MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr2pthnlp Structured version   Visualization version   GIF version

Theorem upgr2pthnlp 27515
Description: A path of length at least 2 in a pseudograph does not contain a loop. (Contributed by AV, 6-Feb-2021.)
Hypothesis
Ref Expression
2pthnloop.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upgr2pthnlp ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹𝑖))) = 2)
Distinct variable groups:   𝑖,𝐹   𝑖,𝐺   𝑖,𝐼   𝑃,𝑖

Proof of Theorem upgr2pthnlp
StepHypRef Expression
1 2pthnloop.i . . . 4 𝐼 = (iEdg‘𝐺)
212pthnloop 27514 . . 3 ((𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))
323adant1 1126 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))))
4 pthiswlk 27510 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
51wlkf 27398 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
6 simp2 1133 . . . . . . . . . 10 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → 𝐺 ∈ UPGraph)
7 wrdsymbcl 13878 . . . . . . . . . 10 ((𝐹 ∈ Word dom 𝐼𝑖 ∈ (0..^(♯‘𝐹))) → (𝐹𝑖) ∈ dom 𝐼)
81upgrle2 26892 . . . . . . . . . 10 ((𝐺 ∈ UPGraph ∧ (𝐹𝑖) ∈ dom 𝐼) → (♯‘(𝐼‘(𝐹𝑖))) ≤ 2)
96, 7, 83imp3i2an 1341 . . . . . . . . 9 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (♯‘(𝐼‘(𝐹𝑖))) ≤ 2)
10 fvex 6685 . . . . . . . . . . . . 13 (𝐼‘(𝐹𝑖)) ∈ V
11 hashxnn0 13702 . . . . . . . . . . . . 13 ((𝐼‘(𝐹𝑖)) ∈ V → (♯‘(𝐼‘(𝐹𝑖))) ∈ ℕ0*)
12 xnn0xr 11975 . . . . . . . . . . . . 13 ((♯‘(𝐼‘(𝐹𝑖))) ∈ ℕ0* → (♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ*)
1310, 11, 12mp2b 10 . . . . . . . . . . . 12 (♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ*
14 2re 11714 . . . . . . . . . . . . 13 2 ∈ ℝ
1514rexri 10701 . . . . . . . . . . . 12 2 ∈ ℝ*
1613, 15pm3.2i 473 . . . . . . . . . . 11 ((♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ* ∧ 2 ∈ ℝ*)
17 xrletri3 12550 . . . . . . . . . . 11 (((♯‘(𝐼‘(𝐹𝑖))) ∈ ℝ* ∧ 2 ∈ ℝ*) → ((♯‘(𝐼‘(𝐹𝑖))) = 2 ↔ ((♯‘(𝐼‘(𝐹𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
1816, 17mp1i 13 . . . . . . . . . 10 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((♯‘(𝐼‘(𝐹𝑖))) = 2 ↔ ((♯‘(𝐼‘(𝐹𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑖))))))
1918biimprd 250 . . . . . . . . 9 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (((♯‘(𝐼‘(𝐹𝑖))) ≤ 2 ∧ 2 ≤ (♯‘(𝐼‘(𝐹𝑖)))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))
209, 19mpand 693 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼𝐺 ∈ UPGraph ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))
21203exp 1115 . . . . . . 7 (𝐹 ∈ Word dom 𝐼 → (𝐺 ∈ UPGraph → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))))
224, 5, 213syl 18 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → (𝐺 ∈ UPGraph → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))))
2322impcom 410 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2)))
24233adant3 1128 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → (𝑖 ∈ (0..^(♯‘𝐹)) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2)))
2524imp 409 . . 3 (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → (2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → (♯‘(𝐼‘(𝐹𝑖))) = 2))
2625ralimdva 3179 . 2 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))2 ≤ (♯‘(𝐼‘(𝐹𝑖))) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹𝑖))) = 2))
273, 26mpd 15 1 ((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃 ∧ 1 < (♯‘𝐹)) → ∀𝑖 ∈ (0..^(♯‘𝐹))(♯‘(𝐼‘(𝐹𝑖))) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496   class class class wbr 5068  dom cdm 5557  cfv 6357  (class class class)co 7158  0cc0 10539  1c1 10540  *cxr 10676   < clt 10677  cle 10678  2c2 11695  0*cxnn0 11970  ..^cfzo 13036  chash 13693  Word cword 13864  iEdgciedg 26784  UPGraphcupgr 26867  Walkscwlks 27380  Pathscpths 27495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-uhgr 26845  df-upgr 26869  df-wlks 27383  df-trls 27476  df-pths 27499
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator