pthnloop.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upgr2pthnlp ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹𝑖))) = 2)
Distinct variable groups:   𝑖,𝐹   𝑖,𝐺   𝑖,𝐼   𝑃,𝑖

Proof of Theorem upgr2pthnlp
StepHypRef Expression
1 2pthnloop.i . . . 4 𝐼 = (iEdg‘𝐺)
212pthnloop 27818 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))
323adant1 1132 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))
4 pthiswlk 27814 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
51wlkf 27702 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
6 simp2 1139 . . . . . . . . . 10 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → 𝐺 ∈ UPGraph)
7 wrdsymbcl 14082 . . . . . . . . . 10 ((𝐹 ∈ Word dom 𝐼𝑖 ∈ (0..^(♯‘𝐹))) → (𝐹𝑖) ∈ dom 𝐼)
81upgrle2 27196 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ (𝐹𝑖) ∈ dom 𝐼) → (♯‘(𝐼‘(𝐹𝑖))) ≤ 2)
96, 7, 83imp3i2an 1347 . . . . . . . . 9 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (♯‘(𝐼‘(𝐹𝑖))) ≤ 2)
10 fvex 6730 . . . . . . . . . . . . 13 (𝐼‘(𝐹𝑖)) ∈ V
11 hashxnn0 13905 . . . . . . . . . . . . 13 ((𝐼‘(𝐹𝑖)) ∈ V → (♯‘(𝐼‘(𝐹𝑖))) ∈ ℕ0*)
12 xnn0xr 12167 . . . . . . . . . . . . 13 ((♯‘(𝐼‘(𝐹𝑖))) ∈ ℕ0* → (♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ*)
1310, 11, 12mp2b 10 . . . . . . . . . . . 12 (♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ*
14 2re 11904 . . . . . . . . . . . . 13 2 ∈ ℝ
1514rexri 10891 . . . . . . . . . . . 12 2 ∈ ℝ*
1613, 15pm3.2i 474 . . . . . . . . . . 11 ((♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ* ∧ 2 ∈ ℝ*)
17 xrletri3 12744 . . . . . . . . . . 11 (((♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((♯‘(𝐼‘(𝐹𝑖))) = 2 ↔ ((♯‘(𝐼‘(𝐹𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
1816, 17mp1i 13 . . . . . . . . . 10 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((♯‘(𝐼‘(𝐹𝑖))) = 2 ↔ ((♯‘(𝐼‘(𝐹𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
1918biimprd 251 . . . . . . . . 9 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (((♯‘(𝐼‘(𝐹𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))
209, 19mpand 695 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))
21203exp 1121 . . . . . . 7 (𝐹 ∈ Word dom 𝐼 → (𝐺 ∈ UPGraph → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))))
224, 5, 213syl 18 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → (𝐺 ∈ UPGraph → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))))
2322impcom 411 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2)))
24233adant3 1134 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2)))
2524imp 410 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))
2625ralimdva 3100 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹𝑖))) = 2))
273, 26mpd 15 1 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹𝑖))) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  Vcvv 3408   class class class wbr 5053  dom cdm 5551  cfv 6380  (class class class)co 7213  0cc0 10729  1c1 10730  *cxr 10866   < clt 10867  cle 10868  2c2 11885  0*cxnn0 12162  ..^cfzo 13238  chash 13896  Word cword 14069  iEdgciedg 27088  UPGraphcupgr 27171  Walkscwlks 27684  Pathscpths 27799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-hash 13897  df-word 14070  df-uhgr 27149  df-upgr 27173  df-wlks 27687  df-trls 27780  df-pths 27803
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator