MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr2pthnlp Structured version   Visualization version   GIF version

Theorem upgr2pthnlp 29703
Description: A path of length at least 2 in a pseudograph does not contain a loop. (Contributed by AV, 6-Feb-2021.)
Hypothesis
Ref Expression
2pthnloop.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upgr2pthnlp ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹𝑖))) = 2)
Distinct variable groups:   𝑖,𝐹   𝑖,𝐺   𝑖,𝐼   𝑃,𝑖

Proof of Theorem upgr2pthnlp
StepHypRef Expression
1 2pthnloop.i . . . 4 𝐼 = (iEdg‘𝐺)
212pthnloop 29702 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))
323adant1 1130 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))
4 pthiswlk 29696 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
51wlkf 29586 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
6 simp2 1137 . . . . . . . . . 10 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → 𝐺 ∈ UPGraph)
7 wrdsymbcl 14426 . . . . . . . . . 10 ((𝐹 ∈ Word dom 𝐼𝑖 ∈ (0..^(♯‘𝐹))) → (𝐹𝑖) ∈ dom 𝐼)
81upgrle2 29076 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ (𝐹𝑖) ∈ dom 𝐼) → (♯‘(𝐼‘(𝐹𝑖))) ≤ 2)
96, 7, 83imp3i2an 1346 . . . . . . . . 9 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (♯‘(𝐼‘(𝐹𝑖))) ≤ 2)
10 fvex 6830 . . . . . . . . . . . . 13 (𝐼‘(𝐹𝑖)) ∈ V
11 hashxnn0 14238 . . . . . . . . . . . . 13 ((𝐼‘(𝐹𝑖)) ∈ V → (♯‘(𝐼‘(𝐹𝑖))) ∈ ℕ0*)
12 xnn0xr 12451 . . . . . . . . . . . . 13 ((♯‘(𝐼‘(𝐹𝑖))) ∈ ℕ0* → (♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ*)
1310, 11, 12mp2b 10 . . . . . . . . . . . 12 (♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ*
14 2re 12191 . . . . . . . . . . . . 13 2 ∈ ℝ
1514rexri 11162 . . . . . . . . . . . 12 2 ∈ ℝ*
1613, 15pm3.2i 470 . . . . . . . . . . 11 ((♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ* ∧ 2 ∈ ℝ*)
17 xrletri3 13045 . . . . . . . . . . 11 (((♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((♯‘(𝐼‘(𝐹𝑖))) = 2 ↔ ((♯‘(𝐼‘(𝐹𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
1816, 17mp1i 13 . . . . . . . . . 10 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((♯‘(𝐼‘(𝐹𝑖))) = 2 ↔ ((♯‘(𝐼‘(𝐹𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
1918biimprd 248 . . . . . . . . 9 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (((♯‘(𝐼‘(𝐹𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))
209, 19mpand 695 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))
21203exp 1119 . . . . . . 7 (𝐹 ∈ Word dom 𝐼 → (𝐺 ∈ UPGraph → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))))
224, 5, 213syl 18 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → (𝐺 ∈ UPGraph → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))))
2322impcom 407 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2)))
24233adant3 1132 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2)))
2524imp 406 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))
2625ralimdva 3142 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹𝑖))) = 2))
273, 26mpd 15 1 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹𝑖))) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wral 3045  Vcvv 3434   class class class wbr 5089  dom cdm 5614  cfv 6477  (class class class)co 7341  0cc0 10998  1c1 10999  *cxr 11137   < clt 11138  cle 11139  2c2 12172  0*cxnn0 12446  ..^cfzo 13546  chash 14229  Word cword 14412  iEdgciedg 28968  UPGraphcupgr 29051  Walkscwlks 29568  Pathscpths 29681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-n0 12374  df-xnn0 12447  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-hash 14230  df-word 14413  df-uhgr 29029  df-upgr 29053  df-wlks 29571  df-trls 29662  df-pths 29685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator