Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgr2pthnlp | Structured version Visualization version GIF version |
Description: A path of length at least 2 in a pseudograph does not contain a loop. (Contributed by AV, 6-Feb-2021.) |
Ref | Expression |
---|---|
2pthnloop.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
upgr2pthnlp | ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹‘𝑖))) = 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2pthnloop.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | 1 | 2pthnloop 28099 | . . 3 ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))) |
3 | 2 | 3adant1 1129 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))) |
4 | pthiswlk 28095 | . . . . . . 7 ⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
5 | 1 | wlkf 27981 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
6 | simp2 1136 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → 𝐺 ∈ UPGraph) | |
7 | wrdsymbcl 14230 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (𝐹‘𝑖) ∈ dom 𝐼) | |
8 | 1 | upgrle2 27475 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UPGraph ∧ (𝐹‘𝑖) ∈ dom 𝐼) → (♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2) |
9 | 6, 7, 8 | 3imp3i2an 1344 | . . . . . . . . 9 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2) |
10 | fvex 6787 | . . . . . . . . . . . . 13 ⊢ (𝐼‘(𝐹‘𝑖)) ∈ V | |
11 | hashxnn0 14053 | . . . . . . . . . . . . 13 ⊢ ((𝐼‘(𝐹‘𝑖)) ∈ V → (♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℕ0*) | |
12 | xnn0xr 12310 | . . . . . . . . . . . . 13 ⊢ ((♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℕ0* → (♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℝ*) | |
13 | 10, 11, 12 | mp2b 10 | . . . . . . . . . . . 12 ⊢ (♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℝ* |
14 | 2re 12047 | . . . . . . . . . . . . 13 ⊢ 2 ∈ ℝ | |
15 | 14 | rexri 11033 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ* |
16 | 13, 15 | pm3.2i 471 | . . . . . . . . . . 11 ⊢ ((♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℝ* ∧ 2 ∈ ℝ*) |
17 | xrletri3 12888 | . . . . . . . . . . 11 ⊢ (((♯‘(𝐼‘(𝐹‘𝑖))) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((♯‘(𝐼‘(𝐹‘𝑖))) = 2 ↔ ((♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))))) | |
18 | 16, 17 | mp1i 13 | . . . . . . . . . 10 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((♯‘(𝐼‘(𝐹‘𝑖))) = 2 ↔ ((♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))))) |
19 | 18 | biimprd 247 | . . . . . . . . 9 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (((♯‘(𝐼‘(𝐹‘𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹‘𝑖)))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)) |
20 | 9, 19 | mpand 692 | . . . . . . . 8 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)) |
21 | 20 | 3exp 1118 | . . . . . . 7 ⊢ (𝐹 ∈ Word dom 𝐼 → (𝐺 ∈ UPGraph → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)))) |
22 | 4, 5, 21 | 3syl 18 | . . . . . 6 ⊢ (𝐹(Paths‘𝐺)𝑃 → (𝐺 ∈ UPGraph → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)))) |
23 | 22 | impcom 408 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2))) |
24 | 23 | 3adant3 1131 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2))) |
25 | 24 | imp 407 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → (♯‘(𝐼‘(𝐹‘𝑖))) = 2)) |
26 | 25 | ralimdva 3108 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹‘𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹‘𝑖))) = 2)) |
27 | 3, 26 | mpd 15 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹‘𝑖))) = 2) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 2c2 12028 ℕ0*cxnn0 12305 ..^cfzo 13382 ♯chash 14044 Word cword 14217 iEdgciedg 27367 UPGraphcupgr 27450 Walkscwlks 27963 Pathscpths 28080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-uhgr 27428 df-upgr 27452 df-wlks 27966 df-trls 28060 df-pths 28084 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |