MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr2pthnlp Structured version   Visualization version   GIF version

Theorem upgr2pthnlp 29695
Description: A path of length at least 2 in a pseudograph does not contain a loop. (Contributed by AV, 6-Feb-2021.)
Hypothesis
Ref Expression
2pthnloop.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upgr2pthnlp ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹𝑖))) = 2)
Distinct variable groups:   𝑖,𝐹   𝑖,𝐺   𝑖,𝐼   𝑃,𝑖

Proof of Theorem upgr2pthnlp
StepHypRef Expression
1 2pthnloop.i . . . 4 𝐼 = (iEdg‘𝐺)
212pthnloop 29694 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))
323adant1 1130 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))
4 pthiswlk 29688 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
51wlkf 29578 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
6 simp2 1137 . . . . . . . . . 10 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → 𝐺 ∈ UPGraph)
7 wrdsymbcl 14452 . . . . . . . . . 10 ((𝐹 ∈ Word dom 𝐼𝑖 ∈ (0..^(♯‘𝐹))) → (𝐹𝑖) ∈ dom 𝐼)
81upgrle2 29068 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ (𝐹𝑖) ∈ dom 𝐼) → (♯‘(𝐼‘(𝐹𝑖))) ≤ 2)
96, 7, 83imp3i2an 1346 . . . . . . . . 9 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (♯‘(𝐼‘(𝐹𝑖))) ≤ 2)
10 fvex 6839 . . . . . . . . . . . . 13 (𝐼‘(𝐹𝑖)) ∈ V
11 hashxnn0 14264 . . . . . . . . . . . . 13 ((𝐼‘(𝐹𝑖)) ∈ V → (♯‘(𝐼‘(𝐹𝑖))) ∈ ℕ0*)
12 xnn0xr 12480 . . . . . . . . . . . . 13 ((♯‘(𝐼‘(𝐹𝑖))) ∈ ℕ0* → (♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ*)
1310, 11, 12mp2b 10 . . . . . . . . . . . 12 (♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ*
14 2re 12220 . . . . . . . . . . . . 13 2 ∈ ℝ
1514rexri 11192 . . . . . . . . . . . 12 2 ∈ ℝ*
1613, 15pm3.2i 470 . . . . . . . . . . 11 ((♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ* ∧ 2 ∈ ℝ*)
17 xrletri3 13074 . . . . . . . . . . 11 (((♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((♯‘(𝐼‘(𝐹𝑖))) = 2 ↔ ((♯‘(𝐼‘(𝐹𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
1816, 17mp1i 13 . . . . . . . . . 10 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((♯‘(𝐼‘(𝐹𝑖))) = 2 ↔ ((♯‘(𝐼‘(𝐹𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
1918biimprd 248 . . . . . . . . 9 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (((♯‘(𝐼‘(𝐹𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))
209, 19mpand 695 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))
21203exp 1119 . . . . . . 7 (𝐹 ∈ Word dom 𝐼 → (𝐺 ∈ UPGraph → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))))
224, 5, 213syl 18 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → (𝐺 ∈ UPGraph → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))))
2322impcom 407 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2)))
24233adant3 1132 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2)))
2524imp 406 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))
2625ralimdva 3141 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹𝑖))) = 2))
273, 26mpd 15 1 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹𝑖))) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438   class class class wbr 5095  dom cdm 5623  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029  *cxr 11167   < clt 11168  cle 11169  2c2 12201  0*cxnn0 12475  ..^cfzo 13575  chash 14255  Word cword 14438  iEdgciedg 28960  UPGraphcupgr 29043  Walkscwlks 29560  Pathscpths 29673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-uhgr 29021  df-upgr 29045  df-wlks 29563  df-trls 29654  df-pths 29677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator